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Abstract

A comprehensive presentation of a new approach to �nite periodic systems is given. The

novel and general expressions obtained here, allow simple and precise calculations of various

physical quantities characteristic of crystalline systems. Transmission amplitudes through n-cell

multichannel quantum systems are rigorously derived. General expressions for several physical

quantities are entirely expressed in terms of single-cell amplitudes and a new class of poly-

nomials pN;n. Besides the general expressions, we study some superlattice properties as the

band structure and its relation with the phase coherence phenomena, the level density and

the Kronig-Penney model as its continuous espectrum limit. Bandstructure tailoring, optical

multilayer systems, resonant energies and functions and channel-mixing e�ects in multichannel

transport process are also analysed in the light of the new approach.
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I. INTRODUCTION

The solid state theory that has evolved into the present condensed matter physics carries a

burden of pre-quantic theoretical tools to describe periodic systems. In the current theory, the

reciprocal space and its corresponding methods (appropriate and natural to deal with Miller in-

dices and structural analysis of crystalline materials) were, so to say, customized for a quantum

description of periodic systems. Simultaneously, the translational invariance and the ensuing

Bloch's theorem [1], rigorously valid only for in�nite periodic systems, become the natural and

obvious starting point to deal with real periodic systems which, although macroscopic, are �-

nite. Despite the important results obtained and the great amount of interesting phenomena

that have been explained so far [2,3], the theoretical analysis in the reciprocal space provides a

rather involved and somehow obscure description of the physics of the crystalline systems. An

alternative approach, which is much simpler and natural for studying �nite periodic systems,

without any reference to Bloch's Theorem or Reciprocal Spaces, was recently introduced [4].

Further developments and details of this theory will be presented here. In this new approach,

which relies on simple algebraic methods and was envisioned to study systems with an arbitrary

number of cells, arbitrary number of propagating modes and arbitrary shape of single-cell poten-

tial, exact and general expressions can be determined for quantities which are either impossible

to calculate within the present theory or may require experimental input.

This new theory follows a procedure which is in some sense similar to the one used in solving

simple quantum mechanical problems as the square well potential, the harmonic oscillator,

etc. In these cases the energy eigenvalues and the eigenfunctions are obtained directly without

any reference to reciprocal spaces or approximate methods. As will be seen in this paper and

incoming publications [5], an appropriate use of the transfer matrix properties allows one to study

�nite periodic systems and to rigorously deduce analytical and general expressions for a number

of physical quantities characterizing open and bounded systems. To make the scope of the

present approach clear, it is important to recognize that when dealing with local periodic systems

we are confronted with at least two types of problems. One is related to the mathematical

diÆculty (or simplicity) of solving a particular single-cell Schr�odinger equation. The other

is related to the way in which the periodicity and �niteness of the systems are incorporated

in the theory. The extent and limitations of the theoretical predictions depend on how this

second problem is confronted. In the present approach and in the traditional solid state physics

theory, these problems are handled di�erently. In the traditional approach[1], the translational

invariance is assumed from the very beginning and leads to the widely accepted Bloch functions

eikB �ru�;kB (r), where the periodic part u�;kB (r) remains practically unknown or approximately

determined by rather involved numerical calculations. This function is taken to be the rigorous

solution of the Schr�odinger equation, which is not true unless the size of the system is taken to

be in�nite! This underlying assumption implies that the current theory stays in the continuous
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spectrum limit and draws one in a very natural way to work and develope the theory in the

reciprocal space. A number of well established but approximate methods have been developed

to basically evaluate dispersion relations at di�erent symmetry points of the Brillouin zone. On

the other hand, in the transfer matrix approach (local) periodicity and �niteness, inherent to

the theory, are fully introduced without any drawback, and a theory of �nite periodic systems

is neatly built up on them. Universal expressions for global n-cell physical quantities, valid

for any realization of the potential function, are rigorously and directly obtained in our theory.

We believe that in some cases the transfer matrix approach will substitute with advantage the

current models, while in other cases, but not in general, an appropriate combination will work

better.

Concerning the �niteness of the real systems, it is worth mentioning that in the last years

a variety of real low dimensional systems and superlattices of mesoscopic and nanoscopic di-

mensions become experimentally attainable. For these systems the �niteness is an obvious and

important feature. The standard theory, however, did not produce a gentle and general ap-

proach to describe �nite periodic systems. Instead, the e�orts were mostly devoted to solving

numerically the Schr�odinger equation for each of the speci�c multilayer structures, composed

mainly of a few numbers of layers[4-11].

In the standard approaches to multilayer systems both the transverse translational invariance

and the 1D one channel (or propagating mode) approximations are regularly invoked. These

convenient assumptions stand up, whereas channel-mixings are negligible. Otherwise, it is not

possible to sustain the 1D one-channel assumption when a real multi-mode propagation process

is present. A theory where a multichannel approach is possible, is then required. In general,

even at low energies and for narrow systems a number of propagating modes (the open physical

channels) might be present. In the scattering approach to electronic transport processes, each of

the transverse non-evanescent states in the leads de�ne an open channel. For a 2D system, say

an electron gas in a GaAs layer with transverse width w and energy E, the number of (electron)

propagating modes is of the order of 2w
p
2m�E=�~ � 0:8w

p
E. For w ' 8nm, and E & 0:1eV

this number is N � 2. We shall in general conceive the physical channels in a wider sense.

Hence, light- and heavy-holes or any other propagating mode can be considered as a concrete

realization of a channel.

In the theory of �nite periodic systems (TFPS) discussed here, and in forthcoming parts, the

�niteness property of real systems and the possibility of multichannel processes are essential to

the theory and they are explicitly built-in. In this theory we use the more suitable transfer-matrix

method, which, although scarcely used in solving quantum mechanical problems, provides an

extremely powerful technique, mathematically simple and, from the point of view of the physical

results, fairly appealing and signi�cant.

The possibility of easy derivations of general expressions to describe the physics of the whole

n-cell system is an important advantage of this approach. Some highly remarkable characteristics
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of these expressions are: their simplicity and compactness. The fundamental properties of the

quantum description such as the tunneling e�ect and the phase coherence phenomena are evident

in their functional structure. Just to illustrate what we mean here, let us refer to the n-cell N -

channel transmission amplitude tN;n obtained in Eq. (36), where for simplicity the subindex

N has been dropped. This global quantity is a simple function of the one-cell transmission

t (= tN;1) amplitude and certain well de�ned polynomials pn (= pN;n). In that expression, t

carries information on the tunneling process while pn on the phase coherence phenomena. In

the 1-D (one channel) case, pn reduces to the well-known Chebyshev polynomial of the second

kind Un.

In the theory of �nite periodic systems, the polynomials pN;n comprising the whole informa-

tion of the complicated phase interference processes, originated in the multiple re
ections along

the `periodic' system, and of the system's size L (= nlc in the growing direction) re
ected in the

order of the polynomial. The multichannel polynomials pN;n are interesting quantities not only

from the point of view of physics but also from that of the mathematics. Physical properties

that are strongly determined by quantum coherence and tunneling e�ects, such as the resonant

transmission behavior and the energy bandstructure, are thoroughly settled out by the single-cell

transfer matrix and the number of cells n. It is worth mentioning that all the new results in this

theory are compatible and reduce, when taking appropriate limits, to well known physical prop-

erties and expressions[12-19]. In this theory, even the popular and illustrative Kronig-Penney

model can be derived in a more natural and simple way.

As is well known, the 
ux conservation (FC) principle and physical symmetries such as

the time reversal invariance (TRI) and spin rotation symmetry (SRS), are signi�cant prop-

erties with obvious e�ects on the dynamics of the system. In the transfer matrix language,

the presence/absence of these symmetries are clearly and rigorously re
ected in the transfer-

matrix symmetries themselves. As a consequence, well de�ned symmetry-dependent properties

for the physical expressions emerge naturally from this approach. In this paper we shall re-

fer mainly to multichannel time reversal invariant and non-invariant systems with and without

spin-dependent interactions, i.e. to systems of the so-called orthogonal, symplectic and unitary

universality classes, named by the kind of matrix that diagonalizes the Hamiltonian H, respec-

tively [20]. Since the most general or less restrictive classes of systems are those of the unitary

universality class (with time reversal symmetry broken and, depending, or not, on the spin),

most of the expressions derived in this part will refer to these kinds of systems. However, in

some cases we will be more speci�c with the universality classes. For the sake of simplicity we

will discuss examples of the orthogonal class, i.e. spin-independent and time reversal invariant

systems.

The TFPS will be discussed in three parts. In the �rst part, we will introduce the transfer

matrix method, establish general properties using the scattering amplitudes and, deduce general

expressions for the evaluation of a number of physical quantities in open systems. In the second
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part we will refer to bounded and quasi-bounded systems and the intraband energy eigenvalues

and eigenfunctions. In the third part we will apply the results obtained from the calculation of

the band structure for real systems, such as GaAs and AlAs, taking into account the e-e and

e-nucleus Coulomb interactions, the repulsive angular potential and the spin-orbit interaction.

In Section II, of this �rst part, we shall present an overview of the transfer matrix de�nition

and recall the well-known relations with the scattering amplitudes. In the second part of tha

section, we derive a general three-term recurrence relation, which is an important piece of the

theory, whose solutions are the matrix polynomial pN;n. In Section III, new and general expres-

sions for the scattering amplitudes and the associated n-cell transport quantities are derived.

Closed and compact expressions for an easy evaluation of resonant energies and resonant func-

tions of open systems are also presented. Since all these quantities are shown to depend on the

polynomials pN;n; we present in Section IV, for completeness and self-consistency, an outline of

the solution of the three-term recurrence relation obtained in Ref [21]. In Section V, 1-D one

channel and 3-D multichannel examples are discussed.

To illustrate the application of the theory to one channel periodic systems, we shall consider

the typical square- and Æ-barrier potential chains. Various well-known properties such as the

band structure, resonant tunneling probabilities and transmission coeÆcients, resonant energies

and wave functions will be calculated. Level densities, including the interesting coherence-

induced localization e�ect in open systems, will also be discussed. The interesting and well-

known bandstructure \tailoring" and the familiar energy levels and sub-bands in the gap regions

are also nicely accounted for, by adding "impurities" or producing topological defects to the �nite

periodic systems. Concerning the multichannel systems, and to exhibit the advantages of this

formalism when dealing with channel-mixings, we will �nally include some examples of two and

three propagating modes through alternating thick GaAs layers and thin �lms of Æ-repulsive or

Æ-attractive centers, with interesting resonance e�ects arising from phase coherence, channels

coupling or coupling between an open and an evanescent mode.

Since the principal results of this paper are equally valid for electromagnetic systems, the

evaluation of optical transmission properties through optical multilayer heterostructures is also

possible. The superluminal tunneling time through optical superlattices [22], or the non-linear

multilayer optical arrays with alternating\ dielectric constants [23] in the "single-layer approxi-

mation", have also been successfully attacked. For the last case we shall calculate the transmis-

sion coeÆcients and the optical bandstructure.
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II. THE TRANSFER MATRIX APPROACH FOR FINITE PERIODIC

SYSTEMS

A. Properties, de�nitions and the scattering amplitudes

Transfer matrices and their properties were used in the �fties as natural quantities to describe

electronic spectra and transport processes through ordered and disordered linear chains [24,25].

More recently, multichannel-transfer-matrix approaches became familiar in the scattering theory

of quantum wires [26]. Basically two types of transfer matrices are known: the transfer matrix

(that we shall call of the �rst kind) which connects wave functions and their derivatives at two

points or planes of the scattering region, and the transfer matrix (of the second kind) which

relates the state vectors at those points or planes. Transfer matrices of the �rst kind were used

by H. James [24] and quite recurrently in 1-D solid state physics [25]. On the other hand,

the matrices of the second kind were used by Luttinger [27] and Borland [28]; who denoted

them "transformation matrices". Lately, matrices of this type have appeared somehow more

frequently and have become to be called also "transfer matrices". Both types of transfer matrices

can, of course, be related to each other by a simple transformation. In this paper we will be

concerned with transfer matrices of the second kind relating state vectors. If we were dealing

with an electronic transport process through a 3-D `periodic' system (of length l = zR � zL,

and transverse cross section wxwy) connected to perfect leads (or wave guides) of equal cross

section (see �gure 1), the assumed non interacting charge carriers would feel a potential function

containing at least a con�ning hard wall potential VC(x; y) and a periodic potential VP (x; y; z);

periodic at least as a function of one coordinate, say the coordinate z. Solving the partial

di�erential equation

� ~
2

2m
(
@2

@x2
+

@2

@y2
)�nxny + VC (x; y)�nxny = Enxny�nxny (1)

a set of functions �nxny(x; y) and physical channels can be de�ned in the leads. For a given

Fermi energy E, a number of open channels or propagating modes with threshold energies

Ei =
~
2�2

2m

 
n2x
w2
x

+
n2y
w2
y

!
� E (2)

can be identi�ed. Notice that all the possible physical states can be labeled by a channel index

i = fnx; nyg = 1; 2; ::::; sN , where s is the number of spin projections (taken into account

only when the interaction depends on the spin) and N is of the order of (kFw)
D�1, with D the

system's dimensionality and kF the Fermi wave vector. From here on, the number of propagating

modes is taken in general as N = sN . We can use the set of functions f�i(x; y)g to express the
total wave function as

	 (x; y; z) =
NX
i

�i (x; y)'i (z) : (3)
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Substituting this in the Schr�odinger equation, we obtain the following system of coupled equa-

tions [29]

d2

dz2
'i (z) �

�
�2 + k2T i

�
'i (z) =

NX
j

Kij 'j (z) i = 1; 2; ::::; N

where � =
p
2m(VP �E)=~, k2T i = 2mEi=~

2 and the channel coupling parameter

Kij =
2m

~2

Z
��i (x; y) VP (x; y; z) �j (x; y) dx dy: (4)

Although the contribution of the so-called "closed channels" (evanescent modes) can, in princi-

ple, be taken into account, we shall in general disregard their contribution.

To determine the transmission amplitudes from zL to zR = zL + nlc, where lc is the length

of a single-cell, the standard procedure would require one to solve the coupled equations and

match the solutions all the way from zL to zR. Here, with a suitable method, we only need to

solve the single-cell problem to describe most of the superlattice physical properties.

Let
!
'i� (z) and

 
'i� (z) be the i-th channel (with spin �) wave functions travelling to the

right and left, respectively. The total wave functions in the left- and right-hand sides of the

scattering region (see �gure 2), can be written as

'(z1) =

NX
i=1

sX
�=1

(ai�
!
'i� (z1) + bi�

 
'i� (z1)) = (a; b)

0
B@
!
' (z1)

 
' (z1)

1
CA (5)

'(z2) =
NX
i=1

sX
�=1

(ci�
!
'i� (z2) + di�

 
'i� (z2)) = (c; d)

0
B@
!
' (z2)

 
' (z2)

1
CA (6)

with a; b; c and d; N -dimensional coeÆcients. These functions, in the state vector representation,

are related to each other by a transfer matrix of the second kind de�ned by0
B@ c

!
' (z2)

d
 
' (z2)

1
CA =M(z2; z1)

0
B@ a

!
' (z1)

b
 
' (z1)

1
CA : (7)

For our purposes it is useful to express the transfer matrix in block notation as

M(z2; z1) =

0
B@ � �


 Æ

1
CA

where �, �; 
 and Æ are sN � sN or just N � N complex sub-matrices. In general, there

are some constrictions between the submatrices �, �; 
 and Æ, which of course depend on the

physical properties and symmetries present in the system's Hamiltonian. As mentioned above,

the physical systems are especially distinguished by the presence or not of time-reversal and

7



spin-rotation symmetries. In each case, the number of free parameters and the characteristics

of the transfer-matrix are determined by the symmetries.

While time reversal invariance and spin-dependent interactions (SDI) may or may not be

present, 
ux conservation (FC) must always hold. This property implies the ful�llment of the

pseudo-unitarity condition (see Appendix B)

M �zM
y = �z ; with �z =

0
B@ IN 0

0 �IN

1
CA : (8)

where IN is the N �N identity matrix. In the absence of time reversal invariance, the Hamil-

tonians for both spin-dependent and spin-independent interactions can be diagonalized by a

unitary transformation, hence the system belongs to the unitary universality class. The transfer

matrices for this kind of systems are the most general ones and will be represented as

Mu =

0
B@ � �


 Æ

1
CA (9)

with ��y���y = IN , ÆÆ
y�

y = IN and �
��Æ = 0 to satisfy the FC constraintMu �zM

y
u =

�z.

If we are interested in obtaining general expressions, as is the case here, it is convenient

to refer to transfer matrices in a way as general as possible. Throughout this paper we will

deal with universal expressions associated with systems with or without TRI and, to demostrate

some applications, we shall consider examples having square barrier potential.

In the presence of TRI, we distinguish the spin-dependent case from the spin-independent

one. For spin-independent systems, of the so-called orthogonal universality class, the time-

reversal invariance implies that transfer matrices have the structure [20,26]

Mo =

0
B@ � �

�� ��

1
CA ; (10)

while for spin-dependent systems, of the symplectic universality class, the time-reversal invari-

ance implies that for spin-1/2 particles the transfer matrices have the structure [20]

Ms =

0
B@ � �

kT��k kT��k

1
CA ; with k =

0
B@ 0 IN

�IN 0

1
CA : (11)

It is clear that Mo and Ms have to additionally ful�ll the 
ux conservation requirement.

The speci�c functional form of the transfer matrix elements depends on the particular po-

tential functions. For the sake of illustration, let us look here at the periodic system of square-

barriers of height Vo and width bo separated by valleys of width ao, as shown in �gure 3. The
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single-cell transfer matrix, relating wave vectors at, say, z1 and z2; is the well known matrix (see

Appendix A and Ref. 30)

Msb =

0
B@ eikao(cosh (�bo)� i (�

2�k2)
2k� sinh (�bo)) �i (�2+k2)2k� sinh (�bo)

+i (�
2+k2)
2k� sinh (�bo) e�ikao(cosh (�bo) + i (�

2�k2)
2k� sinh (�bo))

1
CA ; (12)

with k =
p
2mE=~ and � =

p
2m (Vo �E)=~. This system is time reversal invariant and belongs

to the orthogonal universal class. Hence Æ = �� and 
 = ��: It is easy to verify that this matrix

also ful�lls the FC requirement.

Although the explicit calculation of the transfer matrix for an arbitrary potential region

may not be a simple task, it is still possible to establish (based on very general transfer-matrix

properties) many interesting results without any reference to their explicit functional form.

At this point we shall introduce a brief digression to refer to one of the most important

and relevant physical concepts of the crystalline systems: The band structure, from a transfer

matrix point of view. It is well known that in order to determine the energy regions of extended

and localized wave functions one can use Kramer's condition [30]. In the 1-D one propagating

mode approximation this condition is written as jTr Moj � 2. Similar relations, appropriately

modi�ed, work well for systems with a larger number of propagating modes. For the familiar

1-D Kronig-Penney model shown in �gure 3, i.e. for the sequence of square-barrier potentials

mentioned before, the single-cell transfer-matrix trace is

Tr Msb = 2

�
cos(kao) cosh(�bo) +

(�2 � k2)

2k�
sin(kao) sinh (�bo)

�
: (13)

The right-hand side function is frequently quoted in the literature as equal to cos kBllc; the

cosine of the Bloch phase kBllc. In �gures 4a) and 4b); T r Msb=2 is plotted together with the

transmission coeÆcients, referred to below. It is evident from these �gures that the Kramer

condition jTr Moj � 2 determines the band structure. In theories designed for in�nite periodic

systems, the allowed energy bands are continuous regions of energy levels. However, from

calculations of transmission coeÆcients for �nite periodic systems the bands contain a �nite

number of energy levels and the band structure manifests itself when the number of cells n is of

the order of 5.

Sometimes it may be convenient, but it is not essential for this theory, to express the transfer

matrices in the Bargmann's representation, brie
y mentioned in Appendix-B and extensively

studied in Refs. [20]. In this representation and for 1-D systems of the orthogonal universality

class, the transfer matrix trace reduces to

Tr Mo = 2 cos � cosh� = 2Re� (14)

with � and � being well de�ned functions of the energy and the speci�c potential parameters.

In �gure 5 we plot the functions � and �, together with the transfer matrix trace Tr Mo=2: The
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energy bands are indicated in the energy axis with bold lines. The phase � is a monotonous

increasing function of the energy, with an allowed energy band for each interval of length �: The

parameter �; on the other hand decreases monotonically. These two parameters de�ne not only

the appearance of resonant states and bands but also the building up of the gaps. Note that

we can label the bands with an index de�ned by � = 1 + (� � �mod�)=�. It is important to

make clear that, even though the bandstructure is a consequence of and will emerge once the

phase coherence and the periodicity have been combined, the single cell transfer matrix already

contains the information of this fundamental property.

The Bloch's phase �Bl = kBllc and the Bargmann's parameters are related by

cos �Bl = cos�� cosh�: (15)

with �� = �mod�. A simple analysis of this equation and the energy dependence of �� and �

(see �gure 5) neatly explains the reappearance of bands and gaps with varying width. It also

shows that the Bloch phase �Bl comprises the behavior of the real compact and non compact

parameters � and �, respectively. As these parameters vary, the Bloch phase passes from a real

value (allowed band) to an imaginary value (forbidden band).

To describe tunneling and transport properties in terms of transmission amplitudes, it is

important to recall the relation between the transfer matrix M and the scattering S matrix.

For scattering processes like the one sketched in �gure 6, the coeÆcients r; t; r0 and t0 are

the re
ection and transmission amplitudes corresponding to incident particles on the left- and

right-hand sides, respectively. It is easy to verify (see for example the Appendix C), that the

transfer matrix of the unitary universality class can be written as

Mu =

0
B@ � �


 Æ

1
CA =

0
B@

�
ty
��1

r0 (t0)�1

� (t0)�1 r (t0)�1

1
CA : (16)

When time reversal symmetry is conserved, one has to distinguish spin-dependent from spin-

independent systems, as mentioned before. The TRI requirement for spin-independent systems

implies t0 = tT while for spin-dependent and TRI systems t0 = kT tTk: Here the superscript T

stands for the transpose. These global relations (valid independent of the size of the system,

number of cells and the potential pro�les), are part of the cornerstone of the transfer matrix

method and they provide the possibility of establishing a bridge between the mathematically

well de�ned objects: the transfer matrices and the scattering amplitudes.

Another important attribute of the transfer matrices that makes them appropriate quantities

to describe systems of �nite but, in principle, arbitrary length, is the multiplicative property

M(z3; z1) =M(z3; z2)M(z2; z1); (17)

whereM(zj ; zi) is the transfer matrix relating state vectors at positions zi and zj . This property

and the possibility of relating the matrix with the scattering amplitudes, have been broadly
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used; they constitute the principal ingredients of the transfer matrix approach to the quantum

description of �nite periodic systems.

It is well known that, in general, the scattering and the transfer matrices contain the whole

information of the scattering processes. Hence it is not surprising that based on these quantities

one could build a theory to describe the physics of systems whose geometry permits the de�nition

of the corresponding transfer matrix. To exploit this method, it is essential to improve the ability

to analytically calculate consequences and new results associated with the transfer matrix, and

hence with the scattering amplitudes at any point of the system. This is, in principle, possible

and it is the goal of the next Section. We shall establish a general method and deduce general

formulae that can be applied directly to determine physical quantities for speci�c �nite periodic

systems.

B. The n-cell transfer matrix and some basic relations

The multiplicative property of transfer matrices make them suitable quantities to describe

systems which length grows. If we put together two identical cells of length L=n and with a

transfer matrix M each, the resulting system of length 2L=n has the transfer matrix M2 =

MM =M 2. The physical information of the enlarged system is fully contained in the resulting

transfer matrix M2, while the functional relation of M2 with the physical quantities (scattering

amplitudes) remains unchanged. Applying the multiplicative property over and over, we can

express the global (n-cell) transfer matrix as

Mn =Mn =

0
B@ � �


 Æ

1
CA

n

�

0
B@ �n �n


n Æn

1
CA (18)

which is related to the corresponding scattering amplitudes by0
B@ �n �n


n Æn

1
CA =

0
B@

�
tyn
��1

r0n (t
0
n)
�1

� (t0n)
�1 rn (t0n)

�1

1
CA : (19)

A quite signi�cant step in the transfer matrix method is, precisely, the possibility of analytically

determining the matrices �n; �n, etc., and hence, from (19), to deduce analytical expressions

for the global n-cell physical quantities. For numerical evaluations it may be convenient to

diagonalize M as U�U y and to write the n-cell transfer matrix as U�nU y. However, by doing

this one loses all the power of the transfer matrix method for analytical calculations and spoils

the possibility of deriving new expressions for fundamental physical quantities.

Let us now consider some transfer-matrix properties and derive fundamental relations in this

approach. In the following we will be concerned mainly with Mu, but for an easy notation the

subindex u will be omitted.
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Since

Mn =M Mn�1 ; (20)

it is clear that

�n = � �n�1 + � 
n�1 (21)

�n = � �n�1 + � Æn�1 (22)


n = 
 �n�1 + Æ 
n�1 (23)

Æn = 
 �n�1 + Æ Æn�1 (24)

with �0 = Æ0 = IsN and �0 = 
0 = 0: Starting from these relations one can easily obtain the

matrix recurrence relation (MRR)

�n = (�+ �Æ��1) �n�1 + (�
 � �Æ��1�) �n�2 ; (25)

and a similar one for �n. We also obtain


n = (Æ + 
a
�1) 
n�1 + (
� � 
a
�1Æ) 
n�2 ; (26)

and a similar one for Æn. All these relations are three-term recurrence relations with matrix

coeÆcients of dimension N �N . If we de�ne the matrix-functions

p
(1)
N;m�1 = ��1�m (27)

and

p
(2)
N;m�1 = 
�1
m; (28)

equations (25) and (26) become the non-commutative polynomial recurrence relation (NCPRR)

p(i)n + �i p
(i)
n�1 + �i p

(i)
n�2 = 0 for n � 1, and i = 1; 2: (29)

Here �1 = �(��1�� + Æ), �1 = (Æ��1�� � 
�), �2 = �(
�1Æ
 + �) and �2 = (�
�1Æ
 � �
)

are the matrix coeÆcients. The subindex N has been dropped for simplicity. This notation

will be kept unless the number of channels needs to be speci�ed. It is easy to see that the

initial conditions are p
(i)
�1 = 0 and p

(i)
0 = IN . Notice that in the one-channel case, � and �

become � + Æ = TrM and Æ� � 
� = detM , respectively. Thus, for one-dimensional systems

the NCPRR is the Chebyshev polynomial recurrence relation and, at the same time, becomes

the characteristic polynomial of the 2 � 2 transfer matrix. In the multichannel case, Eq. (29)

contains non commutative factors.

12



By solving the matrix recurrence relation it is possible to extend the transport analysis to

a multichannel description. As was shown in Ref. [21] and which will be outlined in Section IV

and Appendix E, the matrix recurrence relations can be solved almost straightforwardly. Before

continuing with this outline, let us assume that the polynomials pN;m are known and hence

proceed to derive the superlattice scattering amplitudes and relevant physical quantities.

From a mathematical point of view, the generalized recurrence relations have some special

implications which go beyond the purpose of this paper and will be discussed elsewhere in connec-

tion with the matrix representation of generalized orthogonal polynomials and noncommutative

algebras, similar to those discussed recently by I. Gelfand [31].

III. GENERAL FORMULAS FOR PHYSICAL QUANTITIES IN PERIODIC

SYSTEMS

Even though we do not know yet what the polynomials pn are, we assume their existence

and we will deduce general expressions for the scattering amplitudes, the energy eigenvalues, the

eigenfunctions and some other transport properties in terms of these polynomials. Using Eqs.

(21)-(28), it is easy to obtain

�n = pn � 
�1Æ
 pn�1 (30)

Æn = pn � ��1�� pn�1 (31)

which together with (19) permit us to write the global multichannel transmission and re
ection

amplitudes as

tn =
�
pn � pn�1 (


�1Æ
)y
��1

(32)

t0n =
�
pn � (��1��) pn�1

��1
(33)

rn = � �pn � (��1��) pn�1
��1


 pn�1 (34)

r0n = � pn�1
�
pn � (��1��)pn�1

��1
: (35)

These interesting results show that the n-cell scattering amplitudes can be expressed entirely in

terms of single-cell transfer-matrix blocks (or single-cell transmission and re
ection amplitudes

r; t; r0 and t0) and the polynomials pn. For time reversal invariant and spin-independent systems,

tn is just the transpose of t0n, and 
 = ��, Æ = ��. For spin-dependent systems t0 = kT tTk and


 = kT��k, Æ = kT��k. The previous relations are simple and of general validity at the same

time. In the particular, but very much used 1-D one channel case, the transmission amplitude

13



tn =
ty

pnty � pn�1
(36)

takes the form

tn =
t�

t�Un � Un�1
; (37)

which is an extremely simple function of the Chebyshev polynomials of the second kind, Un(�R)

and Un�1(�R) (evaluated AT the real part of �), and of the single cell transmission amplitude

t. Using the identity UnUn�2 = U2
n�1 � 1; it is easy to show that the transmission coeÆcient

Tn = jtnj2can be written as [32]

Tn =
T

T � U2
n�1(1� T )

(38)

with an evident resonant behavior. Here T = jtj2 is the single-cell transmission coeÆcient. The

transmission resonances occur precisely when the polynomial Un�1 becomes zero. Therefore the

�-th resonant energy E�;� is the solution of

(�R)� = cos
��

n
(39)

with � = 1; 2; 3:::; n � 1: The index � labels the bands, as discussed above, and � labels the

intraband states. These fundamental quantities cannot be determined with the current solid

state theory but they can be determined with the present approach. Although it is not clear that

the actual experimental precision may allow one to discriminate the intraband energy states,

we expect that for bounded �nite periodic systems it will be possible to observe the �ne energy

structure using optical excitation experiments. This could have interesting consequences in the

applied physics �eld. In section VI we will discuss some simple examples. Notice that, according

to equation (39), each energy band contains, as often stated without proof in the textbooks, the

same number of resonant energies as the number of con�ning wells.

Before going ahead and presenting new expressions for other physical quantities, let us

apply the previous equations (37) and (38) to the sequence of square barrier potentials formed

in the conduction band of the superlattice (GaAs=AlGaAs)n shown in �gure 1. For reasons of

simplicity let us consider the 1-D one channel approximation. In �gure 7, we present a series of

graphs of the transmission coeÆcient Tn as a function of the particle's energy E and the number

of cells n: It is evident that by increasing n; the band structure gradually builds up. The aim of

the sequence of graphs in �gure 7 is to illustrate the formation of the bandstructure as the �nite

periodic system grows, for �xed single-cell length lc = ao + bo. One can observe the resonance

splitting process. We can also observe that for n of order 5 the bandstructure at low energies is

reasonably well de�ned.

Especially simple, in its functional structure, are the global Landauer multichannel resistance

amplitudes R
0

N;n = r0N;n (tN;n)
�1 and RN;n = �

�
t0N;n

��1
rN;n. These quantities, in terms of the

polynomials pN;n; are just

14



R0N;n = R0N;1pN;n�1 and RN;n = RN;1pN;n�1: (40)

Here, the tunneling and the interference phenomena appear nicely factorized.

A quantity often used in the transport theory is the Landauer multichannel conductance

matrix GN = tN (r
y
NrN )

�1tyN which for the n cell system becomes

GN;n =
1

pN;n�1
GN;1

�
1

pN;n�1

�y
: (41)

In the one-channel case, the n-cell conductance is just

Gn =
1

(Un�1)
2 G: (42)

The zeros of the polynomial determine both the points of divergence of Gn and the zeros of

the resistance Rn. They also determine the resonant energy eigenvalues E�;� as well as the

resonances of the global-transmission-coeÆcient Tn.

So far, we have given a number of non-trivial but extremely appealing relations. The n-cell

Landauer resistance amplitude is just the product of the one-cell Landauer resistance amplitude

R and the polynomial pn�1. The polynomial pn has the information on the number of layers

n, the number of channels N and, more importantly, on the complex but precise interference

phenomena.

Another signi�cant physical quantity to describe periodic systems is the superlattice wave

function. In the standard theory of in�nite periodic systems the Bloch's function is taken, with

no further re
ection, to be the natural and obvious wave function. However this is not quite

correct for �nite systems; the illusion of having a wave function with the apparent simplicity of

Bloch's structure may considerably complicate the calculation of other physical quantities. In

the transfer matrix theory the wave functions of �nite periodic systems can be obtained in a

very simple way. From the de�nition of the transfer matrix, we know that once the single-cell

problem has been solved (i.e. once the transfer matrix M(zo; z
0
o); for any zo � z0o � z1 = zo + lc

has been determined) one is able to evaluate the wave function at any other point z = z0o + jlc

within the j + 1 cell of the periodic system or superlattice (with j = 0; 1; 2; :::; n � 1; see �gure

8). In fact, the state vectors at z0o and z are related by0
B@ aj

!
' (z)

bj
 
' (z)

1
CA =

0
B@ �j �j


j Æj

1
CA
0
B@ ao

!
' (z0o)

bo
 
' (z0o)

1
CA : (43)

with

�j = pj � 
�1Æ
 pj�1 (44)

�j = ��1pj�1 (45)

Æj = pj � ��1�� pj�1 (46)


j = 
�1pj�1 (47)
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In the same way, the state vector at z is related with the state vector at the end of the super-

lattice, where only the transmitted component must be considered.

For an open system, as the one shown in �gure 8, the right-side propagating state vector at

z is

!
' (z) =

!
' (z0o)(�j � �j


�1pn�1
(pn � ��1�� pn�1)

); (48)

and left-side propagating state vector at z is

 
' (z) =

!
' (z0o)(
j � Æj


�1pn�1
(pn � ��1�� pn�1)

): (49)

Evaluating these state vectors at E�;� ; we have the corresponding resonant states. In the 1-D one

channel case the matrix elements �j; �j ; ::: are simple functions of the Chebyshev polynomials,

as can be inferred from Eqs. (27), (28), (30) and (31), and Eq. (48) together with Eq. (49) give

the wave functions. In Section V, the wave functions and resonant functions for a particular

example will be evaluated and plotted. These and the other relations already presented in this

section are some of the general expressions obtained in this theory. In the subsequent parts we

will extend this approach to describe the physics of bounded, quasi-bounded systems and real

semiconductors.

As mentioned in the introduction, a signi�cant characteristic of the global or superlattice

physical quantities resides in their functional structure, expressed entirely in terms of the cor-

responding single cell quantities and the polynomials pN;m. It is clear then that in order to

evaluate these quantities we �rst need to determine the polynomials pN;m. This will be done in

the next Section. Keep in mind that in the 1-D case we already found that p1;m is precisely the

Chebyshev polynomial of the second kind Um.

IV. THE POLYNOMIALS PN;N

We shall now brie
y refer to the solutions of the recurrence relations. In the 1-D one channel

case, �, �, 
 and Æ are complex numbers, and the recurrence relations for �n (or Æn) and pn

reduce to the Chebyshev's recurrence relation

pn + g1 pn�1 + pn�2 = 0; (50)

with p�1 = 0; p0 = 1 and

g1 = �TrM: (51)

Although the Chebyshev polynomials and the generating functions method are well known, we

shall recall them in Appendix E:1 to show the notation employed and to introduce the procedure

used in the most general case. Using the eigenvalue representation, i.e. the eigenvalues �1 and

�2 of the 2� 2 transfer matrix, the Chebyshev polynomial of the second kind can be written as
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pn =
�n+11 � �n+12

�2 � �1
: (52)

In Bargmann's representation, the unit-cell amplitudes t; r and the eigenvalues �1, �2 for a time

reversal invariant system, can be written respectively as

t = ei(�u��v)
1

cosh�
; (53)

r = e�2i�u tanh� (54)

�1;2 = cos (�u � �v) cosh��
q
(cos (�u � �v) cosh�)

2 � 1: (55)

For N � 2; we have the Matrix Recurrence Relation (MRR)

pN;n = �� pN;n�1 � � pN;n�2 (56)

with � = �(��1�� + Æ) and � = (Æ��1�� � 
�): This is an interesting and important problem.

Solving this relation, we can expect a multichannel description of the transport processes in �nite

periodic systems. Even though the problem might seem rather complicated, it is nevertheless

soluble [4,21]. We show, in Appendix E:2, that the matrix polynomials satisfying the matrix

recurrence relation are

pN;n =

nX
k=0

kX
l=0

pN;lgk�lqn�k for n < 2N; (57)

and

pN;n =
2N�1X
k=0

kX
l=0

pN;lgk�lqn�k for n � 2N: (58)

Here the coeÆcients gj; qn are the symmetric functions

gj = (�)j
2NX

l1<l2<:::<lj

�l1�l2 :::�lj ; g0 = 1: (59)

and

qn =

2NX
i=1

�2N+n�1
i

2NQ
j 6=i

(�i � �j)

IN : (60)

It is obvious from these results that, in order to obtain a polynomial pN;n, one has to �rst

determine the initial 2N � 1 polynomials pN;l, which can be obtained by using the matrix

recurrence relation. Notice also that for a given number of channels, N � n=2; we have to

evaluate the sum

pN;n =
2N�1X
k=0

ck;npN;k with ck;n = qn�k

kX
l=0

gk�l (61)

where the scalars ck;n are the only quantities which depend on the size of the system L = nlc.

Based on these results we now consider some simple realizations, which when applied to mul-

tichannel transmission coeÆcients de�ne some useful relations and the transition probabilities.
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1. One propagating mode

For N = 1 and n cells; Eq. (57) reduces to

p1;n = c0;n � c1;ng1 = q1;n = qn =
2X

i=1

�n+1i
2Q
j 6=i

(�i � �j)

: (62)

which is precisely the well-known Chebyshev polynomial Un(trM=2) of the second kind given in

Eq. (46).

2. Two propagating modes

For N = 2 and n � 4; the 2� 2 matrix-polynomials p2;n are determined from

p2;n = c0;nI2 � c1;n� + c2;n(�
2 � �)� c3;n(�

3 � �� � ��) (63)

with � and � the coeÆcients of the matrix recurrence relation. Once the matrices �; �2 � � and

�3 � �� � �� are calculated, all we need is to evaluate the coeÆcients ck;n for the correspond-

ing number of cells n: The matrices p2;n of systems with two-propagating-modes play the same

role as the Chebyshev polynomials in the case of one-propagating-mode. The matrix polyno-

mials are however more complex and contain abundant information on the rather complicated

multichannel transport processes.

3. Trasition probabilities and channel-mixing

The transmission amplitude matrices in equations (32)-(36) depending on the polynomials

pN;n are loaded with information and open up the possibility of calculating quantities such as

channel transition probabilities, whose amplitudes are given by the transmission matrix elements

tn;ij � (tn)ij for i 6= j: In principle, these quantities provide information on the channel mixing

phenomena. An incoming particle in the j-th propagating mode might come out from the

scatterer system in the i-th propagating mode. These types of processes are induced by channel

coupling interactions, expected whenever the channel coupling parameters Kij , for i 6= j; are

di�erent from zero. The transmission probability TNn;ij (or just Tn;ij), from channel j on the

left- to channel i on the right-hand side, is obtained from

Tn;ij = jtNn;ijj2 =
�����
��

pNn � pNn�1

�
��1��

�T��1�
ij

�����
2

: (64)

Being able to calculate these transmission probabilities, it is possible to evaluate other quantities

as interesting as the total transmission probability TNn;i (or just Tn;i) to channel i, which

regardless of the incoming channel j is given by
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Tn;i =

NX
j=1

jtNn;ijj2 : (65)

A quantity where the channel information disappears, and certainly much easier to measure,

is the well-known conductance or total transmission probability Tn through the n-cell system.

This is de�ned as

Gn = Tn = Tr tNnt
y
Nn =

NX
i=1

Tn;i =

NX
i;j=1

jtNn;ijj2 : (66)

We are now ready to calculate all these quantities and discuss the behavior of the transmis-

sion/re
ection probabilities and other interesting superlattice properties for both, arbitrary and

speci�c potential functions.

V. ILLUSTRATIVE FINITE PERIODIC SYSTEMS

In the �rst part of this Section we will apply our approach to several examples of one-channel

periodic systems and in the second part to simple periodic systems of two and three propagating

modes.

A. One-channel systems

For the purpose of discussing general qualitative properties, with no reference to any par-

ticular potential function, we will �rst look into the transmission coeÆcients in 1-D systems

as functions of the Bargmann parameters � and �. We will then use the general results of

Section III to evaluate transport properties for speci�c 1-D systems. The physical properties

of interest that will be considered here include the bandstructure building process mentioned

above, the bandstructure tailoring, the resonant energies and wave functions, the level density

and the Kronig-Penney model. In the last part of this subsection, we shall also consider an

optical multilayer system.

1. The bandstructure as a general property of periodic systems

In general we think of transfer matrices as associated to some speci�c system. It is possible

however to think of transfer matrices expressed in terms of rather general parameters, such

as the Bargmann parameters mentioned before. Using these parameters we can analyze the

behavior of some functions appearing in the universal expressions obtained so far, and deduce

universal properties related to any periodic systems. For this purpose it is convenient to plot

the physical quantities as functions of the free parameters. The most general 1-D (one-channel)
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transfer matrix of the orthogonal class contains three free parameters [24], only two of them

being relevant to the physical quantities considered here. In Bargmann's representation we have

t = ei(�u��v)
1

cosh�
� ei�

1

cosh�
; (67)

g1 = cos(�u � �v) cosh� � cos� cosh� (68)

and

�1;2 = cos� cosh��
q
(cos� cosh�)2 � 1: (69)

The single-cell Landauer conductance G = sinh�2 � and the single-cell transmission proba-

bility T = cosh�2 � do not depend on the phase �, hence they are monotonic functions of � as

can be seen in �gure 9a): For � varying from 0 to in�nity, T decreases monotonously from 1 to

0, while G goes from in�nity to zero. If we plot these quantities as functions of the energy (see

�gure 10a) below) they will increase as the energy grows since � decreases with the energy.

The n-cell conductance Gn = G= (pn�1)
2 and the n-cell transmission coeÆcient Tn = T=(T�

p2n�1(1�T )); depend on the phase � through the polynomials pn�1, which, as mentioned before,

carry information on the periodic nature of the system and on the phase interference phenomena.

The appearance of a resonant band structure (see �gure 9b)), is a universal e�ect independent

of the speci�c potential shape. The band and gap widths are given by TrM=2. In order to

understand the role of the polynomial pn, we plot the 9-cell transmission probability T9 together

with the Chebyshev polynomial p9�1, for a �xed � in 9b). The Chebyshev polynomial pn�1;

evaluated at �R = TrM=2; determines not only the position and band widths, it determines

also the position of the tunneling resonances. Remember that �n satis�es recurrence relations

similar to those of pn�1. This fact is especially interesting in relation to multichannel systems. To

conclude this part we plot in �gure 9c) the global 4-cell transmission coeÆcient T4(�; �); and the

contour graph for T8(�; �) (here the black regions correspond to lower transmission coeÆcients)

both as functions of � and �: In these �gures the previously discussed behavior is evident:

varying � we generate the resonant structure while varying � the gap and the allowed energy

bands are distinguished much clearly. In terms of the free parameters � and �, the bandstructure

appears as a periodic repetition of the single band behavior, i.e. Tn(�; �) = Tn(� + 2�; �). If,

instead, we plot these quantities as functions of the energy and the potential parameters, the

band widths will be di�erent at di�erent energy regions (see �gure 10 below).

2. Transmission through square- and Æ-barrier potential superlattices

Let us now consider two speci�c and well known 1-D potential functions: the square- and

Æ-barrier potentials. For Æ-barriers of strength Vo; separated consecutively by a distance ao; the

Bargmann's parameters � and �, are
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� = cosh�1
�
1 +

Vo
2E

�1=2

; (70)

and

� =

p
2meE

~
ao � tan�1

r
Vo
2E

: (71)

Using these parameters, we can easily evaluate the transmission coeÆcients shown in �gure

10: Their remarkable qualitative similarity with the corresponding coeÆcients for the arbitrary

and non-speci�c periodic system in �gures 9 is notable. We are now plotting the transmission

coeÆcients as functions of the energy E and the parameter � (which also depends on the energy).

As suggested before and which can be seen in �gure 10a), the parameter � is a monotonous

decreasing function of the energy.

For square barriers with height Vo and width bo separated by potential wells of thickness ao,

the Bargmann's parameters � and � � �u � �v are (see Appendix B)

� = cosh�1

2
41 + v2o

� (�� vo)
sinh2

 p
2m�b (�� vo)

~

!1=2
3
5 (72)

and

� =

p
2m�v�

~

�
1 +

ao
bo

�
+ tan�1

"
2�� vop
� (�� vo)

tanh

 p
2m�b (�� vo)

~

!#
: (73)

Here, m�v and m
�
b are the e�ective masses in the valley and barrier respectively [33], � = Eb2o and

vo = Vob
2
o: As mentioned before, it is not necessary to use the Bargmann's representation, unless

one feels it is convenient or one is interested in analyzing generic properties as has been done

in the previous subsection. Using these functions and the superlattice formulae given above, we

can explore physical properties such as the band structure, the resonant energies, the resonant

superlattice functions and the density of states, the superlattice tunneling time, the peak to

valley ratios, etc.

In �gure 11, the same quantities as in �gures 9 and 10 but now for square barrier chains,

are plotted. The qualitative similarities are evident. The formation of resonant bands with

higher transmission probabilities at certain energies is de�nitely a phase coherence e�ect. At

low energies the vanishing of the transmission probability in the gap regions is a consequence

of the phase interference phenomena and the tunneling e�ect. This band e�ect becomes much

more pronounced as the number of cells n increases. At this point it is worth emphasizing that

the periodicity and �niteness are fully incorporated in the theory through simple and precise

functional dependence of the physical quantities on the polynomials pn: It is also worth empha-

sizing that all we need in order to evaluate an important number of relevant superlattice physical

quantities is to determine, with the highest possible precision, the single-cell transfer matrix.

As mentioned before, the bandstructure in the one mode approximation is easily obtained by

plotting the transfer matrix trace
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Tr Mo = 2 cos� cosh�:

Other quantities will be considered in the next subsection.

3. Resonant energies and resonant wave functions, level density and the KP model

Here we will present some speci�c results for the resonant energies and resonant states in

the transport process through an open square-barrier superlattice, as the one shown in �gure

3. Eigenvalues and eigenfunctions will be discussed in the sequel (part II) of this theory. As

mentioned above, the �-th resonant energy E�;� is obtained by solving the implicit equation

(�R)� = cos
��

n
with � = 1; 2; :::n � 1

where �R is the real part of �, (�R)� is the �-th zero of the Chebyshev polynomial. The

index � labels the bands, and the index � labels the intraband energy resonances, peculiar to

periodic systems and entirely determined by phase coherence. In the transfer matrix approach

the allowed energy bands are those energies which satisfy the condition cos� cosh� = j�Rj � 1.

For the n-cell square-barrier system, whose transfer matrix is calculated in Appendix A, the

resonant energy equation becomes

cos k�ao cosh q�bo � k2� � q2�
2k�q�

sink�ao sinh q�bo = cos
��

n
; (74)

with k2� = 2m�vE�;�=~
2 and q2� = 2m�b(Vo�E�;�)=~

2. Each of the energy bands contains the same

number of resonant energies as the number of con�ning wells, in this case n�1. In �gure 12, some

of these energies and the associated level densities are plotted for di�erent values of n. Notice

that the level density behavior as a function of n tends rapidly to that of the Kronig-Penney

model [34], although the continuous spectrum limit is only reached when n !1.

For TRI scattering systems like the one shown in Fig.8, the wave function at z is given by

	(z;E) = �!' (z0o)
�
�j + ��j � (��j + �j)

��n
��n

�
with j = 0; 1; :::; n � 1: (75)

It is important to notice that the wave function depends on the various potential parameters,

the particle's energy E and the total number of cells n. Notice also that while 0 � z0o � lc; the

coordinate z can take values between 0 and nlc: When z is in the �rst cell it coincides with z0o;

so that 	(zo; E) = �!' (zo)(1���n=��n), since �o = 1 and �o = 0. It is evident that evaluating the

function 	(z;E) at the resonant energies E�;� ; gives the corresponding resonant function

	�;�(z) = 	(z;E�;�): (76)

In �gures 13c)-f) we plot the wave function along the superlattice GaAs(AlGaAs=GaAs)12 at

four di�erent energies indicated with arrows in the transmission coeÆcients in 13a): While in
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13c) and 13e); the functions j	�;�(z)j2 correspond to the third resonant energies in the second

(� = 2) and third (� = 3) energy bands (in these cases the resonant bound-state functions are

modulated by an oscillating envelope function with � + 1 minima), in 13d) the wave function

is evaluated for an energy in the gap between the second and third bands. In 13f) the wave

function is plotted for an arbitrary energy E (6= E�;�) inside a band. In the last case we have

an extended wave function with a very complicated behavior along the superlattice. At z = 0

and z = nlc the resonant wave functions are di�erent from zero, because they describe not only

the extended but also the transmitted states, unless the energy lies in a gap region, and the

probability of �nding the particles at the ends of the system is di�erent from zero. This will,

of course, change for bounded systems. The same happens with the function j	2j2 in �gure

12f), where � = 2. In 13d); the behavior of the wave function in the gap is not only compatible

with the well known vanishing of the transmission coeÆcient, it also shows a localization e�ect

induced by the phase coherence, which is an appealing result.

4. Bandstructure tailoring. Levels and bands in the gaps

One of the most signi�cant and interesting properties of periodic systems, in general, and

of multilayer superlattices in particular, is the possibility of tailoring their bandstructure. Pro-

nounced macroscopic e�ects, such as the increase of the electric conductivity of real semicon-

ductors (containing defects and di�erent types of impurity atoms), rest on the appearance of

extra energy levels in the gaps of ideal semiconductors. The superlattices become in this sense

quite attractive because of the possibility of modifying their periodicity by "inserting" at will

extra energy levels in the subband gaps. Di�erent types of topological defects, referred to here

for the sake of simplicity as \impurities", can e�ectively be created in these heterostructures by

changing the valley (barrier), depth (height) or width of certain layers. As a consequence, the

bandstructure is modi�ed and the resonant peaks move to new positions. Using the method and

formulas presented here, it is rather simple to determine these kinds of e�ects on the bandstruc-

ture and, especially, on the impurity-level position in the bandgaps. To illustrate this, we shall

consider one and two substitutional "valley-impurities" (with valley widths aoi) immersed in an

otherwise periodic square-barrier or Æ-barrier chain. In our examples, the valley-impurities are

produced by varying the well's width such that the impurity width is aoi = ziao with zi 6= 1:We

can also vary the valley depth. This implies a di�erent wave number ki at the impurity layer.

Other changes of local-potential parameters are also possible.

In general, if we have s valley-impurities in a chain of n cells, the whole superlattice transfer

matrix will be given by

Mn =Mn1Wi1Mn2 :::MnsWisMns+1 with n =
s+1X
j=1

nj (77)
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and

Wi =

0
B@ eidiki 0

0 e�idiki

1
CA =

0
B@ wi 0

0 w�i

1
CA ; (78)

as the valley-impurity transfer matrix. For a chain with a few impurities, �n and �n can be

easily calculated using for each of the periodic sectors the already known expression

�nl = pnl � pnl�1
�
��1��

�
; (79)

which in the one-channel limit is just

�nl = pnl � pnl�1� (80)

where pnl is the Chebyshev polynomial of order nl evaluated at Re(�). In the particular case of

only one impurity located, say, at the center of the chain (which means n1 = n2), we have

�n = �n1wi�n1 + �n1wi�
�
n1 = �

�
tyn

��1
: (81)

In order to evaluate some physical quantities and to observe the impurity e�ects on a speci�c

bandstructure, let us consider again a square-barrier superlattice like the one shown in �gure 14a)

with ao = 2nm; bo = 10nm; and Vo = 0:23eV . For this system, having a valley impurity at the

center of the superlattice and n = 10 barriers, we plot in �gures 14b)-f) the total transmission

coeÆcient for di�erent values of the impurity width aoi = ziao: When zi < 1, the impurity

valley width is narrower than ao and corresponds, qualitatively, to a negative di�erence �Z < 0

between the impurity and the host core charge numbers (acceptors of electrons). In the left-

hand side column, the transmission coeÆcients are plotted for zi = 0:9; 0:8;..., 0:5: As expected

when �Z < 0; an energy level separates from the upper band edges and moves towards the

upper bands as zi departs from 1: It is interesting to notice that the resonances in the bands

are strongly modi�ed. When the energy level approaches the next upper band a new energy

level separates from the opposite side of that band. This kind of energy-level repulsion and

bandcrossing are interesting and novel e�ects that can clearly be seen in this example. For the

energy level appearing between the second and the third band, the bandcrossing e�ect occurs

when zi � 0:5: In the column on the right-hand side, we plot transmission coeÆcients for wider

(zi > 1) impurity valleys. In these cases the behavior corresponds to donors of electrons with

�Z > 0: As zi departs from 1 an energy level separates from the lower band edge and moves

towards lower energies as zi increases. It is obvious that by adjusting the parameter zi we can

place the impurity-level at any desired position.

Increasing the number of impurities, but keeping constant their separation, a second order

superlattice is built up and the coherence phenomena manifests, producing another interesting

impurity e�ect in the bandstructure. The single resonances in the gaps split and narrow bands

24



appear, precisely where the single peaks were at before, with as many resonances as impurities

contains the superlattice. To illustrate this behavior, we consider the systems shown in �gures

15a) and 15b), with one and two valley impurities respectively. In the left-hand side column

the transmission coeÆcients are shown for the one impurity system, while in the right-hand side

column, the transmission coeÆcients correspond to the system with two impurities. By adjusting

the impurity valley width and enlarging the superlattice to increase the number of impurities,

narrow bands can also be generated at any desired position. If, on the other hand, we keep

the number of impurities constant while increasing the total number of cells, i.e. lowering the

impurity concentration, the bands in the gaps remain in the same positions but their width

diminishes rapidly. To study this e�ect, let us consider superlattices of di�erent sizes ( n = 20;

28 and 36) but with the same number s = 3 of (equidistant) impurities. In �gures 16 we

plot the transmission coeÆcients. Going down, from 16a) to 16c) the size n increases (while the

impurity concentration diminishes), and simultaneously the impurity-bands become narrower. It

is interesting to notice that the principal bands are strongly modi�ed and even break in thinner

bands. The appearance of multiple, narrower, close minibands might favor the conduction

process.

The e�ects on the band structure are qualitatively similar for square- and Æ-barrier chains.

Although these results are well known, and can be calculated by evaluating products of transfer

matrices, our formulas permit simpler and easier calculations. The technological consequences

of playing with these properties may be of great interest. We presented here an easy method

for making parametric changes and for evaluating the appearance of levels in the gaps and for

bandstructure tailoring.

As for the one-impurity or defect chains, the number of resonant pairs of levels per unit

energy depends on zi:

5. Multilayer optical power limiting

Optical multilayer systems have been considered for studying optical properties. The super-

luminal tunneling times have been studied within this approach. The phase time predictions

[22] agree impressively well with the experimental measurements [35]. Linear and non-linear

response system properties have also been of interest recently [23]. Linear response systems are

described by

d2E
dz2

= ��1k2oE (82)

and the non-linear response systems, in the "single layer approximation" of reference [23], by

d2E
dz2

= ��2k2o(1� jEoj2)E : (83)
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Here �i is the dielectric constant and Eo the incident electric �eld with frequency !o = koc: It

is easy to show that for a system of alternating layers of linear and non-linear response, with

wave numbers k = ko
p
�1 and K = ko

r
�2

�
1� jEoj2

�
, and widths ao and bo; respectively, the

transfer matrix elements are

� =
1

4kK

�
(K + k)2 ei�1 � (K � k)2 e�i�2

�
(84)

and

� =

�
K2 � k2

�
4kK

�
ei�2 � ei�1

�
: (85)

Here �1 = (2K � k) bo� kao and �2 = (2K + k) (ao + bo). Using this transfer matrix, the multi-

channel transmission coeÆcients have been calculated. The transmission probabilities obtained,

as functions of the incident intensity jEoj ; are shown in Fig. 17a)-c), for n = 10; ao = bo = 0:5;

�1 = 1:2, �2 = 2:5 and di�erent values of koc. Incident intensity cuto�s are predicted. This could

be related to power limiting as suggested in Ref. [23]:

B. Multichannel transmission through (GaAs/(Æ-scatterer layer))n superlattices

In order to study simple examples of multichannel transport processes, let us consider a

3-D superlattice BABAB:::ABAB; where B is a thick semiconducting layer and A is a kind of

monoatomic layer, modeled as a plane of attractive or repulsive Æ-scatterer centers, see �gure

18. Assuming the periodic potential

VP (x; y; z) = 
Æ (z � �lc)

N�X
�=1

N�X
�=1

Æ (x� x�) Æ (y � y�) � = 1; :::; n (86)

with longitudinal lattice parameter lc and interaction strength 
, one can easily obtain the

channel coupling parameter

Kij =
8�2m


h2
Æ (z � �lc)

N�X
�=1

N�X
�=1

��i (x� ; y�)�j (x� ; y�) = Æ (z � �lc) �ij; (87)

where the i channel-index refers to any pair of quantum numbers nx; ny = 1; 2; 3; ::: in the wave

function �nxny(x; y); corresponding to the transverse energy levels

Ei =
~
2�2

2m�
(
n2x
w2
x

+
n2y
w2
y

) (88)

The channel states of equation (3)

�i (x; y) =
2p
wxwy

X
fn2i=n

2
x+n

2
yg

sin
nx�x

wx
sin

ny�y

wy
; (89)
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are either non-degenerate or doubly-degenerate states. Taking into account these de�nitions, and

proceeding as usual with Æ-potentials, it is easy to determine the Æ-layer (time-reversal-invariant

and 
ux-conserving) transfer matrix

MÆ =

0
B@ �Æ �Æ

��Æ ��Æ

1
CA : (90)

with

�Æ = IN + �Æ ; �Æ =
1

2i

0
BBBBBBBB@

�11
k1

�12
k1

�21
k2

�22
k2

:

:

1
CCCCCCCCA
; and

�ij
�ji

=
ki
kj

(91)

Although we will obtain here various results for an arbitrary number of channels N , to eval-

uate the transmission coeÆcients Tij we shall restrict to N = 2 and N = 3 open channels or

propagating modes.

To use the polynomials and invariant functions mentioned above, it is necessary to determine

the eigenvalues of the 2N � 2N transfer matrix M and to evaluate the matrix-polynomials. To

this purpose, we need �rst to obtain the unit-cell transfer matrix. A unit cell of our superlattice

contains a layer A and a layer B; which we �nd convenient to build as a half-layer B followed

by the plane of Æ-scatterer centers and again a half-layer B, i.e. B1=2AB1=2: Thus the single-cell

transfer matrix is given by

M =W 1=2MÆW
1=2 =

0
B@ � �

�� ��

1
CA (92)

with

W =

0
B@ ! 0

0 !�

1
CA and ! =

0
BBBBB@

eik1b 0

0 eik2b

:

1
CCCCCA : (93)

It is easy to verify that in this case

� = !1=2# i� #T (!�)1=2 (94)

with � diagonal and # an orthogonal N �N matrix. De�ning appropriate unitary matrices u =

!1=2# and v = �iuT , we get, as could be expected, a realization of the Bargmann representation,

i.e. � = u sinh� v� with
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sinh� = � =

0
BBBBBBBB@

�1

�2

:

:

1
CCCCCCCCA
: (95)

It is not diÆcult to show that the transfer matrix eigenvalues are given, in this case, by

�j = cosh�j + sinh�j =
q
1 + �2j + �j

�j+N = cosh�j+N � sinh�j+N =
q
1 + �2j � �j :

(96)

To plot these functions, we assume that the Æ- scatterer centers in the x-y plane are located in

a square lattice. If we write the functions �ni (x� ; y�) as

�ni (x� ; y�) =
2p
wxwy

sin[
nx�

N�
(� � x1)] sin[

ny�

N�
(� � y1)]

with x1 and y1 the coordinates of the Æ-center nearest to the origin. It is easy to see that the

coupling parameters �ij in (87) depend strongly on the coordinates x1; y1.

Let us now evaluate transmission probabilities jtNn;ijj2for some speci�c cases. In �gures

19a)-c) and 20a)-d); these quantities are plotted for the two channel case (N = 2): In �gures 21

and 22, we consider a larger number of propagating modes (N > 2). To simplify the notation,

the n-cell transmission coeÆcients (Tn)i;j are denoted just as Ti;j.

Since some of the multiple features characteristic of the multichannel processes can already

be observed in the two channel case, we shall start discussing this system. For the superlattice

that we have just introduced, let us consider two particular cases, di�erentiated mostly by

their interaction strength sign. In both cases we will concentrate on the channel coupling

e�ects. While in �gures 19 the coupling e�ects are observed basically at energies below the

channel threshold Eth2 (with negligible band distortion), in �gures 20 strong band distortions

are observed. For the superlattice with transmission coeÆcients shown in Fig. 19, we have

lc = 20�A, wx = wy = 40�A, x�1 = 1=3, y1 = 1=7, N� = N� = 6 (meaning 36 Æ-scatterer centers

for each Æ-layer) and 
 = �500eV . For the transmission coeÆcients in �gure 20 we consider

lc = 20�A, wx = 100�A, wy = 50�A, x1 = y1 = 1=2, N� = 30, N� = 15 (meaning 450 Æ-scatterer

centers for each Æ-layer) and 
 = 800eV .

It is interesting to see that for the attractive Æ-scatterer centers (
 < 0), very nice resonances,

with typical resonance shape and features, appear because of the coupling between an open

and an evanescent state (see �gure 19b)). The resonance at E = 1:242eV; in �gure 19a); is

redisplayed in 19b). A strong suppression in T1;1 is accompanied by a resonant behavior of

T1;2. This resonance has been normalized and can be �tted with a Lorenzian function, as is

well known in scattering theory. The life time of the quasi-stationary resonant states, given

by the resonance width, becomes larger as the number of cells n increases. Simultaneously, as
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n increases the resonance splits o� generating, due to phase coherence phenomena, a band of

resonances (see the low energy region of �gure 19c)).

The system whose transmission coeÆcients have been plotted in �gure 20 contains planes

of repulsive Æ-scatterer centers. Although at very small energies (< Eth1; Eth2) we also �nd a

channel coupling resonance (indicated with T1;2), the transmission probability from channel 1

to channel 2 becomes larger than for the attractive Æ's above the energy thresholds Eth1; and

Eth2. For the parameter values chosen in this case T1;2 is comparable in magnitude with T1;1

and T2;2: In some cases strong suppressions in the transmission coeÆcients T1;1 and T2;2 are

observed, with no in
uence on the total transmission probability or conductance Gn = Trtnt
y
n:

For this reason, it is clear that these types of e�ects will remain unobserved, at least while the

experimental techniques cannot eÆciently discriminate one channel from another. Besides the

band distortion, other signi�cant features are also apparent. At the incoming particle energy of

4:6eV in Fig. 20c, the transition coeÆcients T1;2 and T2;1 contribute to the largest value of the

conductance G3, while T1;1 = T2;2 become zero!. In �gures 19a) and 20a); the transfer matrix

trace has also been plotted and, as in the one propagating mode case, it indicates the regions of

allowed and forbidden energies.

It is interesting to notice that the channel mixing e�ects, measured by the relative size of

T1;2; become larger as the system's size L = nlc increases.

In �gures 21a)-e) the transmission coeÆcients Ti;j are plotted for N = 3. In these �gures

we have considered lc = 16�A, 
 = 0:4KeV; and x1 = y1 = 1 (with wx = wy = 24�A and

N� = N� = 6): A physically interesting property that can be very clearly observed is the return

e�ect, occurring when a particle comes out in the same channel of the incoming one but having

passed, at least once, through another propagating mode. Because of this e�ect, the band

structure of Ti;i is modi�ed in the energy regions where the allowed energy band of channel k

coincides with the forbidden energy band of channel i, and whenever the transition probability

Ti;k takes non negligible values. Consider for example the graphs for T1;1; T1;2 and T22. The

transition probability T1;2 is di�erent from zero in the energy regions corresponding to allowed

bands of both T1;1 and T2;2: If we observe now the transmission coeÆcient T2;2 in the gap between

the third and the fourth band, there is a small probability for the particle to start and �nish

in the same channel 2 for energies in the allowed band of channel 1 and the forbidden energies

of channel 2: This is possible if the particle enters in channel 2, passes to channel 1 and, before

reaching the end of the superlattice, it comes back to channel 2. In these graphs we can also see

that T11 and T22 do not reach the maximum value of 1 in their allowed energy bands.

If we observe the transmission coeÆcients in �gure 22, the return e�ect is much more pro-

nounced because the transition coeÆcients Ti;j take values comparable with those of Ti;i: This

e�ect is apparent in, say, T2;2 for energies around 1; 0 and 2:2eV; corresponding to the second

and third energy bands. At these energies, the particle starts in channel 3 and �nishes in the

same channel but passing through channel 2, or perhaps also through channel 1. This type of
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experimental information, even for the two-channel problems, is not yet available. We expect

that such quantities will be measured soon, because they will give more insight on the tunneling

mechanism and on the way the 
ux of certain kinds of quasiparticles moves from one channel to

another. It is worth mentioning that this e�ect depends also on the superlattice size and layers

widths. Some calculations and also applications are in progress.

The channel coupling parameters, �ij; are important quantities that are strongly dependent

on the periodic potential ability to induce 
ux-interchange between the various propagating

modes. In the model considered here, they can easily be calculated for any con�gurations of

Æ's. For di�erent distributions, distinct and interesting band mixing e�ects are predicted. In

other kinds of problems, say spin-dependent problems, incoming particles may emerge on the

other side with their spin reversed [36]. By the same token, heavy holes transform into light

holes. The uncoupled-channel limit resonances of the i-th mode may be present or absent

when the coupling is turned on. Resonances associated with the uncoupled k-th (with k 6=
i; j) channel, can be present in (Tn)ij. Expected and non-expected phenomena of suppression,

broadening, enhancement, and apparent generation of new transmission resonances, produced

by inter-channel couplings are of primary importance, and o�er the possibility of modeling and

predicting novel tunneling e�ects and interference phenomena.

VI. CONCLUSIONS

New theoretical developments and various physical properties of �nite periodic systems have

been discussed from the point of view of the transfer matrix and the scattering theory. In this

theory, alternative to the current solid state theory, the principal features of the real periodic

sytems, �niteness and periodicity, are fully incorporated without any need of Bloch functions and

the reciprocal space. While in the standard theory one works, by construction, in the continuous

spectrum limit (of in�nite systems), in this approach we have complete control on the system's

size and the entire phase coherence phenomena. As a consequence, one can easily determine the

fundamental phase interference e�ects as well as the discrete character of the energy spectrum,

emblematic of �nite systems. Using simple algebraic methods, universal, extremely simple and

compact expressions for global n-cell quantities, have been rigorously and directly obtained,

which are valid for any realization of the potential function.

The scattering approach which up to now has successfully dealt with transport properties of

disordered and chaotic structures, used properly, can also give information on the innards of �nite

periodic systems. From the transmission coeÆcients we get information on the band structure

and, even more, on the intraband structure and on the resonant energies. This information

opened up the possibility of evaluating and describing extended, resonant and localized states

inside the periodic systems. For multichannel systems, we have also shown that it is possible to

evaluate resonant channel couplings and to get insight on the particle's excursions through the
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space of open and evanescent channels.

From the transfer-matrix combination property Mn =MMn�1 we deduced recurrence rela-

tions for the submatrices �n and �n. These relations were used both to derive new formulas for

global scattering amplitudes and quantum properties and to deduce matrix recurrence relations

whose solutions are the noncommutative polynomials pN;n: These, in the 1-D one-channel limit,

are the well-known Chebyshev polynomials of the second kind.

A highly peculiar and signi�cant property of the general expressions describing the physics

of n-cell system with an arbitrary number of propagating modes N and arbitrary single-cell

potential function is the consistent presence of the two fundamental quantum properties: the

tunneling e�ect and the phase coherence. The tunneling process is generally expressed by the

single-cell matrix elements or the single cell scattering amplitudes. The multiple re
ection

and interference phenomena, occurring along the n repetitions of the single cell and between the

various channels, is described in these formulas by means of the polynomials pN;n. The Landauer

resistance amplitude RN;n = RN;1pN;n�1 has the tunneling and interference properties literally

factorized. Similarly, the Landauer conductance GN;n = 1
pN;n�1

GN;1

�
1

pN;n�1

�y
; is shown to

have its resonances at the zeros of the polynomial pN;n�1. In this sense, the theory presented

in this paper not only generalizes the one-channel descriptions to provide extremely simple

formulas for the transmission coeÆcients of n-layer N -channel systems; but also gives more

general, simple, precise descriptions of some fundamental qualitative properties. The position

and widths of the allowed bands are given by the trace of the single-cell transfer matrix; the

tunneling resonances by the zeros of the polynomials pN;n. On the other hand, in this theory

there is no need to match the Schr�odinger solutions all the way along the periodic system [37],

this is done automatically.

Some few-channel examples have been considered. We started by studying non-speci�c

properties common to all 1-D one channel �nite periodic systems. To this purpose we used

the Bargmann parameters to express the physical quantities. Based on this analysis we could

make clear that the phase coherence phenomena are responsible for the universal bandstructure

behavior. Speci�c examples were also considered and the square and Æ-barrier potentials were

frequently used to illustrate and perform explicit calculations. We have shown that in the

limit n ! 1; the square barrier system is obviously the Kronig-Penney model. Bandstructure

tailoring has also been discussed. Playing with a few potential parameters, interesting e�ects

and some well known properties were found both for donor-like and acceptor-like \impurities"

or topological defects.We have shown that easier impurity calculations can be done using this

method and that the isolated impurity levels or minibands in the energy gaps can be located

almost at will. We also applied our method to multilayer quasi-linear optical systems and

quantum dot arrays (not reported here) with equal feasibility and success.

A short discussion on simple but illustrative two- and three-channel systems was also pre-

sented. To illustrate the analysis of this type of systems, we considered a soluble multichannel
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superlatice BABAB:::ABAB; where monoatomic layers A alternate with thicker semiconductor

layers B. For attractive Æ-potentials, faithful resonances appear because of the coupling between

open and evanescent states. For repulsive Æ-potentials, an interesting return e�ect is clearly rec-

ognized when a particle comes out in the same channel as the incoming one but having passed,

at least once, through another propagating mode. Because of this e�ect, the band structure

of Ti;i is modi�ed in the energy regions where the allowed energy band of channel k coincides

with the forbidden energy band of channel i, and whenever the transition probability Ti;k takes

non negligible values. Many other properties, such as resonance broadenings, suppressions and

channel mixings are observed in general. The results obtained for the transmission coeÆcients

from channel i to channel i, with repulsive or attractive Æ-potentials, show that increasing the

coupling parameter, the bands separate though the transition probability increases. In gen-

eral, the lateral dimensions wx, wy, the cell length lc, the number of Æ's per plane and their

distribution have important consequences in the transmission coeÆcients.

In conclusion we presented here an alternative and convenient method to study some prop-

erties in solid state physics.
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VIII. APPENDICES

A. The transfer matrix in the Kronig-Penney model

For the bene�t of those who are not familiar with the transfer matrix method, let us consider

a simple example, the �nite Kronig-Penney model, and calculate the single-cell transfer matrix.

A sectionally constant potential pro�le of this type might correspond to the conduction or

valence band edge of a superlattice (AB)n, in which case the e�ective masses in the alternating

layer should be considered. In this case, the current or 
ux conservation requirement must be

considered. In the valley region A of this system, the wave function is

 A(z) = aAe
ikz + bAe

�ikz � aA
!
' (z) + bA

 
' (z) (A.1)

where k =
q

2mA

~2
E, while in the barrier regions B; with � =

q
2mB

~2
(Vo �E) for E < Vo; the

wave function is
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 B(z) = aBe
�z + bBe

��z � aB'
+ (z) + bB'

� (z) (A.2)

The continuity conditions at the interface points zl and zr = zl + bo, at the left- and the right-

hand sides of barrier B; can be written as

�B(z
+
l ) =

0
B@ aBe

�z+
l

bBe
��z+

l

1
CA =

1

2�

0
B@ �+ ik �� ik

�� ik �+ ik

1
CA
0
B@ aAe

ikz�
l

bAe
�ikz�

l

1
CA �Mio(z

+
l ; z

�
l )�A(z

�
l ) (A.3)

and

�A(z
+
r ) =

0
B@ aAe

ikz+r

bAe
�ikz+r

1
CA =

1

2k

0
B@ k � i� k + i�

k + i� k � i�

1
CA
0
B@ aBe

�z�r

bBe
��z�r

1
CA �Moi(z

+
r ; z

�
r )�B(z

�
r ) (A.4)

It is not diÆcult to show that the current conservation requirements

j(z+l ) = j(z�l ) and j(z+r ) = j(z�r );

imply the conditions

M yio

0
B@ 0 1

�1 0

1
CAMio = � ikmB

�mA

0
B@ 1 0

0 �1

1
CA

M yoi

0
B@ 1 0

0 �1

1
CAMoi = � i�mA

kmB

0
B@ 0 1

�1 0

1
CA

The transfer matrices here, connect the state vectors in the outside with the state vectors inside

the square barrier potential. State vectors at any two points of a constant potential region di�er

in their phases and are also related by a transfer matrix. For za and z0a in the valley region A

we have

�A(z
0
a) =

0
B@ eik(z

0

a�za) 0

0 e�ik(z
0

a�za)

1
CA�A(za) =MA(z

0
a; za)�A(za) (A.5)

and for zb and z
0
b in the barrier region, we have

�B(z
0
b) =

0
B@ e�(z

0

b�zb) 0

0 e��(z
0

b
�zb)

1
CA�B(zb) =MB(z

0
b; zb)�B(zb) (A.6)

Using the multiplicative property, it is possible to obtain the transfer matrix relating any two

points of the superlattice. The state vectors at any za (in the valley A) and zb (in the neighbor

barrier region B) are related by

�B(zb) =MB(zb; z
+
l )Mio(z

+
l ; z

�
l )MA(z

�
l ; za)�A(za) =Mba(zb; za)�A(za) (A.7)
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the current conservation requirement

j(za) = j(zb)

implies the condition

M yba

0
B@ 1 0

0 �1

1
CAMba = � i�mB

kmA

0
B@ 0 1

�1 0

1
CA (A.8)

In the same way, the matrix relating the state vectors �A(z
�
l ) and �A(z

+
r = z�l + bo); at the

left- and right-hand sides of the square barrier, is obtained from

Mb(z
�
l + bo; z

�
l ) = Moi(z

+
r ; z

�
r )MB(z

�
r ; z

+
l )Mio(z

+
l ; z

�
l ):

Therefore

Mb(z
�
l + bo; z

�
l ) =

0
B@ cosh�bo + ik

2��2

2k� sinh�bo �ik2+�22k� sinh�bo

ik
2+�2

2k� sinh�bo cosh�bo � ik
2��2

2k� sinh�bo

1
CA : (A.9)

It is easy to show that the current conservation j(z�l ) = j(z+r ) leads to the well-known FC

requirement

M yb

0
B@ 1 0

0 �1

1
CAMb =

0
B@ 1 0

0 �1

1
CA : (A.10)

B. The Bargmann representation

The transfer matrix of the orthogonal universality class Mo belongs to the symplectic

Sp (2N; C) group, with (2N2 + N) free parameters, while the transfer matrix in the unitary

universality class Mu belongs to the pseudo unitary psU (2N; C) group, with (4N2 + N) free

parameters. Most of the transfer matrices appearing in the literature belong to these groups.

Sometimes, it may be convenient, but it is not essential for this theory, to express the transfer

matrices in the so-called Bargmann's representation [20]

Mo =

0
B@ u 0

0 u�

1
CA
0
B@ cosh� sinh�

sinh� cosh�

1
CA
0
B@ v 0

0 v�

1
CA ; (B.1)

and

Mu =

0
B@ u1 0

0 u2

1
CA
0
B@ cosh� sinh�

sinh� cosh�

1
CA
0
B@ v1 0

0 v2

1
CA ; (B.2)
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with u's and v's unitary matrices and � diagonal and positive: In this representation, the transfer-

matrix blocks take simple functional forms. In the orthogonal case we have

� = u cosh� vy;

� = u sinh� vT :

(B.3)

The Bargmann's parameters are well de�ned functions of the energy E and other potential

parameters in a way which depends on the particular physical system. For the familiar 1-D

Kronig-Penney model shown in �gure 3, the Bargmann's parameters � and � � �u � �v are

given by

� = cosh�1

2
41 + v2o

� (�� vo)
sinh2

 p
2m�b (�� vo)

~

!1=2
3
5 (B.4)

and

� =

p
2m�v�

~

�
1 +

ao
bo

�
+ tan�1

"
2�� vop
� (�� vo)

tanh

 p
2m�b (�� vo)

~

!#
(B.5)

When the square barrier potential is due to alternating semiconductor layers, we have, m�v and

m�b as the e�ective masses in the valley and barrier respectively. In the previous formulas, we

have considered also the parameters � = Eb2o and vo = Vob
2
o: We shall use � and � to discuss

the relation between the Chebyshev polynomials and the resonant transmission and re
ection

interference phenomena, keeping the analysis as general as possible. Bargmann's parameters

can also be used to make clear some potential-independent features such as the deep relation

between the bandstructure and the phase coherence phenomena in periodic systems, discussed

in section V.

C. Relations between the scattering and the transfer matrix

Explicit relations between the transfer and the scattering matrix elements are known, see

for example Ref. 22. For scattering processes like the one sketched in �gure 2, the coeÆcients

r; t; r0 and t0 are the re
ection and transmission amplitudes corresponding to incident particles

coming from the left- and right-hand sides, respectively. The scattering matrix S, that relates

the incident amplitudes a and d with the outgoing amplitudes b = ra+ t0d and c = ta+ r0d, is

written as

S =

0
B@ r t0

t r0

1
CA : (C.1)

Let us consider the transfer matrix of the unitary universality class Mu. For TRI systems, we

have to take 
 = ��and Æ = ��, and based on the scattering and transfer matrix de�nitions, one

easily obtains the following equations
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t� �� �r = 0;

r0 � �t0 = 0;


 + Ær = 0;

1� Æt0 = 0;

(C.2)

whose solutions (with y meaning the transpose conjugate) are [22]

r = �Æ�1
 = �vy2 (tanh�) v1 (C.3)

t =
�
�y
��1

= u1 (cosh�)�1 v1; (C.4)

t0 = Æ�1 = vy2 (cosh�)�1 uy2; (C.5)

r0 = � Æ�1 = u1 (tanh�) uy2 (C.6)

Thus, the transfer matrix of the unitary universality class can be written as

Mu =

0
B@

�
ty
��1

r0 (t0)�1

� (t0)�1 r (t0)�1

1
CA (C.7)

while in the orthogonal universality class it takes the form

Mo =

0
B@
�
ty
��1

r�
�
tT
��1

�
tT
��1

r
�
tT
��1

1
CA : (C.8)

The explicit parametrizations appearing on the right-hand sides of Eqs. (24 � 27), correspond

to the Bargmann's representation.

D. The MRR and the Cayley-Hamilton theorem

It is not diÆcult to recognize that the non-commutative polynomial recurrence relation

p(i)n + �i p
(i)
n�1 + �i p

(i)
n�2 = 0 for n � 1, and i = 1; 2 (D.1)

where �1 = �(��1�� + Æ) and �1 = (Æ��1�� � 
�) are the matrix coeÆcients for the unitary

class, and �2 = �(��1�� + ��) and �2 = (����1�� � ���) are the matrix coeÆcients for the

orthogonal class, transforms into the scalar-recurrence relation

�i;jn+2N + g1�
i;j
n+2N�1 + :::+ g2N�1�

i;j
n+1 + g2N �i;jn = 0; 8 i; j and n 6= 0 (D.2)
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and similar relations for �i;jm ; 

i;j
m and Æi;jm . Equation (D.1) is the Cayley-Hamilton theorem for

M . The coeÆcients gm are precisely those of the characteristic polynomial of M; de�ned by the

Leverrier's algorithm [38]; being g1 = �Tr M and g2N = detM: Taking into account that the

recurrence relation holds irrespectively of the indices i; j, we write

�n+2N + g1�n+2N�1 + :::+ g2N�1�n+1 + g2N �n = 0; (D.3)

with the initial conditions �0 = IN , for � = �; Æ; p
(1)
N ; p

(2)
N , or �0 = 0; for � = �; 
. Since p

(1)
N;m

and p
(2)
N;m are formally equal, we have to deal with only one set of polynomials which satisfy the

relation

pN;n+2N + g1pN;n+2N�1 + :::+ g2N�1pN;n+1 + g2N pN;n = 0 for n � 0 (D.4)

Notice that the same equation is valid in the orthogonal universality class, di�ering only in

the explicit form of the coeÆcients gm: The polynomials pN;m are in some respect universal

quantities. Solving for pn, we will be ready to determine �n; �n, 
n and Æn, and subsequently

to evaluate the superlattice physical quantities of interest for multilayer systems. This is one of

our main goals.

E. The Chebyshev and the non-commutative polynomials

1. The one channel case

To introduce the procedure to solve the most general case using the well known generating

function method, and to introduce a notation we start by recalling the well known Chebyshev

relation

pn + g1 pn�1 + pn�2 = 0; (E.1)

with p�1 = 0; p0 = 1 and

g1 = �TrM: (E.2)

Schematically, we can proceed as follows:

i) Developing the generating function g(�) = (1 + g1�+ g2�
2)�1 around � = 0; one has

1

1 + g1�+ g2�2
= q0 + q1�+ q2�

2 + q3�
3 + :::; (E.3)

where

q0 = 1 (E.4)

q1 + g1q0 = 0 (E.5)
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and

qn+2 + g1qn+1 + g2qn = 0; for n � 0 (E.6)

All this is compatible with (C.1). Thus, qn can be identi�ed with pn:

ii) Any combination like

qn = s1�
n
1 + s2�

n
2 ; (E.7)

where �1 and �2 are the eigenvalues of M , is also a solution of the recurrence relation. To ful�l

(50) and (51), s1 and s2 should satisfy the set of equations

s1 + s2 = 1 (E.8)

s1(�1 + g1) + s2(�2 + g1) = 0 (E.9)

which solutions are (recall that g1 = �Tr M = ��1 � �2)

s1 =
�1

�2 � �1
; s2 =

�2
�1 � �2

(E.10)

Thus,

qn =
�n+11 � �n+12

�2 � �1
= pn: (E.11)

This is the well known Chebyshev polynomial of the second kind in the eigenvalue representation.

2. The N-channel case

For N � 2; we have the Matrix Recurrence Relation (MRR)

pN;n = �� pN;n�1 � � pN;n�2 (E.12)

where � = �(��1�� + Æ) and � = (Æ��1�� � 
�): This seems complicated but it is a soluble

problem. As mentioned before this three-term relation transforms into the scalar recurrence

relation (B.4) with 2N + 1 terms:

Without loss of generality, and assuming that �i � �j 6= 0, 8 i and j; we can consider the

generating function

Q(�) =
IN

1 + g1�+ g2�2 + :::g2N�2N
= qN;0 + qN;1�+ qN;2�

2 + ::: (E.13)

whose coeÆcients qN;i satisfy the following 2N conditions

qN;0 = IN (E.14)
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qN;1 + g1qN;0 = 0 (E.15)

qN;2 + g1qN;1 + g2qN;0 = 0 (E.16)

...

and the recurrence relation

qN;n+2N + g1qN;n+2N�1 + :::+ g2N�1qN;n+1 + g2NqN;n = 0 for n � 0 (E.17)

Except for the �rst equation and the last recurrence relation, these conditions are not fully

compatible with the matrix recurrence relation (E.12). For example, recalling that pN;�1 = 0;

we have from (E.12)

pN;1 + � pN;0 = 0 with � 6= g1:

Thus, the generating function has to be modi�ed [21]. Before doing that, we shall continue

deriving the coeÆcients qN;n, because at the end the general solution depends also on these

quantities. Since the qN;n are multiples of IN ; we shall work as if they were scalar quantities

and, again to keep a simple notation we shall also drop the subindex N , which will not appear in

our expressions unless the number of channels needs to be speci�ed. If we take the combination

qn = s1�
n
1 + s2�

n
2 + :::+ s2N�

n
2N (E.18)

and use the previous conditions, the coeÆcients si can be determined by solving the set of

equations

2NX
i=1

dkisi = Æk;0 k = 0; 1; :::; 2N � 1; (E.19)

where

dki = �ki + g1�
k�1
i + :::+ gk�1�i + gk: (E.20)

The coeÆcients gm are the well known symmetric functions

gm = (�)m
2NX

l1<l2<:::<lm

�l1�l2 :::�lm ; g0 = 1: (E.21)

It is easy to verify that

si =
�2N�1i

2NQ
j 6=i

(�i � �j)

(E.22)

and thus,
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qn =

2NX
i=1

�2N+n�1
i

2NQ
j 6=i

(�i � �j)

IN : (E.23)

To ful�l the MRR, we have to consider a generating function like

F (�) = (I + �1�+ �2�
2 + :::+ �2N�1�

2N�1) Q(�) �
X
m=0

pm�
m (E.24)

with �i are N �N matrices and

pm =

8>><
>>:

mP
k=0

�kqm�k when m � 2N � 1

2N�1P
k=0

�kqm�k when m � 2N

(E.25)

These matrices satisfy the MRR if

�1 = p1 + g1p0 (E.26)

�2 = p2 + g1p1 + g2p0 (E.27)

�2N�1 = p2N�1 + g1p2N�2 + :::+ g2N�1p0 (E.28)

i.e., the polynomials pm in Eq. (C.25) satisfy the MRR when

�k =

kX
l=0

plgk�l; �0 = 1: (E.29)

Replacing this, we have �nally

pN;m =

mX
k=0

kX
l=0

pN;lgk�lqm�k for m < 2N; (E.30)

and

pN;m =

2N�1X
k=0

kX
l=0

pN;lgk�lqm�k for m � 2N: (E.31)

These are precisely the polynomials pN;m we are looking for.
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FIGURES

FIG. 1. Particles moving through a 3-D superlattice of lateral dimensions wx, wy and cell

length lc, feel a lateral con�ning hard wall potential VC(x; y) and a periodic potential VP , at

least as a function of the growing coordinate z.

FIG. 2. Left and right propagating wave functions at two points z1 and z2 of a potential

region.

FIG. 3. 1-D �nite periodic system of square barrier of height Vo and width bo, separated by

valleys of width ao.

FIG. 4. In these �gures the trace TrMsb=2 is plotted together with the transmission coef-

�cients jtnj2 for the periodic system in �gure 3, with Vo = 0:23eV , bo = 10nm, ao = 5nm and

n = 3; 7 in a) and b) respectively. In a) we also have the single/cell transmission coeÆcient jtj2.

It is evident from these �gures that the Kramer condition jTr Moj � 2 determines the allowed

and forbidden energy regions.

FIG. 5. The Bargmann parameters � and � and the transfer matrix trace Tr Mo=2 as

functions of the energy for the periodic system in �gure 3. The energy bands are emphasized

in the energy axis. The phase � is a monotonously increasing function of the energy, with

an allowed energy band for each interval of length �. The parameter �, on the other hand

decreases monotonously. These two parameters de�ne not only the appearance of resonant

states and bands but also the building up of gaps.

FIG. 6. The incoming and outgoing amplitudes and the scattering amplitudes for particles

coming in from the left- and right-hand side.

FIG. 7. The metamorphosis of the transmission coeÆcient Tn as a function of the particle's

energy E and the number of cells n. The band structure is built up as the number of cells n

increases. The formation of bands is accompanied by a resonance splitting process. Notice that

for n of the order of 5 the bandstructure at low energies is reasonably well de�ned.
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FIG. 8. The wave function at any point z in the j + 1 cell (with j = 0; 1; 2; :::; n � 1)

of an arbitrary n-cell system can be determined using the transfer matrix M(z0o; zo) for any

zo � z0o � z1 = zo+ lc, and the relations (44)-(47). Since the wave vector at z is related with the

wave vector at zo by the transfer matrix M(z; zo), we can obtain this matrix either as M(zj ; zo)

followed by M(z; zj) or as M(z0o; zo) followed by M(z; z0o) as depicted in the lower part of this

�gure.

FIG. 9. Various physical quantities plotted as functions of the Bargmann parameters. In a)

The single-cell Landauer conductance G = sinh�2 � and the single-cell transmission probability

T = cosh�2 � are monotonous functions of �. In b) the 9-cell transmission coeÆcient T9 together

with the Chebyshev polynomial p9�1 and the transfer matrix trace TrM=2, are plotted as

functions of the phase � for a �xed �. From these �gures and the behavior of the transmission

coeÆcients in c), it is evident that the responsible of the bandstructure and the resonant behavior

is the phase coherence phenomena.

FIG. 10. The transmission coeÆcients for a periodic system of Æ-barrier potentials, separated

consecutively by a distance ao, plotted as functions of the Bargmann parameter � and the

incoming particle's energy E. The band widths increase with the energy, as corresponds to the

monotonous grow of the phase � with the energy (see Fig. 5).

FIG. 11. The transmission coeÆcients for a periodic system of square-barriers with height Vo

and width bo, separated by potential wells of width ao, are plotted as functions of the Bargmann

parameter � and the incoming particle's energy E. The behavior is qualitatively similar for the

Æ-barrier potential and the arbitrary and generic case plotted in �gure 8.

FIG. 12. The level density in the �rst subband of a �nite and an in�nite (Kronig-Penney)

GaAs (Al0:3Ga0:7As=GaAs)
n superlattice with a = 100nm, b = 30nm and Vo = 0:23eV . The

discrete energy spectrum plotted for n = 9 and n = 50 approaches to the continuous spectrum

of the Kronig-Penney model when n !1.
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FIG. 13. Extended, localized and resonant wave functions for independent electrons moving

along a superlatice like the one shown here, and for the energy values indicated with an arrow in

the transmission coeÆcient. In c) and e) we have the resonant wave functions ��;� obtained by

evaluating Eq. (75) at resonant energies E�;� in the second and third subband, obtained from

Eq. (74). The number of oscillation of the envelope corresponds to the index �. In d) we have

a localized wave function obtained by evaluating Eq. (75) for an energy in the gap. In f) the

wave function is evaluated at an arbitrary energy in the third allowed energy band.

FIG. 14. In this sequence we have the transmission coeÆcients and the modi�ed bandstruc-

ture for a periodic potential containing one impurity with valley-width ao = ziao and zi < 1

which corresponds, qualitatively, to a negative di�erence �Z < 0 between the impurity and the

host core charge numbers (acceptors of electrons). As zi departs from 1, the levels in the gap

move towards higher energies. The levels repulsion e�ect is also apparent in these �gures . For

zi � 0:5: the level in the gap enters into the band and another level abandons the band from

the opposite bandedge.

FIG. 15. The transmission coeÆcients in the left and right columns correspond to superlat-

tices with one and two impurities, respectively. In each column we have zi = 0:9; 1:0 and 1:1. As

expected for zi > 1, corresponding (qualitatively) to a positive di�erence �Z > 0 between the

impurity and the host core charge numbers (donors of electrons), the level in the gap separates

from the lower bandedge. It is also nice to see that increasing the superlattice and simultane-

ously the number of impurities, with the same zi, the single level in the gap splits to form a

miniband in the gap

FIG. 16. The purpose of the three graphs here, is to show the impurity concentration e�ect.

Keeping the number of impurities constant (ni = 3) but increasing the total number of cells

(from n = 20 in a) to n = 36 in c)), i.e. lowering the impurity concentration, the bands in the

gaps remain in the same positions but their width reduce rapidly.
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FIG. 17. All graphs in this �gure correspond to an optical heterostructure with n = 12. In a),

b) and c) the transmission coeÆcients are plotted as functions of the incident �eld intensity jEoj,

for di�erent �eld frequencies !o. Varying this parameter we can �nd di�erent bandstructures.

An interesting result is the wide gap when !o = 0:5. In d) and e) the bandstructure as a function

of the frequency, for �xed incident �eld intensity jEoj, has interesting and distinct features.

FIG. 18. A soluble multichannel superlattice BABAB:::ABAB; where monoatomic layers

A (modeled as 2�D arrays of attractive or repulsive Æ-scatterer centers) alternate with dicker

semiconductor layers B.

FIG. 19. Total and partial transmission coeÆcients in the two channel case (N = 2), for

attractive Æ-scatterer centers (
 < 0). In a) and b) n = 1 and an isolated resonance, above

the channel 1 threshold Eth1 and below Eth2, is produced by coupling between an open and a

bounded evanescent state (in the continuum). The resonance at E = 1:242eV is magni�ed and

plotted in b). The strong suppression in T11 is accompanied by a resonant behavior of T12 that

can be �tted quite well with a Lorenzian function. As the number of cells n grows (see graph c)

for n = 9 the resonance splits o� generating a band of resonances.

FIG. 20. The two channel system and the coupling e�ects on the transmission coeÆcients

Tij above the channel thresholds for di�erent number of cells n. As in the previous �gure,

interesting resonant couplings can be seen. In c), at E = 4:5eV , a complete suppression in

the "elastic" transmission coeÆcient Tii is accompanied by strong resonances in the transition

coeÆcients Tij .

FIG. 21. Three propagating channels and their transmission coeÆcients. In this graph a

small coupling allows to recognize the uncoupled bandstructure for channels 1, 2 and 3. The

channel coupling induces transitions from channel i to channel j 6= i even if the energy lies in

the gap of one of them.
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FIG. 22. Strong coupling of three propagating channels and the e�ects in their transmis-

sion coeÆcients. All the transmission coeÆcients, except the total transmission coeÆcient or

conductance, are strongly modi�ed especially for energies in the third band. Looking carefully

at the energy region between 2 and 2:5eV we can see, for example, that a particle coming in

channel 3 leaves also in channel 3 after having passed through the other two channels.
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