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1. INTRODUCTION

Let M be a real separable Hilbert space and v = {7y, }o<n<p (p < +00) be a sequence of real
numbers. The linear moment problem associated to 7 consists of finding a self-adjoint operator

A and a non-vanishing vector = € H satisfying,
(1) Yo =< A"zlz >, for 0 <n <p.

The problem (1) has been studied in [10, 14, 16]. Let ag, -+ ,a,—1 (7 > 2, a,—1 # 0) be some
real numbers, and let C = {C}, },>, be a sequence in R (or ().

Let T = {T}n>0 be the sequence defined by the following nonhomogeneous recurrence relation

of order r,
(2) Tot1 =0Ty +ar T+ -+ ar1Th—ry1 + Cpy, forn>r—1,
where T, --- ,T,_1 are the specified initial values (or conditions). In the sequel we refer to such

sequence 7T as the solution of the recurrence relation (2), and P(X) = X" —ag X" ' —a; X" 2 -
..... — a,—1 is the characteristic polynomial supposed with minimal degree (see [4] for example).

The solution of (2) has been studied by various methods and techniques for C,, polynomial
and factorial polynomial (see [1, 2, 3, 5, 13, 15, 18] for example). Recently, a matrix method
has been considered in [13], for studying solutions of (2) in the general setting. The method of
[13] consists of considering equation(2) under an equivalent nonlinear matrix equation, where
appears a companion matrix.

When C is a vanishing sequence, the sequence T is called r-generalized Fibonacci sequence
(r—GFS, for short). If H is of finite dimension, a connection between the full and truncated
linear moment problem for r-GFS, has been studied by the authors in [10].

The purpose of this paper is to study the moment problems (1) (and also (4)) in connection
with the solutions (2) for a general sequence C.

This paper is organized as follows. In section 2, we establish the connection between sequence
(2) and moments of operators. Section 3 is devoted to the case when the sequence C is an s-GF'S.

In section 4 we study solutions of (2) in terms of the spectral measures of self-adjoint extensions.

2. SOLUTIONS OF (2) AND LINEAR MOMENTS PROBLEM (1)

Consider the polynomial P(X) = X" —aoX" ' —a1 X" 2 — ... — ar—1, and let {Qn}n>r be
the family of polynomials given by @Q,(X) = X" "P(X). Let £ # 0 be a non-vanishing element
of #. For every operator A on H, The sequence of moments {< A"z, x >},>0 is a sequence (2)
with C),, =< Qn(A)z,z >, for every n > 0.

As a consequence, we have the following proposition,

Proposition 2.1. Let A be an operator on H and x # 0 in H. For every monic polynomial P,
there exists a sequence {Cp}n>0 such that the sequence of moments T = {< A™z|x >},>0, is a

solution of the recurrence relation (2), whose characteristic polynomial is P.
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Therefore, the question of studying the converse of the result of Proposition 2.1 arises.

Theorem 2.1. Let T = {T,},>0 be a sequence (2), whose characteristic polynomial is P(X) =
X" — X" —a X772 — L —ap—1 (ar—1 #0). Let A be an operator of H and x # 0 € H.
Then T,, =< A™z|z >, for any n > 0, if and only if T,, =< A"zx|z > forn =0,1,...,7 — 1 and
Cp =< A" "P(A)x|z >, for every n > r.

Proof. For every k > r, we have,

r—1 r—1
Cy, =T — Zaka_j_l =< (Ak — ZajAj_k_1)$|x >

Therefore, Cj, =< A¥"P(A)z|z >.
Conversely, suppose that T,, =< A"z|z >, for n =0,1,..,r — 1 and C,, =< A" "P(A)z|z >,

r—1 .

for every n > 0. Then T, = Y aj < A" V7 lz|z > + < P(A)z|z > =< A"z|z >. By induction,
i=0

we prove that 7T satisfies T,, =< A"z|z >, for every n > 0.0]

Proposition 2.2. With notations of Theorem 2.1, if A is a self-adjoint operator then the fol-
lowing statements are equivalent,

(i) T, =< A"z|z > for every n > 0.
r—1
(ii) Tp, =< A'z|lz >, forn = 0,1,...2r — 1, and C, = Y a;Cp_j1+ < A" 22|z >, for

J=0
z = P(A)x and every n > 2r.

Proof. Tt suffices to establish the equivalence between (ii) and the second statement of Theorem
2.1. Let A be a self-adjoint operator. Suppose that T,, =< A"z|z > for n = 0,1,..,r — 1 and
Cp, =< A" "P(A)x|z >, for n > r. Then, for every n > 2r, we have,

r—1 .
< ATL*ZT‘Z,Z S = < Anfrq;’P(A)ZE > — Z a; < Anfr*]flq;,P(A):E >
j=0

r—1 .
= <A"TP(A)zlz > - aj < AVTITIP(A)z|x >
j=0

r—1
= Cn - Z aan_j_l.
j=0
Conversely, suppose that (ii) holds . It is easy to show that C, =< A" "P(A)z|z >, for

n=r,r+1,..,2r — 1. On the other hand, we have,

r—1
Cy = > a;jCor_j 1+ < P(A)z,P(A)x >
j=0
r—1 r—1 i
= Y ajCy_j 1+ < A'P(A)z,x> -3 aj < A7 P(A)z,z >
=0 =0

- < ATP(A)z,w > .
And by induction we prove that
Cp, =< A" "P(A)*,z >, forany n >2r

It follows that (ii) and (iii) are equivalent.O
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Let T be a sequence (2), whose characteristic polynomial is P(X) = X" —ao X" —a; X" 72 -

..... — ay—1. Suppose that T is a solution of the linear moment problem (1). For every k > r, we

have
r—1
Cox, — Z ajCop—j—1 = |AF"P(A)z|>.
Jj=0
r—1
Remark that if C,, # 0, for some n > r, then Cy, > 3 ajCor_;_1 (for any k > r) is a necessary
i=0

condition for 7 to be a solution of the linear moment problem (1). More precisely, we have the

following corollary.

Corollary 2.1. Let T be a sequence (2) with P(X) = X" —agX" ' —a1 X" 72 — ... — Qp_1 GS
characteristic polynomial. If T satisfies (1) then,
o C={Cp}n>r is an r-GFS sequence with characteristic polynomial P if and only if C,, = 0,
for every n > 2r.

r—1
o Oy, > Y ajCop_j_1 for every k > r if and only if there exists ko > r such that Cop, # 0.
7=0

3. FINITE DIMENSIONAL CASE

Let H be a finite dimensional Hilbert space (dim(#) = m) and let 7 = {73, },>0 be a sequence
(2). By theorem 2.1, T = {T,,},>0 is a sequence of moments of a self-adjoint operator A on

S

a non-vanishing vector z € H if and only if T;, = ) )\j"||:r:j||2 for n = 0,1,...,7 — 1 and
j=1

Cp =< A"""P(A)z,x >. If z; =1z (0 < j < s < m) are the eigenvectors of A corresponding

to the eigenvalues \;, then a straightforward computation allows us to see that 7 = {1}, },>0 is
a sequence of moments of a self-adjoint operator A on a non-vanishing vector x € H if and only

S
ifT, =5 )\j”||xj||2, forn=0,1,..r — 1 and
i=1

S
P();
(3) C, = Z g\r]) (> \;™ for every n > r

j=1 7
Expression (3) is nothing else but the Binet formula of an s-generalized Fibonacci sequence.
More precisely, (3) implies that {Cy, },>, is an s-generalized Fibonacci sequence, whose charac-
S

teristic polynomial is P(z) = [] (z — A;j).

7j=1

Proposition 3.1. Let T be a sequence (2). If T is a sequence of moments of some operator A
on some finite dimensional Hilbert space H, then the nonhomogeneous part C is an s-generalized
Fibonacci sequence (s < dim(H)). More precisely the characteristic polynomial of C is P(X) =

S

[T(X — Xi), where the \;'s are the eigenvalues of A.

=0
In the special case of dimension 1 (where H = IR), we obtain the following,
Let H = Rand T = {T},},>0 be a sequence (2). By theorem 2.1 T = {T}, },,>0 is a sequence of

moments of an operator A on a non-vanishing vector z € IR if and only if x =* /Ty, T}, = \"T)
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forn =0,1,....7 — 1 and C,, =< A" "P(A)z,z >, where A = A.1 and P is the characteristic

polynomial of the homogeneous part of 7. An easy computation shows that,
Cp = \"""P(\)z? = \"""C,, for every n > r.

Therefore, the following result is obtained.

Corollary 3.1. Let T = {T,}n>0 be a sequence (2). Then T = {Tp}n>0 is a sequence of
moments of an operator A on R if and only if the two sequences {T}, }o<n<r—1 and {Cy}n>, are

a geometric sequences with v = A.1l as reason and C, = P(v)T.

Therefore, the only sequences (2) who are moment sequences of some operator on IR are the
geometric sequences.
4. PROBLEMS (1) IN THE CASE WHEN C IS AN s-GFS

4.1. Linear moment problem. We start this section by the following proposition obtained

by a straightforward computation.

Proposition 4.1. Let T = {T,}n>0 be a sequence (2) and let Hyyn = [Titjlo<ij<r+n—1 and

Srin = [Titjs1]o<ij<r—1 be the Hankel matrices associated with T. Then

To .o T 1 C,n .o Cr+n71
Tr_1 .o Tor_o 02 -1 .o 02 +n—2
detH — r r r r+n
T T, e Tor—1 C2r e C2r+n—1
Tr-l—n—l e T27"+n—2 C2r+n—1 e C2r+2n—2
and
T ... T Cri1i - . . Crin
T, .o To. 1 02 .. Cg -1
detS — r r T r+n
rin Tr+1 e TQ’F Cgr+1 ce O2r+n
Tr+n ] T2r+n71 O2r+n CEE 02r+2n71

Let 7 = {T,}n>0 be a sequence (2) and suppose that the nonhomogeneous part C is an s-GFS
whose characteristic polynomial is Q(X) = X* — bgX*~! — b X572 — .. — bs_1. Let R(X) =
X" —aoX" ' —a; X""? — ... — a,_1 be the characteristic polynomial of the homogeneous part of
(2). It follows that T is an (r+s)-GFS with T, T, ..., Tr+5—1 and P = Q.R as initial conditions
and characteristic polynomial (not necessarily with minimal degree). The remark 2.1 of [12]

allows us to suppose that H is of finite dimension (r + s).
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Lemma 4.1. Let T = {T,,},>0 be a sequence (2) and let Hyi,, = [Tiyjlo<ij<r4n—1 be the
Hankel matrices associated with T. If C is an s-GFS, then det(H,y,) = 0, for every n > s.

By Proposition 2.3 of [12] we have,

Proposition 4.2. Let T = {T,},>0 be a sequence (2), with positive definite Hankel matriz
H, s and Pr as a characteristic polynomial. If C is an s-GFS associated with the characteristic
polynomial Qc, then there exist a (degPr + degQc)—dimensional Hilbert space HT) and a self-
adjoint operator A on HT) solution of the moment problem (1). Moreover, if Sy is positive
definite, then there exists a nonnegative self-adjoint operator A, that is a solution of the moment
problem (1).

4.2. Stieltjes and Hamburger moment problems. Through this subsection, we suppose
that 7 = {T,,}n>0 is a sequence (2) where C is considered as an s-GFS and H, is a positive
definite Hankel matrix.

Recall that the purpose of the K-moment problem associated to a given sequence of real
numbers v = {y,}o<n<p (p < +00), where K is a closed set of real numbers is the following.

Find a positive measure p such that,

(4) Vo = / t"du(t) , for every 0<n <p.
K

There is a large amount of literature on the moment problems and its different formulation.
Therefore, it has been studied by various methods and techniques. The problem (4) is called
the full moment problem when p = +oo and the truncated moment problem for p < 400 (see
[6, 7, 8, 11] for example).

Let A be a self-adjoint extension of the densely defined operator A on @[X] given by AX™ =
X"+l By the spectral theorem, there is a spectral measure dji for A with vector 1] € HT', that

is, so that for any bounded function of A,
) <A >= [ f@di).

where K = supp(ji). Since [1] € D(A™) C D(A"), expression (5) extends to polynomially

bounded functions and by (3) we have,
T, = / z"dp(z),for any n=0,1,...,r — 1.
K

Therefore, we see that a self-adjoint extension of A yields a solution of the Hamburger moment
problem. Moreover, a nonnegative extension of A has supp(ft) C [0, +00[ and so yields a solution
of the Stieltjes moment problem.

Using Proposition 1.2 of [17], we obtain.

Theorem 4.1. 1) A necessary and sufficient condition that there exists a measure p solution
of the truncated Hamburger moment problem associated with a sequence T is that the Hankel

matriz H,, s is positive definite or equivalently detH, > 0 for n=0,1,...,r + s.
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2) A necessary and sufficient condition that there exists a measure p solution of the truncated

Stieltjes moment problem associated with o sequence T is that the two matrices Hyys and Sy

are positive definite or equivalently detH, > 0 and detS, >0 forn =0,1,...,7 + s.
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