NON-HOMOGENEOUS RECURRENCE RELATIONS AND MOMENT PROBLEMS

B. El Wahbi ${ }^{1}$
Département de Mathématiques et Informatique, Faculté des Sciences de Tétouan, Tétouan, Morocco and The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
and
M. Rachidi ${ }^{2}$
Département de Mathématiques et Informatique, Faculté des Sciences de Rabat, Rabat, Morocco.

Abstract

We study here the linear moment problem for a perturbed recursive sequences. We give a link between the truncated and the full moment problems for those sequences.

MIRAMARE - TRIESTE
September 2001

[^0]
1. Introduction

Let \mathcal{H} be a real separable Hilbert space and $\gamma=\left\{\gamma_{n}\right\}_{0 \leq n \leq p}(p \leq+\infty)$ be a sequence of real numbers. The linear moment problem associated to γ consists of finding a self-adjoint operator A and a non-vanishing vector $x \in \mathcal{H}$ satisfying,

$$
\begin{equation*}
\gamma_{n}=<A^{n} x \mid x>, \text { for } 0 \leq n \leq p \tag{1}
\end{equation*}
$$

The problem (1) has been studied in $[10,14,16]$. Let $a_{0}, \cdots, a_{r-1}\left(r \geq 2, a_{r-1} \neq 0\right)$ be some real numbers, and let $\mathcal{C}=\left\{C_{n}\right\}_{n \geq r}$ be a sequence in \mathbb{R} (or \mathbb{C}^{\prime}).
Let $\mathcal{T}=\left\{T_{n}\right\}_{n \geq 0}$ be the sequence defined by the following nonhomogeneous recurrence relation of order r,

$$
\begin{equation*}
T_{n+1}=a_{0} T_{n}+a_{1} T_{n-1}+\cdots+a_{r-1} T_{n-r+1}+C_{n+1}, \text { for } n \geq r-1, \tag{2}
\end{equation*}
$$

where T_{0}, \cdots, T_{r-1} are the specified initial values (or conditions). In the sequel we refer to such sequence \mathcal{T} as the solution of the recurrence relation (2), and $P(X)=X^{r}-a_{0} X^{r-1}-a_{1} X^{r-2}-$ $\ldots . .-a_{r-1}$ is the characteristic polynomial supposed with minimal degree (see [4] for example).

The solution of (2) has been studied by various methods and techniques for C_{n} polynomial and factorial polynomial (see $[1,2,3,5,13,15,18]$ for example). Recently, a matrix method has been considered in [13], for studying solutions of (2) in the general setting. The method of [13] consists of considering equation(2) under an equivalent nonlinear matrix equation, where appears a companion matrix.

When \mathcal{C} is a vanishing sequence, the sequence \mathcal{T} is called r-generalized Fibonacci sequence (r-GFS, for short). If \mathcal{H} is of finite dimension, a connection between the full and truncated linear moment problem for r-GFS, has been studied by the authors in [10].

The purpose of this paper is to study the moment problems (1) (and also (4)) in connection with the solutions (2) for a general sequence \mathcal{C}.

This paper is organized as follows. In section 2, we establish the connection between sequence (2) and moments of operators. Section 3 is devoted to the case when the sequence \mathcal{C} is an s-GFS. In section 4 we study solutions of (2) in terms of the spectral measures of self-adjoint extensions.

2. Solutions of (2) and linear moments problem (1)

Consider the polynomial $P(X)=X^{r}-a_{0} X^{r-1}-a_{1} X^{r-2}-\ldots . .-a_{r-1}$, and let $\left\{Q_{n}\right\}_{n \geq r}$ be the family of polynomials given by $Q_{n}(X)=X^{n-r} P(X)$. Let $x \neq 0$ be a non-vanishing element of \mathcal{H}. For every operator A on \mathcal{H}, The sequence of moments $\left\{\left\langle A^{n} x, x\right\rangle\right\}_{n \geq 0}$ is a sequence (2) with $\left.C_{n}=<Q_{n}(A) x, x\right\rangle$, for every $n \geq 0$.

As a consequence, we have the following proposition,
Proposition 2.1. Let A be an operator on \mathcal{H} and $x \neq 0$ in \mathcal{H}. For every monic polynomial P, there exists a sequence $\left\{C_{n}\right\}_{n \geq 0}$ such that the sequence of moments $\mathcal{T}=\left\{<A^{n} x|x\rangle\right\}_{n \geq 0}$, is a solution of the recurrence relation (2), whose characteristic polynomial is P.

Therefore, the question of studying the converse of the result of Proposition 2.1 arises.

Theorem 2.1. Let $\mathcal{T}=\left\{T_{n}\right\}_{n \geq 0}$ be a sequence (2), whose characteristic polynomial is $P(X)=$ $X^{r}-a_{0} X^{r-1}-a_{1} X^{r-2}-\ldots .-a_{r-1}\left(a_{r-1} \neq 0\right)$. Let A be an operator of \mathcal{H} and $x \neq 0 \in \mathcal{H}$. Then $T_{n}=<A^{n} x \mid x>$, for any $n \geq 0$, if and only if $T_{n}=<A^{n} x \mid x>$ for $n=0,1, . ., r-1$ and $C_{n}=<A^{n-r} P(A) x \mid x>$, for every $n \geq r$.

Proof. For every $k \geq r$, we have,

$$
C_{k}=T_{k}-\sum_{j=0}^{r-1} a_{j} T_{k-j-1}=<\left(A^{k}-\sum_{j=0}^{r-1} a_{j} A^{j-k-1}\right) x \mid x>
$$

Therefore, $C_{k}=<A^{k-r} P(A) x \mid x>$.
Conversely, suppose that $T_{n}=<A^{n} x \mid x>$, for $n=0,1, . ., r-1$ and $C_{n}=<A^{n-r} P(A) x \mid x>$, for every $n \geq 0$. Then $T_{r}=\sum_{j=0}^{r-1} a_{j}<A^{r-j-1} x|x>+<P(A) x| x>=<A^{r} x \mid x>$. By induction, we prove that \mathcal{T} satisfies $T_{n}=<A^{n} x \mid x>$, for every $n \geq 0 . \square$

Proposition 2.2. With notations of Theorem 2.1, if A is a self-adjoint operator then the following statements are equivalent,
(i) $T_{n}=<A^{n} x \mid x>$ for every $n \geq 0$.
(ii) $T_{n}=<A^{n} x \mid x>$, for $n=0,1, . ., 2 r-1$, and $C_{n}=\sum_{j=0}^{r-1} a_{j} C_{n-j-1}+<A^{n-2 r} z \mid z>$, for $z=P(A) x$ and every $n \geq 2 r$.

Proof. It suffices to establish the equivalence between (ii) and the second statement of Theorem 2.1. Let A be a self-adjoint operator. Suppose that $T_{n}=<A^{n} x \mid x>$ for $n=0,1, . ., r-1$ and $C_{n}=<A^{n-r} P(A) x \mid x>$, for $n \geq r$. Then, for every $n \geq 2 r$, we have,

$$
\begin{aligned}
&<A^{n-2 r} z, z>=<A^{n-r} x, P(A) x>-\sum_{j=0}^{r-1} a_{j}<A^{n-r-j-1} x, P(A) x> \\
&=<A^{n-r} P(A) x\left|x>-\sum_{j=0}^{r-1} a_{j}<A^{n-r-j-1} P(A) x\right| x> \\
&= \\
& C_{n}-\sum_{j=0}^{r-1} a_{j} C_{n-j-1}
\end{aligned}
$$

Conversely, suppose that (ii) holds. It is easy to show that $C_{n}=<A^{n-r} P(A) x \mid x>$, for $n=r, r+1, \ldots, 2 r-1$. On the other hand, we have,

$$
\begin{array}{rlc}
C_{2 r} & = & \sum_{j=0}^{r-1} a_{j} C_{2 r-j-1}+<P(A) x, P(A) x> \\
& =\sum_{j=0}^{r-1} a_{j} C_{2 r-j-1}+<A^{r} P(A) x, x>-\sum_{j=0}^{r-1} a_{j}<A^{r-j-1} P(A) x, x> \\
& = & <A^{r} P(A) x, x>
\end{array}
$$

And by induction we prove that

$$
C_{n}=<A^{n-r} P(A)^{x}, x>, \text { for any } n \geq 2 r
$$

It follows that (ii) and (iii) are equivalent.

Let \mathcal{T} be a sequence (2), whose characteristic polynomial is $P(X)=X^{r}-a_{0} X^{r-1}-a_{1} X^{r-2}-$ $\ldots . .-a_{r-1}$. Suppose that \mathcal{T} is a solution of the linear moment problem (1). For every $k \geq r$, we have

$$
C_{2 k}-\sum_{j=0}^{r-1} a_{j} C_{2 k-j-1}=\left\|A^{k-r} P(A) x\right\|^{2} .
$$

Remark that if $C_{n} \neq 0$, for some $n \geq r$, then $C_{2 k}>\sum_{j=0}^{r-1} a_{j} C_{2 k-j-1}$ (for any $k \geq r$) is a necessary condition for \mathcal{T} to be a solution of the linear moment problem (1). More precisely, we have the following corollary.

Corollary 2.1. Let \mathcal{T} be a sequence (2) with $P(X)=X^{r}-a_{0} X^{r-1}-a_{1} X^{r-2}-\ldots . .-a_{r-1}$ as characteristic polynomial. If \mathcal{T} satisfies (1) then,

- $\mathcal{C}=\left\{C_{n}\right\}_{n \geq r}$ is an r-GFS sequence with characteristic polynomial P if and only if $C_{n}=0$, for every $n \geq 2 r$.
- $C_{2 k}>\sum_{j=0}^{r-1} a_{j} C_{2 k-j-1}$ for every $k \geq r$ if and only if there exists $k_{0}>r$ such that $C_{2 k_{0}} \neq 0$.

3. Finite dimensional case

Let \mathcal{H} be a finite dimensional Hilbert space $(\operatorname{dim}(\mathcal{H})=m)$ and let $\mathcal{T}=\left\{T_{n}\right\}_{n \geq 0}$ be a sequence (2). By theorem 2.1, $\mathcal{T}=\left\{T_{n}\right\}_{n \geq 0}$ is a sequence of moments of a self-adjoint operator A on a non-vanishing vector $x \in \mathcal{H}$ if and only if $T_{n}=\sum_{j=1}^{s} \lambda_{j}{ }^{n}\left\|x_{j}\right\|^{2}$ for $n=0,1, \ldots, r-1$ and $C_{n}=<A^{n-r} P(A) x, x>$. If $x_{j}=\Pi_{j} x(0 \leq j \leq s \leq m)$ are the eigenvectors of A corresponding to the eigenvalues λ_{j}, then a straightforward computation allows us to see that $\mathcal{T}=\left\{T_{n}\right\}_{n \geq 0}$ is a sequence of moments of a self-adjoint operator A on a non-vanishing vector $x \in \mathcal{H}$ if and only if $T_{n}=\sum_{j=1}^{s} \lambda_{j}{ }^{n}\left\|x_{j}\right\|^{2}$, for $n=0,1, \ldots r-1$ and

$$
\begin{equation*}
C_{n}=\sum_{j=1}^{s} \frac{P\left(\lambda_{j}\right)}{\lambda_{j}^{r}}\left\|x_{j}\right\|^{2} \lambda_{j}^{n} \text { for every } n \geq r \tag{3}
\end{equation*}
$$

Expression (3) is nothing else but the Binet formula of an s-generalized Fibonacci sequence. More precisely, (3) implies that $\left\{C_{n}\right\}_{n \geq r}$ is an s-generalized Fibonacci sequence, whose characteristic polynomial is $P(x)=\prod_{j=1}^{s}\left(x-\lambda_{j}\right)$.

Proposition 3.1. Let \mathcal{T} be a sequence (2). If \mathcal{T} is a sequence of moments of some operator A on some finite dimensional Hilbert space \mathcal{H}, then the nonhomogeneous part \mathcal{C} is an s-generalized Fibonacci sequence $(s \leq \operatorname{dim}(\mathcal{H}))$. More precisely the characteristic polynomial of \mathcal{C} is $P(X)=$ $\prod_{i=0}^{s}\left(X-\lambda_{i}\right)$, where the $\lambda_{i}{ }^{\prime}$ s are the eigenvalues of A.

In the special case of dimension 1 (where $\mathcal{H}=\mathbb{R}$), we obtain the following,
Let $\mathcal{H}=\mathbb{R}$ and $\mathcal{T}=\left\{T_{n}\right\}_{n \geq 0}$ be a sequence (2). By theorem $2.1 \mathcal{T}=\left\{T_{n}\right\}_{n \geq 0}$ is a sequence of moments of an operator A on a non-vanishing vector $x \in \mathbb{R}$ if and only if $x=-\sqrt{T_{0}}, T_{n}=\lambda^{n} T_{0}$
for $n=0,1, \ldots, r-1$ and $C_{n}=<A^{n-r} P(A) x, x>$, where $\lambda=A .1$ and P is the characteristic polynomial of the homogeneous part of \mathcal{T}. An easy computation shows that,

$$
C_{n}=\lambda^{n-r} P(\lambda) x^{2}=\lambda^{n-r} C_{r}, \text { for every } n \geq r
$$

Therefore, the following result is obtained.

Corollary 3.1. Let $\mathcal{T}=\left\{T_{n}\right\}_{n \geq 0}$ be a sequence (2). Then $\mathcal{T}=\left\{T_{n}\right\}_{n>0}$ is a sequence of moments of an operator A on \mathbb{R} if and only if the two sequences $\left\{T_{n}\right\}_{0 \leq n \leq r-1}$ and $\left\{C_{n}\right\}_{n \geq r}$ are a geometric sequences with $\nu=A .1$ as reason and $C_{r}=P(\nu) T_{0}$.

Therefore, the only sequences (2) who are moment sequences of some operator on \mathbb{R} are the geometric sequences.

4. Problems (1) in the case when \mathcal{C} is an s-GFS

4.1. Linear moment problem. We start this section by the following proposition obtained by a straightforward computation.

Proposition 4.1. Let $\mathcal{T}=\left\{T_{n}\right\}_{n \geq 0}$ be a sequence (2) and let $H_{r+n}=\left[T_{i+j}\right]_{0 \leq i, j \leq r+n-1}$ and $S_{r+n}=\left[T_{i+j+1}\right]_{0 \leq i, j \leq r-1}$ be the Hankel matrices associated with \mathcal{T}. Then

$$
\operatorname{det} H_{r+n}=\left|\begin{array}{cccccccccc}
T_{0} & . & . & . & T_{r-1} & C_{r} & . & . & . & C_{r+n-1} \\
. & . & . & . & . & . & . & . & . & . \\
. & . & . & . & . & . & . & . & . & . \\
T_{r-1} & . & . & . & T_{2 r-2} & C_{2 r-1} & . & . & . & C_{2 r+n-2} \\
T_{r} & . & . & . & T_{2 r-1} & C_{2 r} & . & . & . & C_{2 r+n-1} \\
\cdot & . & . & . & . & . & . & . & . & \cdot \\
. & . & . & . & . & . & . & . & . & . \\
T_{r+n-1} & . & . & . & T_{2 r+n-2} & C_{2 r+n-1} & . & . & . & C_{2 r+2 n-2}
\end{array}\right|
$$

and

Let $\mathcal{T}=\left\{T_{n}\right\}_{n \geq 0}$ be a sequence (2) and suppose that the nonhomogeneous part \mathcal{C} is an s-GFS whose characteristic polynomial is $Q(X)=X^{s}-b_{0} X^{s-1}-b_{1} X^{s-2}-\ldots-b_{s-1}$. Let $R(X)=$ $X^{r}-a_{0} X^{r-1}-a_{1} X^{r-2}-\ldots-a_{r-1}$ be the characteristic polynomial of the homogeneous part of (2). It follows that \mathcal{T} is an ($\mathrm{r}+\mathrm{s}$)-GFS with $T_{0}, T_{1}, \ldots, T_{r+s-1}$ and $P=Q . R$ as initial conditions and characteristic polynomial (not necessarily with minimal degree). The remark 2.1 of [12] allows us to suppose that \mathcal{H} is of finite dimension $(r+s)$.

Lemma 4.1. Let $\mathcal{T}=\left\{T_{n}\right\}_{n \geq 0}$ be a sequence (2) and let $H_{r+n}=\left[T_{i+j}\right]_{0 \leq i, j \leq r+n-1}$ be the Hankel matrices associated with \mathcal{T}. If \mathcal{C} is an $s-G F S$, then $\operatorname{det}\left(H_{r+n}\right)=0$, for every $n>s$.

By Proposition 2.3 of [12] we have,

Proposition 4.2. Let $\mathcal{T}=\left\{T_{n}\right\}_{n \geq 0}$ be a sequence (2), with positive definite Hankel matrix H_{r+s} and $P_{\mathcal{T}}$ as a characteristic polynomial. If \mathcal{C} is an s-GFS associated with the characteristic polynomial $Q_{\mathcal{C}}$, then there exist a $\left(\operatorname{deg} P_{\mathcal{T}}+\operatorname{deg} Q_{\mathcal{C}}\right)$-dimensional Hilbert space $\mathcal{H}^{(\mathcal{T})}$ and a selfadjoint operator A on $\mathcal{H}^{(\mathcal{T})}$ solution of the moment problem (1). Moreover, if S_{r+s} is positive definite, then there exists a nonnegative self-adjoint operator A, that is a solution of the moment problem (1).
4.2. Stieltjes and Hamburger moment problems. Through this subsection, we suppose that $\mathcal{T}=\left\{T_{n}\right\}_{n \geq 0}$ is a sequence (2) where \mathcal{C} is considered as an s-GFS and H_{r+s} is a positive definite Hankel matrix.

Recall that the purpose of the K-moment problem associated to a given sequence of real numbers $\gamma=\left\{\gamma_{n}\right\}_{0 \leq n \leq p}(p \leq+\infty)$, where K is a closed set of real numbers is the following. Find a positive measure μ such that,

$$
\begin{equation*}
\gamma_{n}=\int_{K} t^{n} d \mu(t), \quad \text { for every } \quad 0 \leq n \leq p \tag{4}
\end{equation*}
$$

There is a large amount of literature on the moment problems and its different formulation. Therefore, it has been studied by various methods and techniques. The problem (4) is called the full moment problem when $p=+\infty$ and the truncated moment problem for $p<+\infty$ (see $[6,7,8,11]$ for example).

Let \tilde{A} be a self-adjoint extension of the densely defined operator A on $\mathbb{C}[X]$ given by $A X^{n}=$ X^{n+1}. By the spectral theorem, there is a spectral measure $d \tilde{\mu}$ for \tilde{A} with vector $[1] \in \mathcal{H}^{T}$, that is, so that for any bounded function of \tilde{A},

$$
\begin{equation*}
<1, f(\tilde{A}) 1>=\int_{K} f(x) d \tilde{\mu}(x) \tag{5}
\end{equation*}
$$

where $K=\operatorname{supp}(\tilde{\mu})$. Since $[1] \in D\left(A^{n}\right) \subset D\left(\tilde{A}^{n}\right)$, expression (5) extends to polynomially bounded functions and by (3) we have,

$$
T_{n}=\int_{K} x^{n} d \tilde{\mu}(x), \text { for any } n=0,1, \ldots, r-1
$$

Therefore, we see that a self-adjoint extension of A yields a solution of the Hamburger moment problem. Moreover, a nonnegative extension of A has $\operatorname{supp}(\tilde{\mu}) \subset[0,+\infty[$ and so yields a solution of the Stieltjes moment problem.

Using Proposition 1.2 of [17], we obtain.
Theorem 4.1. 1) A necessary and sufficient condition that there exists a measure μ solution of the truncated Hamburger moment problem associated with a sequence \mathcal{T} is that the Hankel matrix H_{r+s} is positive definite or equivalently $\operatorname{det} H_{n}>0$ for $n=0,1, \ldots, r+s$.
2) A necessary and sufficient condition that there exists a measure μ solution of the truncated Stieltjes moment problem associated with a sequence \mathcal{T} is that the two matrices H_{r+s} and S_{r+s} are positive definite or equivalently $\operatorname{det} H_{n}>0$ and $\operatorname{det} S_{n}>0$ for $n=0,1, \ldots, r+s$.

Acknowledgments. The first author was supported by Abdus Salam International Centre for Theoretical Physics, Trieste, Italy. He especially thanks Professor C.E. Chidume.

References

[1] A. Andrea and S.P. Pethe, On the $r^{\text {th }}$ order nonhomogeneous recurrence relation and some generalized Fibonacci sequences, Fibonacci Quart. 30, No. 3 (1992): 256-262.
[2] P.R.J. Asveld, A family of Fibonacci-like sequences, Fibonacci Quart. 25, No. 1 (1987): 81-83.
[3] P.R.J. Asveld, An other family of Fibonacci-like sequences, Fibonacci Quart. 25, No. 4 (1987): 361-364.
[4] R. Ben Taher, M. Rachidi, E.H. Zerouali, Recursive subnormal completion and the truncated moment problem. Bull. London Math. Soc. 33 (2001), no. 4, 42 5-432.
[5] R. Ben Taher, M. Mouline and M. Rachidi, Solving somegeneral nonhomogeneous recurrence relations of order r by linearization method and application to polynomial and factorial polynomial cases, to appear in the Fibonacci Quart.
[6] G. Cassier, Problème des moments sur un compact de \boldsymbol{R}^{n} et représentation de polynômes à plusieurs variables, J. Funct. Analsis, vol. 58, No 3 (1984), 254-266.
[7] R. Curto and L. Fialkow, Recursiveness, positivity, and truncated moment problems, Houston J. Math. 17 (1991), no 4 : 603-635.
[8] R. Curto and L. Fialkow, Solution of the truncated complex moment problem for flat data, Mem. Amer. Math. Soc. 119 (1996), no. 568.
[9] J. Dieudonne, Fraction continues et polynomes orthogonaux dans l'oeuvre de E.N. Laguerre, Proceeding of the Laguerre symposium held at Bar-le-Duc, October 15-18, 1984.
[10] B. El Wahbi and M. Rachidi, r-generalized Fibonacci sequences and the linear moment problem, Fibonacci Quart. 38-5 (2000), 386-394.
[11] B. El Wahbi and M. Rachidi, r-generalized Fibonacci sequences and the Hausdorff moment problem, Fibonacci Quart. 39-1 (2001), 5-11.
[12] B. El Wahbi, M. Rachidi and E.H. Zerouali, On recursive relations and moment problems. Preprint (Submitted).
[13] B. El Wahbi, M. Mouline and M. Rachidi, Solving nonhomogeneous recurrence relations by matrix methods, to appear in the Fibonacci Quart..
[14] I.M. Glazman and Ju.I. Ljubič, Finite-dimensional linear analysis : A Systematic presentation in problem form, (Translated and Edited by G.P. Barker and G. Kuerti), MIT Press (1974).
[15] A.F. Horadam, Falling Factorial Polynomials of Generalized Fibonacci Type, Procc. of the $4^{\text {th }}$ Inter. Conf. on Fibonacci Numbers and Their Application. Applications of Fibonacci Numbers, Eds G.E. Bergum et al., Dordrecht : Kluwer, 1990.
[16] Yu. I. Lyubich, Linear Functional Analysis, Vol19, Funktional'nyj Analiz1, Publisher VINITI, Moscow 1998.
[17] B. Simon, The classical moment problem as a self-adjoint finite difference operator, Division of Physics, Mathematics, and Astronomy. California Institue of Tecnology. Pasadena, CA 91125. November 14, 1997.
[18] J.C. Turner, Note on a family of Fibonacci-like sequences, Fibonacci Quarterly 27, No. 3 (1989): 229-232.

[^0]: ${ }^{1}$ E-mail: elwahbi@hotmail.com
 ${ }^{2}$ E-mail: rachidi@fsr.ac.ma

