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Abstract

We investigate in this paper the link between the moment problem for sequences (1), the

associated Jacobi matrices and the Pad�e approximants of the associated analytic functions. We

generalize some classical results by providing simple proofs that use functional calculus.
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1. Introduction

Let a0; � � � ; ar�1 ( r � 1, ar�1 6= 0) be real numbers and let T = fTngn�0 be the sequence

de�ned by the following recursive relation of order r

Tn+1 = a0Tn + a1Tn�1 + � � �+ ar�1Tn�r+1; for n � r � 1;(1)

where T0; T1; � � � ; Tr�1 are the given initial values (or conditions). We will refer to such sequences

T = fTngn�0 as sequences (1). The polynomial P (X) = Xr � a0X
r�1 � a1X

r�2 � ::::: � ar�1,

called the characteristic polynomial of (1), together with the initial values are said to de�ne

the sequence T . Note that if Q is any multiple of P , then Q also de�nes T provided that

T0; T1; � � � ; TdegQ�1 are taken as initial conditions. As observed in [3] among all polynomials

de�ning T , there exists a unique polynomial denoted by PT of minimal degree. This later is

called the minimal polynomial of T .

Let  = fngn�0 be a sequence of complex numbers and K a closed subset of the complex

plane. The purpose of the K�moment problem associated with  is to �nd a positive measure

� such that

n =

Z
K

tnd�(t):(2)

Since its introduction by Stieltjes in [14] for K = R
+, the moment is a subject of an extensive

literature. Particularly, Hamburger and Hausdor� had studied it for K = R and K = [0; 1]

respectively. The main idea in computing the measure �, solution of (2) for a given sequence

 = fngn�0 is to extend the linear form de�ned on polynomials by

S(X
n) = n;(3)

to a positive linear form on some Hilbert completion and to use the L2�representation of Hilbert

spaces. The construction of S motivated di�erent approaches to treat the moment problem.

The continued fractions, the positivity of Hankel matrices and the decomposition of positive

polynomials play a crucial role in this treatment [1, 4, 6, 7, 8, 12, 13, 14].

Let H be a separable Hilbert space and let  = fngn�0 be a sequence of real numbers.

The linear moment problem associated with  entails �nding a self-adjoint operator A and a

non-vanishing vector x 2 H satisfying

n =< Anx; x >; for n � 0:(4)

Using the spectral representation of self-adjoint operators, one can easily show that the mo-

ment problems (2) and (4) are equivalent (see [5] for example).

The study of the moment problem for sequences (1) is motivated by the so-called "Truncated

moment problems" treated by R. Curto and L. Fialkow in [6, 7]. It is known that the moment

problem for sequence (1) is equivalent to the truncated moment problem and that a necessary

condition for (2) (or for (4)) to have a solution is that P has only simple roots. The moment

problem (2) for sequences (1) correspond to the case where K is a �nite set (see [3, 9, 10] for

example). We will omit any reference to the set K in this paper.
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We investigate in this paper the case of sequences (1). Section 2 is devoted to Jacobi matrices

associated with moment sequences (1). We show that (4) has solution in �nite dimensional

spaces and that the associated Jacobi matrices are of �nite order. The link with continued

fractions is studied in section 3. Particularly, we prove that these fractions are terminating in

this case. In section 4, we introduce the analytic function associated with a moment sequence

(1). We give its Pad�e approximants and use the analytic functional calculus to provide some

generalizations of results from [8]. We discuss in section 5 some moment problems arising from

continued fractions and we give a new formula of the linear form associated with a terminating

fraction.

2. Jacobi matrices associated with moment problems for sequences (1)

2.1. Jacobi matrices associated with moment problems. Let T = fTngn�0 be a given

sequence of real numbers. De�ne on C [X], the space of all polynomials, the bilinear form

� P;Q�=
X
n;m

�n ��mTn+m

with P =
P
n

�nX
n and Q =

P
m

�mX
m. (We suppose the upper limits in the sums are equal by

completing by some zero coeÆcients if necessary.)

Observe that � P;Q �=< P;HQ > where <;> is the usual Euclidean inner product, H =

[Ti+j ]i;j�0 the Hankel matrix associated with T .

If H � 0 then � P; P �=< P;HP >� 0 for all P 2 C [X] and the bilinear form �;� is an

inner product on C [X]. This de�nes a norm on C [X] when H is positive de�nite. Denote HT

the Hilbert completion of ( C [X]; k : k) and �A the unique extension to HT of the densely de�ned

operator A on C [X] by AXn = Xn+1. If �A is self-adjoint, A is called essentially self-adjoint and

�A answers positively to (4). Otherwise, �A has self-adjoint extensions and (4) is again solved

(see [15]). In the orthonormal basis obtained by Gram-Schmidt process from f1;X;X2; :::g, the

self-adjoint extension A
T

of A, solution of (4) has a semi-in�nite Jacobi matrix of the form,

JT =

0
BBBBBBBBBB@

b0 a0 0 0 : : : :
a0 b1 a1 0 : : : :
0 a1 b2 a2 : : : :
: : : : : : : :
: : : : : ar�2 : :
: : : : ar�2 br�1 : :
: : : : : : : :
: : : : : : : :

1
CCCCCCCCCCA

Hence the Hamburger moment problem and the theory of semi-in�nite Jacobi matrices coin-

cide.
3



2.2. Finite Jacobi matrices. Let A 2 L(H) be a solution of the moment problem (4) asso-

ciated with the sequence T , where H is a given Hilbert space. For x 2 H satisfying (4), set

H0 = Spanfx;Ax; :::; Anx; :::g the invariant subspace generated by x. By the recursive rela-

tion (1) we have < PT (A)x;A
nx >= 0 for every n � 0, particularly kPT (A)xk = 0. Hence

Anx 2 Spanfx;Ax; :::; Ar�1xg for every n � r and H0 is of �nite dimensional. The study of mo-

ment problem for sequences (1) is then reduced to the case of �nite dimensional Hilbert spaces.

Such link has been observed and studied in [9]. More precisely, we have

Proposition 2.1. Let T be a sequence (1). Then, (4) has a solution A 2 L(H) for some Hilbert

space if and only if it has a solution A on some r-dimensional Hilbert space.

It is known that H is positive de�nite if and only if det(Hn) > 0 for all n � 0 where

Hn = [Ti+j]0�i;j�n�1. In the case of sequences (1), we have det(Hn) = 0 whenever n � r + 1.

The process used in [15] is hence obstructed.

We provide in this section an alternative method to avoid this obstruction. We begin by

proving an auxiliary result.

Lemma 2.1. If T = fTngn�0 is a sequence (1) with PT the characteristic polynomial then

� P;Q �= 0 for every Q 2 C [X] if and only if P 2 (PT ), where (PT ) is the ideal of C [X]

generated by PT .

Proof. The reverse implication is a direct consequence of the relation (1).

Suppose that � P;Q�= 0 for any Q 2 C [X], then by writing P = QPT +R and R =
pP
i=0

�iX
i

where �p 6= 0 and p < r, we obtain � R;Xn �=
pP
i=0

�iTn+i = 0 for every n � 0. Hence

Tn+1 =
p�1P
i=0

aiTn�p+i�1 with ai = (� �i
�p
), which implies that R is a characteristic polynomial of

T with degree less than r � 1. Contradiction.

An immediate consequence is the following corollary.

Corollary 2.1. Let P1 = Q1PT +R1; P2 = Q2PT +R2 2 C [X], then

� P1; P2 �=� R1; R2 � :

Set H(T ) = C [X]=(PT ) and � the canonical surjection of C [X] onto C [X]=(PT ). Seek-

ing simplicity, we will write P = �(P ). If Hr is positive de�nite, then the bilinear form

< P;Q >T :=� �(P ); �(Q)� for P;Q 2 C [X], is an inner product on H(T ).

Let A 2 L(H(T )) given by AXj = Xj+1 for j = 1; 2; :::; r � 1. We have

< P;AQ >T=< P;SrQ >T

where Sr = [Ti+j+1]0�i;j�r�1 and in particular,

< An1j1 >= Tn for n = 0; 1; :::; r � 1:
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On the other hand, Ar1 = Xr =
r�1P
j=0

ajX
r�j�1, consequently we have

< Ar1j1 > =
r�1P
j=0

aj < Xr�j�1j1 >

=
r�1P
j=0

ajTr�j�1 = Tr:

By induction we establish that < An1j1 >= Tn, for n � 0.

Thus, we have

Proposition 2.2. Let T = fTngn�0 be a sequence (1) with positive de�nite Hankel matrix Hr

and PT as a characteristic polynomial. Then there exist a (degPT )�dimensional Hilbert space

H(T ) and a self-adjoint operator A on H(T ), which provide a solution of the Stieltjes moment

problem (4). Moreover, if Sr is positive de�nite, then A � 0, that yields a solution of the

Hamburger moment problem.

Let fP0; P1; :::; Pr�1g be the orthonormal basis ofH(T ), obtained from the basis f1;X;X2; :::;Xr�1g

by the Gram-Schmidt process of the form

Pi(X) = Xi + lower order; for i = 0; 1; :::; r � 1:

The polynomial XPi(X) has an expansion in terms of P0; P1; :::; Pi+1. Therefore, we have

< XPi; Pj >=< Pi;XPj >= 0, for j > i+1 and j < i�1. It follows that for suitable sequences,

fang0�n�r�1 and fbng0�n�r�1 (with P�1(X) = 0 and Pr(X) = 0), we have

XPn(X) = anPn+1(X) + bnPn(X) + an�1Pn�1(X); for n = 0; 1; :::; r � 1:

Thus, given T = fTngn�0 a sequence (1), with positive de�nite Hankel matrix Hr, we can

�nd a �nite dimensional Hilbert space H(T ) ( with dim H(T ) = r), an orthonormal basis

fP0; P1; :::; Pr�1g some real numbers b0; b1; :::; br�1 and some positive numbers a0; a1; :::; ar�2,

such that the moment problem (4) is associated to the self-adjoint operator A on H(T ) with

Jacobi matrix

JT =

0
BBBBBBBB@

b0 a0 0 0 : :
a0 b1 a1 0 : :
0 a1 b2 a2 : :
: : : : : :
: : : : : ar�2
: : : : ar�2 br�1
:

1
CCCCCCCCA

Note that the matrix JT determines uniquely the moments, since from the expansion AkP0 =

Xk =
kP

j=0
ckjPj(X), for k � 0, it follows that

mk =< AkP0jP0 >= ck0:
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3. continued fractions associated with moment problems for sequences (1)

Let x =
r�1P
j=0

xjej 2 H
(T ) be an eigenvector of the matrix JT associated with the eigenvalue �.

We obtain the following system of r linear equations.

8>>>>>>>><
>>>>>>>>:

b0x0 + a0x1 = �x0
a0x0 + b1x1 + a1x2 = �x1

:
:
:

ar�3xr�3 + br�2xr�2 + ar�1xr�1 = �xr�2
ar�2xr�2 + br�1xr�1 = �xr�1:

(5)

By induction we derive,

xj = Pj(�)x0; (j = 0; 1; :::; r � 1)(6)

where fPjg0�j�r�1 is the family of polynomials de�ned by P0 = 1, P1(X) =
X � b0
a0

and the

recursive relation

ajPj+1(u) = (u� bj)Pj(u)� aj�1Pj�1(u), (j = 1; :::; r � 2):

To the system of equations (5), we associate the terminating fraction given by

1j

ju� b0
�

a20j

ju� b1
�

a21j

ju� b2
� ::::: �

a2r�2j

ju� br�1
;(7)

and the jth convergent

Aj(u)

Bj(u)
:=

1j

ju� b0
�

a20j

ju� b1
�

a21j

ju� b2
� ::::: �

a2j�2j

ju� bj�1
;(8)

for 1 � j � r. The family fBjg1�j�r�1 of polynomials satis�es

Bj(u) = a0a1:::aj�1Pj(u); for j = 1; 2; :::; r � 1

By setting B0 := 1 and using the recursive relation involving the P 0js, we obtain

Bj+1(u) = (u� bj)Bj(u)� a2jBj�1(u);(9)

for 1 � j � r � 2. The denominator of the terminating fraction (7) is

Br(u) = (u� br�1)Br�1(u)� a2r�2Br�2(u):

The B0
js (resp. A0js) are de�ned by (8) provided to take B0 = 1; B1(u) = u � b0 (resp. A0 =

0; A1(u) =
1
a0
) as initial conditions. They are called the polynomials of the �rst kind (respectively

the second kind).

Replacing xr�1 by the expression (6) in the last line of the system (5), we obtain that Br(�) = 0

for any � in the spectrum of A. Hence Br is the characteristic polynomial of the matrix JT

(see also [8], for example). On the other hand, from (1) easy computations give PT (A) = 0.

As degPT = degBr and they are unital we obtain PT = Br. Thus, we have the following

proposition.
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Proposition 3.1. Under the preceding notations, Br is the characteristic polynomial of the

operator A. Particularly,

� Br has only simple roots.

� A � 0 if and only if Z(PT ) � R
+, where Z(PT ) is the set of zeros of (PT ).

Proposition 3.1 can be regarded as the solution of the Stieltjes moment problem.

4. Analytic function associated with moment problems

4.1. Analytic functional calculus for sequences (1). For a moment sequence  = (n), the

formal series f(z) =
P
n�0

(�1)nnz
n, that is associated canonically to the moment sequence , is

called the Hamburger series in the case of the Hamburger moment problem. It is easy to check

that

f(z) =

Z
d�(t)

1 + tz
;(10)

where � is the measure solution of (2)(see [2], p. 208 for details).

Proposition 4.1. Let  be a moment sequence. Then,  is a sequence (1) if and only if f is

a rational function. More precisely, we have f =
P
Q
, where Q is a polynomial of degree r with

only simple roots.

Proof. Suppose that  is a sequence (1). By [3] or [9], we have � =
r�1P
n=0

�nÆzn . Hence,

f(z) =

Z
d�(t)

1 + tz
=

r�1X
n=0

�n
1 + znz

=
P (z)

Q(z)
;(11)

with Q(z) =
r�1Q
n=0

(1 + znz) and f is a rational function. Conversely, write f = P
Q

and set

Q(z) = 1 + a0z + ::: + ar�1z
r. Using an Euclidean division, one can suppose without loss of

generality that deg(P ) < deg(Q), we get

P (z) =
X
n�0

(�1)nnz
n(1 + a0z + :::+ ar�1z

r):

Thus, we have

(�1)nn + (�1)n�1a0n�1 + (�1)n�2a1n�2 + :::+ (�1)n�rar�1n�r = 0;

for n � r, or equivalently

n = a0n�1 � a1n�2 + :::+ (�1)rar�1n�r:(12)

The desired result is obtained.

Corollary 4.1. Under the notations of Proposition 4.1, we have

1

z
f(

1

z
) =

Ar(�z)

Br(�z)
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Proof. Proposition 4.1 implies that 1
z
f(

1
z
) is rational. By writing

Aj(z)
Bj(z)

=
1P
p=0

(�1)pcjp
zp+1

at in�nity

for 1 � j � r, we have by [8], cjp = p for p � j. Particularly, crp = p for p � r. Therefore,

 and (crp)p�0 are sequences (1), associated with the same initial conditions and with the same

characteristic polynomial, the required assertion is proved.

4.2. Pad�e approximants and analytic functional calculus. Given f(z) =
P
n�0

nz
n a power

serie. We denote by [L=M ] the Pad�e approximant to f given by,

[L=M ](f) =
PL
QM

;

where PL and QM are polynomials of degree at most L and M (respectively), satisfying

f(z)�
PL(z)

QM (z)
= o(zL+M+1):

It is known that Pad�e approximant, if it exists, is unique under the assumption that PL and

QM have no common roots and QM (0) = 1 (For further information, see [2]).

If  is a sequence (1), f is rational and we have f = [r � 1=r](f) := Pr�1
Qr

= [L=M ](f) for

every L � r�1 and M � r. The relation between Pad�e approximants of f and the terminating

fraction associated with  is given by,

Proposition 4.2. Let Br and Ar given by (8). Then, we have

� Br(�z) = zrQr(
1
z
).

� Ar(�z) = zr�1Pr�1(
1
z
).

Proof. By Proposition 3.1 the polynomial Br(z) is associated with  and by corollary 4.1,

(�z)rQr(
�1
z
) also de�nes . As Br(z) and zrQr(

�1
z
) are unital with the same degree, we get

the �rst assumption. The second assertion is derived from

Ar(�z)
Br(�z)

= 1
z
f(

1
z
)

= 1
z

Pr�1(z)
Qr(z)

=
zr�1Pr�1(

1

z
)

zrQr(
1

z
)

:

The following lemma will be used to prove the main result on functional calculus.

Lemma 4.1. Let A be as in (4) and z 2 C such that jzj > kAk, then

< (A� zI)�1x; x >=
�1

z
f(

�1

z
) =

Ar(z)

Br(z)
(13)

Proof.
< (A� zI)�1x; x > = 1

z
< (1

z
A� I)�1x; x >

= �1
z

P
n�0

< Anx; x > (1
z
)n

= �1
z

P
n�0

n(
1
z
)n = 1

z
f(

1
z
)

The second equality is trivial from Proposition 4.2.

Using this lemma we obtain.
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Proposition 4.3. For any entire function f, denote f(A) the operator de�ned by the Riesz

functional calculus. Then

< f(A)x; x >=
X

zj2�(A)

f(zj)
Ar(zj)

Br
0(zj)

;

where �(A) is the spectrum of A.

Proof. For R > kAk, let �R = fz 2 C : jzj = Rg. We have

f(A) =
1

2i�

Z
�R

f(z)(A� zI)�1dz:

Then

< f(A)x; x > = 1
2i�

R
�R

< f(z)(A� zI)�1x; x > dz

= 1
2i�

R
�R

f(z) < (A� zI)�1x; x > dz

= 1
2i�

R
�R

f(z)Ar(z)
Br(z)

dz (by(13))

=
P

zj2Z(Br)=�(A)

f(zj)
Ar(zj)
Br

0(zj)
( by the residue theorem):

Lemma 4.2. Let S be the associated linear form with the linear moment sequence , then for

any entire function f , we have

S(f) =< f(A)x; x >(14)

where A and x are given by (4).

Proof. It is clear that (14) is valid for polynomials, the formula is obtained by density.

For f holomorphic, we denote by Lu(f) the holomorphic function de�ned as follows,

Lu(f)(z) =

�
f(z)�f(u)

z�u
if z 6= u

f 0(u) if z = u

The following proposition uni�es some results of [8].

Proposition 4.4. For any holomorphic function f, we have

S(Lu(fBr)) = f(u)Ar(u)

Proof. As in the proof of proposition 4.3, we have

S(Lu(fBr)) = < (Lu(fBr)(A)x; x >

= 1
2i�

R
�R

f(u)Br(u)�f(z)Br(z)
u�z

Ar(z)
Br(z)

dz

= 1
2i�

R
�R

f(u)Br(u)
u�z

Ar(z)
Br(z)

dz � 1
2i�

R
�R

f(z)
u�z

Ar(z)dz

= f(u)Ar(u) +
f(u)Br(u)

2i�

R
�R

Ar(z)
(u�z)Br(z)

dz

= f(u)Ar(u)� f(u)Br(u)([
Ar(u)
Br(u)

�
P

zj2Z(Br)

Ar(zj)

Br
0(zj)

1
u�zj

] = 0)

= f(u)Ar(u):

We derive the two following corollaries. For f � 1 in proposition 4.4, we have
9



Corollary 4.2. ([8] Theorem 1 (17)) Under the same notations of Proposition 4.4, we have

S(Lu(Br)) = Ar(u):

Combining Proposition 4.3, Lemma 4.2 and the above Corollary, we obtain,

Corollary 4.3. ([8] page 6) For any polynomial P , we have

S(P ) =
X

zj2Z(Br)

S(Lzj (Br))
P (zj)

Br
0(zj)

=
X

zj2Z(Br)

Ar(zj)
P (zj)

Br
0(zj)

:

5. Moment problems associated with limited continued fractions

In this section, we use the preceding section to shed some light on the moment problem arising

from the terminating fraction (7).

Consider the limited Jacobi fraction,

1j

ju� b0
�

a20j

ju� b1
�

a21j

ju� b2
� ::::: �

a2r�2j

ju� br�1
;(15)

where b0; b1; :::; br�1 are reals and a0; a1; :::; ar�2 are non-vanishing real numbers. Let

J =

0
BBBBBB@

b0 a0 0 0 : :
a0 b1 a1 0 : :
0 a1 b2 a2 : :
: : : : : :
: : : : : ar�2
: : : : ar�2 br�1

1
CCCCCCA
;

be the Jacobi matrix associated with (15) and consider the operator A associated with the

matrix J de�ned on a r�dimensional Hilbert space H. For x 2 H a non-vanishing vector, the

sequence Tn(x) =< Anx; x > is clearly a moment sequence (1) de�ned by its r initial conditions

and the characteristic polynomial of the matrix J .

Given T0; :::; Tr�1 some real numbers, does it exist x 2 H such that Tj = Tj(x) for 0 � j � r�1

?

Suppose such x exists and write x =
r�1P
j=0

�jxj, where fxj : j = 0; :::; r� 1g is the orthonormal

basis of eigenvectors of A associated with the eigenvalues fzj : j = 0; :::; r � 1g. Therefore, we

have

< Anx; x >=

r�1X
j=0

�2jz
n
j = Tn:

Complete fTng0�n�r�1 to a sequence (1)  = fngn�0 de�ned by j = Tj for j = 0; 1; :::; r � 1

and the characteristic polynomial P (X) =
r�1Q
j=0

(X � zj). By Theorem 3 of [8], the sequence  is

associated with a positive linear form if and only if the Hankel matrix Hr = [i+j ]0�i;j�r�1 is

positive de�nite.
10



Let Aj(u) and Bj(u) de�ned as in (8). It is known that there exists a linear functional S, in

the ring R [u], which orthogonalizes the Bj's. That is

S(BiBj) = 0; for 0 � i < j � r � 1:

Under the additional assumption

S(B2
n) = a0a1:::an; for 0 � n � r � 1;

S is unique and satis�es the following property.

Theorem 5.1. There exist �0; :::; �r�1 positives such that

S(P ) =
r�1X
j=0

�jP (zj);

for every polynomial P .

In view of Corollary 4.3 we have �j =
Ar(zj)
Br

0(zj)
> 0. Thus

Proposition 5.1. Under the same notations above, we have

S(Xn) =< Anx; x >=

Z
IR

tnd�(t);

with x =
r�1P
j=0

q
Ar(zj)

Br
0(zj)

xj and � =
r�1P
j=0

Ar(zj)

Br
0(zj)

Æzj .

Moreover, Br is the characteristic polynomial of fS(Xn)gn�0.
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