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Abstract

The electronic properties of single-walled chiral carbon nanotube has been studied using the

model based on in�nitely long carbon atoms wrapped along a base helix of single-walled carbon

nanotubes(SWNTs). The problem is solved semiclassically, and current density j, resistivity �,

thermopower �z and electrical power factor P calculated. It is noted that the current density

j displays negative di�erential conductivity, whiles the resistivity � increases with increasing

electrical �eld. � also slowly inceases at low temperatures and then gradually increases with

increasing temperature. The thermopower �z shows interesting behaviour. Very intriguing is

the electrical power factor which shows relatively large values.
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1 Introduction

Carbon nanotubes (CNTs) are newly discovered materials, which have unique electrical and

mechanical properties[1]. Carbon nanotubes are fullerenes with carbon atoms situated regularly

on helical lattice sites[2]. The base helix of the helical lattice is wrapped along the surface of

a cylinder of cross-sectional radius of approximately 10{150 �A. The wrapping angle, also called

the geometric chiral angle (GCA), is usually a few degrees[3]. Exhibiting helical symetry, CNTs

are quasi-one-dimensional chiral systems[4, 5]. Reviews and books of fullerenes can be found in

[6]�[9].

Electronic properties of CNTs, especially the electron transport[10�14], have received a lot of

attention. It is noted that these properties of CNTs are quite di�erent from those of well known

carbonic structures such as a planar monoatomic graphite sheet (graphene). They show negative

di�erential conductivity similar to that of superlattice. They also display metallic conductivity.

In fact, this behaviour can be attributed to its dependence on the cross-sectional radius and

the geometrical chiral angle. In [15, 4], temperature dependent dc and ac eletrical restivity � of

macroscopic mats and single-walled carbon nanotubes (SWNTs) were measured. They showed

qualitatively similar behaviour: at high temperatures, they are metallic and exhibit a cross over

to nonmetallic at low temperatures. The cross over temperature varied from sample to sample

and sensitive to mechanical handling. Similar measurement were made in [16]. Furthermore, in

[17]�[19] electronic and electromagnetic properties of nanotubes were studied extensively. In [19]

the dependence of the current chiral angle (CCA) on the ac eletric �eld amplitude was elucidated

for the electron transport. They noted that at certain amplitudes of the ac electric �eld, the axial

component of the time-varying current vanished and the circumferential component remained.

Another interesting transport property that is worth studying and currently receiving a

lot of attention is the thermoelectrical properties. In [20] L. Grigorian et al have observed

experimentally giant thermopower in carbon nanotubes.They assigned the contribution from

the large thermopower peak to the presence of magnetic impurities within the bundles. This

general phenomenom is known as the "Kondo e�ect". Sumanasekera et al [21] have reported

on the e�ect of gas adsorption and collisions on the thermopower and resistivity of mats of

tangled SWNT. Their results indicated that previously published large positive thermopower

data should not be assigned to intrinsic SWNT behaviour but to transport in oxygen-doped

SWNTs. Further theoretical study by Mensah et al [22] on the di�erential thermopower of a

chiral carbon nanotube showed that the thermopower � of the CNT can be semimetallic, p-type

semiconductor or n-type semiconductor depending on the parameters of the CNT and therefore

proposed the use of CNT as thermoelement.

In this paper, we further probe the results obtained in [22] by analysing the current density

j, resistivity � and the power factor P , and thus con�rming our proposed use of CNT as a

thermoelement.
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This paper is organised as follows: in section 2 we establish the theory and solution of the

problem and in section 3 we discuss the results and draw conclusions.

2 Theory

We proceed as in [17, 19] by considering an in�nitely long chain of carbon atoms wrapped

along a base helix as a model of a SWNT. The chief merit of this model is its analytical

tractability, which readily yields physically interpretable results. Secondly, the model yields

correct qualitative description of various electronic processes which are corroborated by �rst

principle numerical simulations.

The problem is considered in the semiclassical approach by commencing with the Boltzmann

kinetic equation [23],

@f(r; p; t)
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+ v(p)

@f(r; p; t)
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+ eE
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Here f(r; p; t) is the distribution function; fo(p) is the equilibrium distribution function; v(p) is

the electron velocity; E is the constant applied electric �eld; r is the electron position, p is the

electron dynamical momentum; � is the electron relaxation time and e is the electron charge.

The collision integral is taken in the � approximation and further assumed constant. The

exact solution of Eq.(1) presents some diÆculties. We therefore solved it using perturbation

approach with the second term treated as the perturbation. In the linear approximation of rT

and r�, we obtain
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"(p) is the energy of the electron, and � is the chemical potential. Seeking the current density

in the form

j = e
X
p

v(p)f(p); (3)

we make the transformation

p� eEt! p;

and then resolve the currnt along the tubular axis (z-axis) and the base helix respectively,

neglecting the interference between the axial and the helical paths connecting a pair of atoms,

and thus ignoring transverse motion quantization. Using the following transformation,

X
p

!
2
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Z Z
dpsdpz;

the electron current density along the tubular axis and the base helix are obtained as
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where the integrations are carried out over the �rst Brillouin zone. From these two components,

expressions for the axial and circumferential components of the current density emerge as follows:

jz = Z
0

+ S
0

sin �h; jc = S
0

cos �h; (6)

where, ��h is the GCA.

The energy of the electrons, as expressed in [19], is given as

"(p) = "o ��z cos
pzdz
�h

��s cos
psds
�h

; (7)

where "o is the energy of an outer-shell electron in an isolated carbon atom, �z and �s are the

real overlapping integrals for jumps along the respective co-ordinates, pz and ps are the carrier

momentum along the tubular axis and the base helix respectively, �h is the Planck's constant,

dz is the distance between the site n and the site n + N along the tubular axis, and ds is the

distance between the site n and n+ 1 along the base helix.

To calculate the current density for non-degenerate electron gas, we use the Boltzmann

equilibrium distribution function expressed as
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no, is the surface charge density; In(x) is the modi�ed Bessel function of order n, and k is the

Boltzmann's constant.

The components vz and vs of the electron velocity v are calculated from Eq.(7) as
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With the help of Eq.(4)-Eq.(10) and the fact that Es = Ez sin �h and rsT = rzT sin �h, we

obtain for the axial jz and circumferential jc currents after cumbersome calculation, the following

expression
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where � is the electrostatic potential. From Eqs.(11) and (12) the electrical conductivities are

given as
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The di�erential thermoelectric power � is de�ned as the ratio
jr(�

e
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jrT j in an open circuit. Hence

interesting to us, � along the axial and circumferential directions are obtained from Eq.(11) and

Eq.(12) as

�zz =

"
�z(E)

�z(E) + �s(E) sin
2 �h

k

e

�
"o � �

kT
���

z

I0(�
�
z)

I1(��
z)

+ 2���
s

I1(�
�
s)

I0(��
s)

�

+
�s(E) sin

2 �h
�z(E) + �s(E) sin

2 �h

k

e

�
"o � �

kT
���

s

I0(�
�
s)

I1(��
s)

+ 2���
z

I1(�
�
z)

I0(��
z)

�#

(15)

�cz =
k

e

�
"o � �

kT
���

s

I0(�
�
s)

I1(��
s)

+ 2���
z

I1(�
�
z)

I0(��
z)

�
(16)

6



3 Discussion and Conclusion

In this paper we studied the electronic properties of SWCNTs, namely the current j, resistivity

�, thermopower � and electrical power factor P . We do so by solving the Boltzmann's equation

and obtaining analytical expressions for the above mentioned properties. As interesting as these

properties may be, it is necessary to elucidate their behaviour by presenting them graphically.

Figure 1(a) shows the normalized current density j=jo with E� = ed�E=�h for di�erent values

of GCA �h. The current rises to maximum and then falls o�. Such behaviour is what is described

as negative di�erential conductivity. We noted that the bigger the GCA, the higher the peak

value. Figure 1(b) shows the three-dimensional plot of j=jo as a function of E� and �h.

In �gure 2(a) we plotted the resistivity � against temperature T . We observed that � changes

slowly at low temperatures up to 200K and then gradually increases as the temperature rises.

Comparing our results with resistivity of rare-earth compounds which are more favoured for

themoelements, we noted that our results are low[24]. A three-dimensional plot of � against T

and 
� is also presented in �gure 2(c).

For the thermpower �z, we noted that it is highly anisotropic depending on the GCA �h, the

electric �eld E, temperature T and the overlapping integrals for the jumps along the respective

coordinates �z and �s. Figure 3(a) shows the plot of �z against T for varying values of

�s(measured in eV). �s is varied from 0.015eV to 0.020eV for �xed �z = 0:024eV. When

�s = 0:015eV, the curve showed a hyperbolic behaviour. This is expected for semiconducting

tubes which exhibit the behaviour � � 1=T [21]. As �s is increased we noted a peak, and then

the curve falls o�. The peak drops with increasing values of �s. Interestingly, the peaks occur

around 150K to100K and shift towards low temperatures. This behaviour is characteristic of

semimetallic materials. The curves in �gure 3(b) behave like those of �gure 3(a) except that

when �z was increased to 0.027eV all the curves behaved like semimetals. In �gures 3(c) and

3(d), we show three-demensional plots of �z against T and �z; and �z against T and 
� . From

the plots it is obvious that �z decreases strongly with increasing 
� (i.e. the electric �eld). For

further information about the thermopower �z see [22].

Lastly but not the least, we studied the power factor which is de�ned as

P =
�2

�
:

This parameter is paramount in the study of thermodevices, be they generators, thermocouples

or refrigerators, since the thermoelectric �gure of merit Z, is de�ned by the relation,

Z =
P

�
;

where � is the thermal conductivity. � is characterized by electron thermal conductivity and

lattice conductivity, the latter playing more important role in the thermal conducativity. In

most materials, � does not lend itself to change, hence they remain �xed. For this reason P

becomes the determining factor for the enhancement of Z.
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Figure 4(a) shows the plot of P against T for values of 
� equals 1; 2 and 3. The plot

indicates that P has highest peak value for low electric �elds, and the peak drops o� fast as

we increase the electric �elds. Similar peaks were observed in �gure 4(b) for P against T for

di�erent values of �s, i.e. �s ranging from 0.015eV to 0.020eV for a �xed �z = 0:027eV. The

highest peak occurs at �s = 0:015eV and falls o� as �s increases. The P values are quite big

and are measured in W/mK2 as against measurement in other materials which are measured in

�W/mK2. The peaks also occur around150K to100K. Compared withYbAl3 material[25], P is

found to be about 5 times bigger when we take the peak value to be 0.04W/mK2. In �gures

4(c) and 4(d), we present three-dimensional plots of P against T and �z for �s = 0:018eV, and

P against T and 
� . P strongly decreases with increase in electric �eld, implying that optimal

value of P is obtained in low �eld regime.

In conclusion, we have studied the electronic properties of single-walled chiral CNTs and

noted that the current-voltage characteristics show a negative di�erential conductivity. The

material has a low resistivity and very interesting thermoelectric properties. The electrical

power factor P is quite big and hence we propose the use of the material as a thermoelement.

Acknowledgements

This work was done within the framework of the Associateship Scheme of the Abdus Salam

International Centre for Theoretical Physics, Trieste Italy. Financial support from the Swedish

International Development Cooperation Agency is acknowledged.

References

[1] Iijima S. and Ichihashi, 1993 Nature (London) 363 603

[2] Dresselhaus M.S., 1992 Nature (London) 358 195

[3] Rodrigue N.M. 1993 J. Mater. Res. 8, 3233

[4] Lin-Chunng P.J and Rajagopal A.K. 1994 J. Phys. Condens. Matter 6, 3697

[5] Lin-Chunng P.J and Rajagopal A.K. 1994 J. Phys. Rev. B 49, 8454

[6] Eletskii A.V. and Smirnov B.M 1993 Phys. Usp. 36 (3) 202

[7] Dresselhaus M.S., Dresselhaus G. and Eklund P.C. 1996 Science of Fullerenes and Carbon

Nanotubes (Academic, New York)

[8] Harris P.J.S 1999 Carbon Nanotubes and Related Structures, New Materials for the Twenty-

�rst Century (Cambridge University Press)

[9] Ebbeson T.W. 1997 Carbon Nanotubes Preparation and Properties (CRC Press Inc.)

[10] Saito R, Fujita M., Dresselhaus G. and Dresselhaus M.S. 1992 Phys. Rev, B 46 1804

8



[11] Romanov D.A. and Kibis O.V. 1993 Phys. Lett. A 178 335

[12] Lin MF and Shung K.W.K. 1995 Phys. Rev. B 52 8423

[13] Miyamoto Y., Louie S.G. and Cohen M.L. 1996 Phys. Rev. Lett. 76 2121

[14] Bogachek E.N., Jonson M., Shekhter R.I. and Swahn T. 1993 Phys. Rev. B 47 16635

[15] Fischer J.E. et al 1997 Phys. Rev. B 55 R4921

[16] Hone J. et al 1998 Phys. Rev. Lett. 80 1042

[17] Yevtushenko O.M., Slepyan G. Ya, Maksmenko S.A., Lakhtakia A. and Romanov D.A.

1997 Phys. Rev. Lett. 79, 1102

[18] Slepyan G. Ya, Maksimenko S.A., Lakhtakia A., Yevtushenko O. and Gusakov A.V. 1999

Phys. Rev. B 60 17136

[19] Slepyan G. Ya, Maksimenko S. A., Lakhtakia A., Yevtushenko O. M. and Gusakov A. V.

1998 Phys. Rev. B 57 16 9485

[20] Grigorian L. et al 1999 Phys. Rev. B 60 R11309

[21] Sumanasekera G.U., Adu C.K.W., Fang S. and Eklund P.C. 2000 Phys. Rev. Lett. 85, 1096

[22] Mensah S.Y., Allotey F.K.A., Mensah N.G. and Nkrumah G. 2001 J. Phys. Condens. Matter

13 5653

[23] S. Y. Mensah and G. K. Kangah, J. Phys.: Condens. Matter, 4 919 (1992).

[24] Mahan G.D. 1998, Solid State Physics 51 81.

[25] Rowe D.M., Min G. and Kuznestsov V.L. 1998, Philosophical Magazine Letters 77 105

9


