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Abstract

Using the e�ective �eld theory with a probability distribution technique, the magnetic prop-

erties in an in�nite superlattice consisting of two di�erent ferromagnets are studied in a spin-one

Ising model. The dependence of the Curie temperatures are calculated as a function of two slabs

in one period and as a function of the intra- and interlayer exchange interactions. A critical

value of the exchange reduced interaction above which the interface magnetism appears is found.

MIRAMARE { TRIESTE

September 2001

1E-mail: Saber@padova.infm.it
2Permanent address.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25352444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 INTRODUCTION

The magnetic properties of the arti�cially fabricated superlattices that consists of two or more

ferromagnets materials have been widely studied over the years because their physics properties

di�er dramatically from simple solids formed from the same materials. The development of �lm

deposition technique has aroused great interest in the synthesis and study of superlattices in

other materials. In layered ferromagnetic materials, it has been found experimentally that one

can obtain a rich variety of magnetic behaviour depending on the materials, the thickness and

the number of slabs and of the applied �eld [1-5]. A number of theoretical works have been

devoted to the magnetic and phase transition properties of superlattices formed from layers of

di�erent materials [6-14].

In the present paper, we will study the critical properties of an in�nite superlattices made

up of elementary units of two kinds of atoms. In each elementary unit, there are La atomic

layers of magnetic ions of type A and Lb atomic layers of magnetic ions of type B, using the

e�ective �eld theory with the probability distribution technique in its simplest form [15,16].

This technique is believed to give more exact results than those of the standard mean-�eld

approximation. In section 2 we outline the formalism and derived the equation that determine

the transition temperature. Numerical results are discussed in section 3. A brief conclusion is

given in section 4.

2 FORMALISM

Consider an in�nite superlattice consisting of two di�erent ferromagnetic materials A and B. For

simplicity, we restrict our attention to the case of the simple Ising-type structure. The periodic

condition suggest that we only have to consider one unit cell. The situation is shown in Fig. 1.

The exchange coupling between the nearst-neighbor spins in A(B) is denoted by Jaa(Jbb), then

we take Jaa as the unit of energy. Here, we consider the interface to be composed of two layers

(La and La+1). Jab stands for the exchange coupling between the nearst-neighbor spins across

the interface. The number of atomic layers in material A(B) is La(Lb) and the thickness of the

unit cell is L = La + Lb. The spin-one Ising Hamiltonian of the system is given by

H = �
X
n;n0

X
r;r0

Jnn0�
z
nr�

z
n0r0 ; (1)

where �znr denotes the z component of a quantum spin �nr of magnitude �nr = 1 at site (n; r);

(n; n0), are plane indices and (r,r0) are di�erent sites of the planes, and Jnn0 is the strength of the

ferromagnetic exchange interaction which is only plane dependent. The statistical properties of

the system are studied using an e�ective �eld theory that employs the probability distribution

technique, which based on a single-site cluster comprising just a single selected spin, labeled

(n; r), and the neighbouring spins with which it directly interacts. To this end, the Hamiltonian
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is split into two parts, H = Hnr+H
0

; where Hnr is that part of the Hamiltonian containing the

spin (n; r) ; namely

Hnr = �

0
@ X
n
0

; r
0

Jnn0�
z
n
0

r
0

1
A�znr; (2)

The Starting point of the e�ective �eld theory is a set of formal identities of the type

hh(�znr)
pici =

�
Trnr [(�

z
nr)

p exp (��Hnr)]

Trnr [exp (��Hnr)]

�
(3)

where h(�znr)
pic denotes the mean value of (�znr)

p for a given con�guration c of all other spins,

h:::i denotes the average over all spin con�gurations �z
n
0

r
0 ; T rnr means the trace performed over

(�znr)
p only, � = 1=kBT with kB the Boltzmann constant and T the absolute temperature. For

a �xed con�guration of neighbouring spins of the site (n; r) the longitudinal and the transverse

magnetizations and quadrupolar moments of any spin at site (n; r) are given by,

mnrz = hh�znrici = hf1z (A)i (4)

qnrz =
DD

(�znr)
2
E
c

E
= hf2z (A)i (5)

where

f1z (A) =
2 sinh (�A)

1 + 2 cosh (�A)
(6)

f2z (A) =
2 cosh (�A)

1 + 2 cosh (�A)
(7)

with

A =
X
n0

X
r0

Jnn0�
z
n0r0 ; (8)

where the �rst and second sums run over all possible con�gurations of atoms environing or lying

on the (n; r) site, respectively. Each of these con�gurations can be characterized by numbers of

magnetic atoms in the planes n� 1; n; n+ 1. To perform thermal averaging on the right-hand

side of equations (4) and (5) one now follows the general approach described in [15,16]. Thus

with the use of the integral representation method of Dirac Æ�distribution, equations (4) and

(5) can be written in the form

hh�znrici =

Z
d!f1z (!;B)

1

2�

Z
dt exp (i!t)

Y
n0r0



exp

�
�itJn;n0�

z
n0r0
��

(9)

DD
(�znr)

2
E
c

E
=

Z
d!f2z (!;B)

1

2�

Z
dt exp (i!t)

Y
n0r0



exp

�
�itJn;n0�

z
n0r0
��

(10)

In the derivation of the equations (9) and (10), the commonly used approximation has been

made according to which the multi-spin correlation functions are decoupled into products of the

spin averages (the simplest approximation of neglecting the correlations between di�erent sites

has been made). That is

< �zj (�
z
k)

2 : : : �zl >�< �zj >< (�zk)
2 > : : : < �zl > for j 6= k : : : 6= l: (11)

3



Then, as hh�znrici and
DD

(�znr)
2
E
c

E
are independent of r, we introduce the longitudinal magneti-

zation and the longitudinal quadrupolar moment of the n� th layer, on the basis of equations

(4) and (5), with the use of the probability distribution of the spin variables [15,16]

P (�znr) =
1

2
[(qnz �mnz) Æ (�

z
nr + 1) + 2 (1� qnz) Æ (�

z
nr) + (qnz +mnz) Æ (�

z
nr � 1)] (12)

Allowing for the site magnetizations and quadrupolar moments to take di�erent values in each

atomic layer parallel to the surfaces of the superlattice, and labeling them in accordance with

the layer number in which they are situated, the application of Eqs. (4), (9) and (12) yields the

following set of equations for the layer longitudinal magnetizations

mnz = 2�N�2N0

NX
�=0

N��X
�=0

N0X
�1=0

N0��1X
�1=0

N0X
�2=0

N0��2X
�2=0

2�+�1+�2CN
� CN��

�

CN0

�1
CN0��1
�1

CN0

�2
CN0��2
�2

(1� 2qnz)
� (qnz �mnz)

� (qnz +mnz)
N����

(1� 2qn�1;z)
�1 (qn�1;z �mn�1;z)

�1 (qn�1;z +mn�1;z)
N0��1��1

(1� 2qn+1;z)
�2 (qn+1;z �mn+1;z)

�2 (qn+1;z +mn+1;z)
N0��2��2 f1z (yn) (13)

where

yn = [Jn;n (N � �� 2�) + Jn;n�1 (N0 � �1 � 2�1) + Jn;n+1 (N0 � �2 � 2�2)] (14)

N and N0 are the numbers of nearest neighbours in the plane and between adjacent planes

respectively ( N = 4 and N0 = 1 in the case of a simple cubic lattice which is considered here)

and C l
k are the binomial coeÆcients, C l

k = l!
k!(l�k)! : The periodic condition of the superlattice

has to be satis�ed, namely m0z = mLz, mL+1;z = m1z and q0z = qLz, and qL+1;z = q1z: The

equations of the longitudinal the quadrupolar moments are obtained by substituting the function

f1z by f2z in the expression of the layer longitudinal magnetizations. This yields

qnz = mnz [f1z (yn)! f2z (yn)] (15)

In this work we are interested with the calculation of the ordering near the transition Curie

temperature. The usual argument that mnz tends to zero as the temperature approachs its

critical value, allows us to consider only terms linear in mnz because higher order terms tend to

zero faster than mnz on approaching a Curie temperature. Consequently, all terms of the order

higher than linear terms in eqs. (13) that give the expressions of mnz can be neglected. This

leads to the set of simultaneous equations

mnz = An;n�1mn�1;z +An;nmnz +An;n+1mn+1;z (16)

or

Amz =mz (17)
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where mz is a vector of components (m1z;m2z; :::;mnz ; :::;mLz) and the matrix A is symmetric

and tridiagonal with elements

Ai;j = Ai;iÆi;j +Ai;j (Æi;j�1 + Æi;j+1) (18)

The system of eqs. (17) is of the form

Mmz = 0 (19)

where

Mi;j = (Ai;j � 1) Æi;j +Ai;j (Æi;j�1 + Æi;j+1) (20)

The only non zero elements of the matrix M are given by

Mn;n�1 = 2�N�2N0

NX
�=0

N��X
�=0

N0X
�1=0

N0��1X
�1=0

N0X
�2=0

N0��2X
�2=0

�1X
i=0

N0�(�1+�1)X
j=0

(�1)i 2�+�1+�2Æ1;i+j (21)

CN
� C

N��
� CN0

�1
CN0��1
�1

CN0

�2
CN0��2
�2

C�1
i C

N0�(�1+�1)
j (1� tn)

�

(1� tn�1)
�1 (1� tn+1)

�2 tN��
n t

(N0��1)�(i+j)
n�1 tN0��2

n+1 f1z (yn)

Mn;n = 2�N�2N0

NX
�=0

N��X
�=0

N0X
�1=0

N0��1X
�1=0

N0X
�2=0

N0��2X
�2=0

�X
i=0

N�(�+�)X
j=0

(�1)i 2�+�1+�2Æ1;i+j

CN
� CN��

� CN0

�1
CN0��1
�1

CN0

�2
CN0��2
�2

C�
i C

N�(�+�)
j (1� tn)

�

(1� tn�1)
�1 (1� tn+1)

�2 tN���(i+j)
n t

(N0��1)
n�1 tN0��2

n+1 f1z (yn)� 1 (22)

Mn;n+1 = 2�N�2N0

NX
�=0

N��X
�=0

N0X
�1=0

N0��1X
�1=0

N0X
�2=0

N0��2X
�2=0

�2X
i=0

N0�(�2+�2)X
j=0

(�1)i 2�+�1+�2Æ1;i+j

CN
� CN��

� CN0

�1
CN0��1
�1

CN0

�2
CN0��2
�2

C�1
i C

N0�(�2+�2)
j (1� tn)

�

(1� tn�1)
�1 (1� tn+1)

�2 tN��
n t

(N0��1)
n�1 t

N0��2�(i+j)
n+1 f1z (yn) (23)

where the tn are the values of the qnz when mnz = 0 at the critical point which are given by.

tn = 2�N�2N0

NX
�=0

N��X
�=0

N0X
�1=0

N0��1X
�1=0

N0X
�2=0

N0��2X
�2=0

2�+�1+�2CN
� CN��

�

CN0

�1
CN0��1
�1

CN0

�2
CN0��2
�2

(1� 2tn)
� tN��

n (1� tn�1)
�1 t

(N0��1)
n�1

(1� 2tn+1)
�2 tN0��2

n+1 f2z (yn) (24)

All the information about the Curie temperature of the system is contained in eq. (19). Up

to know we did not de�ne the values of the exchange interactions; the terms in matrix (19)

are general ones. In a general case, for arbitrary coupling constants and superlattice thickness

the evaluation of the Curie temperature relies on the numerical solution of the system of linear

equations (19). These equations are ful�lled if and only if

detM = 0 (25)
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This condition can be satis�ed for L di�erent values of the Curie temperature Tc: In this paper,

we take Jaa as the unit of the energy, the length is measured in units of the lattice constant. Let

us begin with the evaluation of the Curie temperature with an example: the Curie temperature

of the spin one Ising model for the simplest possible " bulk case" of a material A (i.e. N = 4;

N0 = 1; Ji;j = Jaa). Then we can reduce det M to the following form

detM =

��������������������

a b b
b a b

b a b
::: ::: ::: ::: ::: :::: ::: ::: ::: ::: ::: :::

b a b
::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: :::

b a b
b a b

b b a

��������������������
(L;L)

(26)

whose value is

detMbulk =
LY

k=1

�
a+ 2b cos

�
2� (k � 1)

L

��
(27)

where the elements in the above determinant are given by

a =Mn;n (Jn;n = Jn;n�1 = Jn;n+1 = Jaa) (28)

b =
1

4
(a+ 1) (29)

and L in the "bulk" case is an arbitrary number. Now we obtain the Curie temperature from

the condition given by

detMbulk = 0 (30)

We apply the obtained formalism to a two component magnetic superlattice consisting of atoms

of type A and B which alternate as AAA...ABBB...B. The periodic condition suggests that we

only have to consider one unit cell which interacts with its nearest neighbours via the interlayer

coupling. Let us consider a simple superlattice of L layers n = 1; 2; :::La consist of atoms of

type A, whereas layers n = La+1; :::L consist of atoms of type B. In this case we can represent

detM as

detM = c

����������������������

a1 1 b1
1 c1 1
::: ::: ::: ::: ::: ::: ::: ::: ::: :::

1 c1 1
1 a1 b1

b2 a2 1
1 c2 1

::: ::: ::: ::: ::: ::: ::: ::: ::: :::
1 c2 1

b2 1 a2

����������������������
(L;L)

(31)

6



where the elements in the determinant are given by

c =

 
1

M1;1

!2 
1

M2;1

!La�2 
1

MLa+1;La+1

!2 
1

MLa+2;La+1

!Lb�2

(32)

a1 =M1;1=M1;2; a1 =MLa+1;La+1=MLa+1;La+2

b1 =M1;1=M1;L; b2 =MLa+Lb�1;La+1=MLa+1;La+2

c1 =M2;2=M2;1; c2 =MLa+2;La+2=MLa+2;La+1

(33)

By solving eq. (31) numerically, we can obtain the critical properties of the superlattice.

3 RESULTS AND DISCUSSION

For the pure Ising model, we obtain the critical value of the temperature kBT
B
c =Jaa = 3:518 from

eq. (30) which is intermediate between the low-temperature series expansion result, T SE
c =Jaa =

3:194 [17], and the mean-�eld theory result, kBT
MFT
c =Jaa = 4 [18] and is the same relsult

reported by Fittipaldi et al [19] for the bulk media.

From eq. (31), we can obtain the Curie temperature of the in�nite superlattice kBTc=Jaa

for a given values of the coupling exchanges Jbb and Jab and a �xed number of layers of the

two components. For the case of Jab = 0, the superlattice reduces to two slabs, so there exists

separeted phase transitions in two slabs. But we are interested in the case of Jab 6= 0. We

study the dependence of phase transion temperature on the interface coupling Jab. We �x

the layer-number of slab A (Lb = 2) and let the layer-number Lb of slab B changes. Such

results are shown in Fig. 2. We plot the Curie temperature of the in�nite superlattice against

Jab=Jaa for a �xed values of Jbb=Jaa, Lb and the layer-number of sab A changes. It is easy to

see from this �gure that there exists a critical value of the reduced interface coupling strength

Jab=Jaa)crit = 1:586 which is independant of the thickness Lb of slab B. As the layer-number La

of slabA increases, the Curie temperature of the superlattice decreases for Jab=Jaa)crit < Jab=Jaa

and is approximatly lenear in good agreement with the result of the spin�1=2 case[13], but

increases for Jab=Jaa)crit > Jab=Jaa: At this critical point, the Curie temperature does not

depend on the layer-number La of slab A and is equal to its bulk Curie temperature.

Fig. 3 corresponds to Jbb=Jaa = 0:75 and Lb = 2. The horizonthal dotted line corresponds

to the case of Jab=Jaa)crit = 1:586, such that kBT
B
c =Jaa = kBTc=Jaa = 3:518 and remains

constant for any La. We see that kBTc(La)=Jaa increases with the increase of Jab=Jaa. For

Jab=Jaa)crit < Jab=Jaa = 2: the Curie temperature of the superlattice is higher than the bulk

Curie temperature of slab A kBT
B
c =Jaa and kBTc(La)=Jaa decreases with the increase of La

to reach an asymptotic value. For Jab=Jaa)crit > Jab=Jaa = 1; the Curie temperature of the

superlattice is smaller than the bulk Curie temperature kBT
B
c =Jaa and kBTc(La)=Jaa increases

with the increase of La to reach asymptoticaly kBT
B
c =Jaa for large value of La.

Fig. 4 shows the dependence of Jab=Jaa)crit on Jbb=Jaa for �xed value of Lb, the critical

coupling exchange Jab=Jaa is independent of the layer-number La of slab A [see Fig. 4]. We
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note that when Jbb=Jaa decreases the value of Jab=Jaa)crit increases and when Jbb=Jaa = 1,

Jab=Jaa)crit = 1 as expected.

In Fig. 5, we show the Curie temperature kBTc=Jaa against Jbb=Jaa for Lb = 2 �xed, Jab =

(Jaa+Jbb)=2 and for di�erent values of La = 3; 4 and 5. For Jbb=Jaa > 1; the Curie temperature

increases with the increase of La and is always larger than the bulk Curie temperature of the

slab A which is kBT
B
c =Jaa = 3:518. For Jbb=Jaa < 1; we have just the opposit situation. Notice

that for small values of Jbb=Jaa, the Curie temperature is insensitive to La. For Jbb=Jaa = 1,

the Curie temperature is independant of La layer-number of the slab A of the two components

superlattice and equal to kBT
B
c =Jaa as expected.

4 CONCLUSION

In conclusion, the properties of the phase transition, a ferromagnetic in�nite superlattices de-

scribed the spin-one Ising model in e�ective �eld theory, have been discussed in this paper.

The dependence of the Curie temperature on the inter- and intra-layer strength coupling of the

simplest case when the superlattice is in�nite has been obtained.
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Figure Captions

Fig. 1. Sketch of a unit cell of the superlattice.

Fig. 2. The Curie temperature kBTc=Jaa versus Jab=Jaa for a �xed values of Lb = 2 and

Jbb=Jaa = 0:75. The number accompanying each curve denotes the value of La.

Fig. 3. The dependence of the Curie temperature kBTc(La)=Jaa on the layer-number La of

the slab A for a �xed values of Lb = 2 and Jbb=Jaa = 0:75. The number accompanying each

curve denotes the value of Jab=Jaa.

Fig. 4. The reduced critical interface exchange interaction Jab=Jaa)crit on the reduced

exchange interaction Jab=Jaa.

Fig. 5. The dependence of the Curie temperature on Jbb=Jaa for �xed value of Lb = 2,

Jab = (Jaa + Jbb)=2 with Jaa = 1 and di�erent values of La = 3, 4 and 5 denoted by numbers.
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