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1. Introduction

Let H be a real separable Hilbert space and 
 = f
ng0�n�p (p � +1) be a sequence of real

numbers. The linear moment problem associated to 
 consists of �nding a self-adjoint operator

A and a non-vanishing vector x 2 H satisfying,


n =< Anxjx >; for 0 � n � p:(1)

The problem (1) has been studied in [10, 14, 16]. Let a0; � � � ; ar�1 ( r � 2, ar�1 6= 0) be some

real numbers, and let C = fCngn�r be a sequence in IR (or lC).

Let T = fTngn�0 be the sequence de�ned by the following nonhomogeneous recurrence relation

of order r,

Tn+1 = a0Tn + a1Tn�1 + � � �+ ar�1Tn�r+1 + Cn+1; for n � r � 1;(2)

where T0; � � � ; Tr�1 are the speci�ed initial values (or conditions). In the sequel we refer to such

sequence T as the solution of the recurrence relation (2), and P (X) = Xr�a0X
r�1�a1X

r�2�
:::::� ar�1 is the characteristic polynomial supposed with minimal degree (see [4] for example).

The solution of (2) has been studied by various methods and techniques for Cn polynomial

and factorial polynomial (see [1, 2, 3, 5, 13, 15, 18] for example). Recently, a matrix method

has been considered in [13], for studying solutions of (2) in the general setting. The method of

[13] consists of considering equation(2) under an equivalent nonlinear matrix equation, where

appears a companion matrix.

When C is a vanishing sequence, the sequence T is called r-generalized Fibonacci sequence

(r�GFS, for short). If H is of �nite dimension, a connection between the full and truncated

linear moment problem for r-GFS, has been studied by the authors in [10].

The purpose of this paper is to study the moment problems (1) (and also (4)) in connection

with the solutions (2) for a general sequence C.
This paper is organized as follows. In section 2, we establish the connection between sequence

(2) and moments of operators. Section 3 is devoted to the case when the sequence C is an s-GFS.
In section 4 we study solutions of (2) in terms of the spectral measures of self-adjoint extensions.

2. Solutions of (2) and linear moments problem (1)

Consider the polynomial P (X) = Xr � a0X
r�1 � a1X

r�2 � ::::: � ar�1, and let fQngn�r be
the family of polynomials given by Qn(X) = Xn�rP (X). Let x 6= 0 be a non-vanishing element

of H. For every operator A on H, The sequence of moments f< Anx; x >gn�0 is a sequence (2)
with Cn =< Qn(A)x; x >, for every n � 0.

As a consequence, we have the following proposition,

Proposition 2.1. Let A be an operator on H and x 6= 0 in H. For every monic polynomial P,

there exists a sequence fCngn�0 such that the sequence of moments T = f< Anxjx >gn�0, is a
solution of the recurrence relation (2), whose characteristic polynomial is P.
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Therefore, the question of studying the converse of the result of Proposition 2.1 arises.

Theorem 2.1. Let T = fTngn�0 be a sequence (2), whose characteristic polynomial is P (X) =

Xr � a0X
r�1 � a1X

r�2 � ::::: � ar�1 (ar�1 6= 0). Let A be an operator of H and x 6= 0 2 H.

Then Tn =< Anxjx >, for any n � 0, if and only if Tn =< Anxjx > for n = 0; 1; ::; r � 1 and

Cn =< An�rP (A)xjx >, for every n � r.

Proof. For every k � r, we have,

Ck = Tk �
r�1X
j=0

ajTk�j�1 =< (Ak �
r�1X
j=0

ajA
j�k�1)xjx > :

Therefore, Ck =< Ak�rP (A)xjx >.

Conversely, suppose that Tn =< Anxjx >, for n = 0; 1; ::; r � 1 and Cn =< An�rP (A)xjx >,

for every n � 0. Then Tr =
r�1P
j=0

aj < Ar�j�1xjx > + < P (A)xjx > =< Arxjx >. By induction,

we prove that T satis�es Tn =< Anxjx >, for every n � 0.�

Proposition 2.2. With notations of Theorem 2.1, if A is a self-adjoint operator then the fol-

lowing statements are equivalent,

(i) Tn =< Anxjx > for every n � 0.

(ii) Tn =< Anxjx >, for n = 0; 1; ::; 2r � 1, and Cn =
r�1P
j=0

ajCn�j�1+ < An�2rzjz >, for

z = P (A)x and every n � 2r.

Proof. It suÆces to establish the equivalence between (ii) and the second statement of Theorem

2.1. Let A be a self-adjoint operator. Suppose that Tn =< Anxjx > for n = 0; 1; ::; r � 1 and

Cn =< An�rP (A)xjx >, for n � r. Then, for every n � 2r, we have,

< An�2rz; z > = < An�rx; P (A)x > �
r�1P
j=0

aj < An�r�j�1x; P (A)x >

= < An�rP (A)xjx > �
r�1P
j=0

aj < An�r�j�1P (A)xjx >

= Cn �
r�1P
j=0

ajCn�j�1:

Conversely, suppose that (ii) holds . It is easy to show that Cn =< An�rP (A)xjx >, for

n = r; r + 1; :::; 2r � 1. On the other hand, we have,

C2r =
r�1P
j=0

ajC2r�j�1+ < P (A)x; P (A)x >

=
r�1P
j=0

ajC2r�j�1+ < ArP (A)x; x > �
r�1P
j=0

aj < Ar�j�1P (A)x; x >

= < ArP (A)x; x > :

And by induction we prove that

Cn =< An�rP (A)x; x >; for any n � 2r

It follows that (ii) and (iii) are equivalent.�
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Let T be a sequence (2), whose characteristic polynomial is P (X) = Xr�a0X
r�1�a1X

r�2�
:::::� ar�1. Suppose that T is a solution of the linear moment problem (1). For every k � r, we

have

C2k �
r�1X
j=0

ajC2k�j�1 = kAk�rP (A)xk2:

Remark that if Cn 6= 0, for some n � r, then C2k >
r�1P
j=0

ajC2k�j�1 (for any k � r) is a necessary

condition for T to be a solution of the linear moment problem (1). More precisely, we have the

following corollary.

Corollary 2.1. Let T be a sequence (2) with P (X) = Xr � a0X
r�1 � a1X

r�2 � ::::: � ar�1 as

characteristic polynomial. If T satis�es (1) then,

� C = fCngn�r is an r-GFS sequence with characteristic polynomial P if and only if Cn = 0,

for every n � 2r.

� C2k >
r�1P
j=0

ajC2k�j�1 for every k � r if and only if there exists k0 > r such that C2k0 6= 0.

3. Finite dimensional case

Let H be a �nite dimensional Hilbert space (dim(H) = m) and let T = fTngn�0 be a sequence
(2). By theorem 2.1, T = fTngn�0 is a sequence of moments of a self-adjoint operator A on

a non-vanishing vector x 2 H if and only if Tn =
sP

j=1
�j

nkxjk2 for n = 0; 1; :::; r � 1 and

Cn =< An�rP (A)x; x >. If xj = �jx (0 � j � s � m) are the eigenvectors of A corresponding

to the eigenvalues �j , then a straightforward computation allows us to see that T = fTngn�0 is
a sequence of moments of a self-adjoint operator A on a non-vanishing vector x 2 H if and only

if Tn =
sP

j=1
�j

nkxjk2, for n = 0; 1; :::r � 1 and

Cn =
sX

j=1

P (�j)

�rj
kxjk2�jn for every n � r(3)

Expression (3) is nothing else but the Binet formula of an s-generalized Fibonacci sequence.

More precisely, (3) implies that fCngn�r is an s-generalized Fibonacci sequence, whose charac-

teristic polynomial is P (x) =
sQ

j=1
(x� �j).

Proposition 3.1. Let T be a sequence (2). If T is a sequence of moments of some operator A

on some �nite dimensional Hilbert space H, then the nonhomogeneous part C is an s-generalized

Fibonacci sequence (s � dim(H)). More precisely the characteristic polynomial of C is P (X) =
sQ

i=0
(X � �i), where the �i

0s are the eigenvalues of A.

In the special case of dimension 1 (where H = IR), we obtain the following,

Let H = IR and T = fTngn�0 be a sequence (2). By theorem 2.1 T = fTngn�0 is a sequence of
moments of an operator A on a non-vanishing vector x 2 IR if and only if x =+

�

p
T0, Tn = �nT0
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for n = 0; 1; :::; r � 1 and Cn =< An�rP (A)x; x >, where � = A:1 and P is the characteristic

polynomial of the homogeneous part of T . An easy computation shows that,

Cn = �n�rP (�)x2 = �n�rCr; for every n � r:

Therefore, the following result is obtained.

Corollary 3.1. Let T = fTngn�0 be a sequence (2). Then T = fTngn�0 is a sequence of

moments of an operator A on IR if and only if the two sequences fTng0�n�r�1 and fCngn�r are
a geometric sequences with � = A:1 as reason and Cr = P (�)T0.

Therefore, the only sequences (2) who are moment sequences of some operator on IR are the

geometric sequences.

4. Problems (1) in the case when C is an s-GFS

4.1. Linear moment problem. We start this section by the following proposition obtained

by a straightforward computation.

Proposition 4.1. Let T = fTngn�0 be a sequence (2) and let Hr+n = [Ti+j ]0�i;j�r+n�1 and

Sr+n = [Ti+j+1]0�i;j�r�1 be the Hankel matrices associated with T . Then

detHr+n =

����������������

T0 : : : Tr�1 Cr : : : Cr+n�1

: : : : : : : : : :

: : : : : : : : : :

Tr�1 : : : T2r�2 C2r�1 : : : C2r+n�2

Tr : : : T2r�1 C2r : : : C2r+n�1

: : : : : : : : : :

: : : : : : : : : :

Tr+n�1 : : : T2r+n�2 C2r+n�1 : : : C2r+2n�2

����������������
and

detSr+n =

����������������

T1 : : : Tr Cr+1 : : : Cr+n

: : : : : : : : : :

: : : : : : : : : :

Tr : : : T2r�1 C2r : : : C2r+n�1

Tr+1 : : : T2r C2r+1 : : : C2r+n

: : : : : : : : : :

: : : : : : : : : :

Tr+n : : : T2r+n�1 C2r+n : : : C2r+2n�1

����������������

:

Let T = fTngn�0 be a sequence (2) and suppose that the nonhomogeneous part C is an s-GFS

whose characteristic polynomial is Q(X) = Xs � b0X
s�1 � b1X

s�2 � ::: � bs�1. Let R(X) =

Xr � a0X
r�1� a1X

r�2� :::� ar�1 be the characteristic polynomial of the homogeneous part of

(2). It follows that T is an (r+s)-GFS with T0; T1; :::; Tr+s�1 and P = Q:R as initial conditions

and characteristic polynomial (not necessarily with minimal degree). The remark 2.1 of [12]

allows us to suppose that H is of �nite dimension (r + s).
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Lemma 4.1. Let T = fTngn�0 be a sequence (2) and let Hr+n = [Ti+j ]0�i;j�r+n�1 be the

Hankel matrices associated with T . If C is an s-GFS, then det(Hr+n) = 0, for every n > s.

By Proposition 2.3 of [12] we have,

Proposition 4.2. Let T = fTngn�0 be a sequence (2), with positive de�nite Hankel matrix

Hr+s and PT as a characteristic polynomial. If C is an s-GFS associated with the characteristic

polynomial QC, then there exist a (degPT + degQC)�dimensional Hilbert space H(T ) and a self-

adjoint operator A on H(T ) solution of the moment problem (1). Moreover, if Sr+s is positive

de�nite, then there exists a nonnegative self-adjoint operator A, that is a solution of the moment

problem (1).

4.2. Stieltjes and Hamburger moment problems. Through this subsection, we suppose

that T = fTngn�0 is a sequence (2) where C is considered as an s-GFS and Hr+s is a positive

de�nite Hankel matrix.

Recall that the purpose of the K-moment problem associated to a given sequence of real

numbers 
 = f
ng0�n�p (p � +1), where K is a closed set of real numbers is the following.

Find a positive measure � such that,


n =

Z
K

tnd�(t) ; for every 0 � n � p:(4)

There is a large amount of literature on the moment problems and its di�erent formulation.

Therefore, it has been studied by various methods and techniques. The problem (4) is called

the full moment problem when p = +1 and the truncated moment problem for p < +1 (see

[6, 7, 8, 11] for example).

Let ~A be a self-adjoint extension of the densely de�ned operator A on lC[X] given by AXn =

Xn+1 . By the spectral theorem, there is a spectral measure d~� for ~A with vector [1] 2 HT , that

is, so that for any bounded function of ~A,

< 1; f( ~A)1 >=

Z
K

f(x)d~�(x):(5)

where K = supp(~�). Since [1] 2 D(An) � D( ~An), expression (5) extends to polynomially

bounded functions and by (3) we have,

Tn =

Z
K

xnd~�(x); for any n = 0; 1; :::; r � 1:

Therefore, we see that a self-adjoint extension of A yields a solution of the Hamburger moment

problem. Moreover, a nonnegative extension of A has supp(~�) � [0;+1[ and so yields a solution

of the Stieltjes moment problem.

Using Proposition 1.2 of [17], we obtain.

Theorem 4.1. 1) A necessary and suÆcient condition that there exists a measure � solution

of the truncated Hamburger moment problem associated with a sequence T is that the Hankel

matrix Hr+s is positive de�nite or equivalently detHn > 0 for n = 0; 1; :::; r + s.
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2) A necessary and suÆcient condition that there exists a measure � solution of the truncated

Stieltjes moment problem associated with a sequence T is that the two matrices Hr+s and Sr+s

are positive de�nite or equivalently detHn > 0 and detSn > 0 for n = 0; 1; :::; r + s.
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