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Abstract

In this paper, we prove that for every cyclic operator on a complex Hilbert space H,

Ba(T ) = S
T�
;

where Ba(T ) is the set of all analytic bounded point evaluations for T and S
T�

is the analytic

residuum of T �. Some consequences of this equality are discussed, along with several examples.

Also, some results due to L. R. Williams are derived by shorter proofs. Furthermore, we show

that two densely similar DW-operators have equal spectra, compression spectra and approxi-

mate point spectra. We will also show that they have equal essential spectra under additional

conditions.
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1. Introduction and main results

In the present paper all Banach spaces are complex. Let X be a Banach space and let L(X )

denote the algebra of all linear bounded operators on X . For an operator T 2 L(X ), let T �

denote its adjoint acting on the dual space X �, �(T ) its spectrum, �(T ) := C n�(T ) its resolvent

set, �p(T ) its point spectrum, �ap(T ) its approximate point spectrum, �(T ) its compression

spectrum, �e(T ) its essential spectrum, �e(T ) := C n�e(T ) its Fredholm set, ker T its kernel and

ranT its range. The analytic residuum S
T
of an operator T 2 L(X ) is the open set of complex

numbers � 2 C for which there exist a non-zero analytic function � : V ! X on some open

neighborhood V of � so that

(T � �)�(�) = 0 for all � 2 V:

For a subset F of C , we let F := fz : z 2 Fg, int(F ), cl(F ) and Fr(F ) denote the conjugate set,

the interior, the closure and the boundary of F , respectively.

Let T be a cyclic linear bounded operator on a Hilbert space H with cyclic vector x that is

the �nite linear combinations of the vectors x; Tx; T 2x; : : : are dense in H. A complex number

� 2 C is said to be a bounded point evaluation for T if there is a constant M > 0 such that

jp(�)j �Mkp(T )xk

for every polynomial p. The set of all bounded point evaluations of T will be denoted by B(T ).

Note that it follows from the Riesz Representation Theorem that � 2 B(T ) if and only if there

is a unique vector k(�) 2 H such that p(�) = hp(T )x; k(�)i for every polynomial p. An open

subset O of C is said to be an analytic set for T if it is contained in B(T ) and if for every

y 2 H, the complex valued function by de�ned on B(T ) by by(�) = hy; k(�)i, is analytic on O.

The largest analytic set for T will be denoted by Ba(T ) and every point of it will be called an

analytic bounded point evaluation for T .

Roughly speaking, the purpose of the present paper is to establish the following results.

Theorem 1.1. Suppose that H is a Hilbert space. For every cyclic operator T 2 L(H), we have

Ba(T ) = S
T�
:

The proof and some consequences of this theorem are the contents of Section 3. The next

theorem generalizes many results namely, theorem 2 of [6] and theorem 2.1 of [19]. We shall

need to introduce some notions from the local spectral theory. Suppose that X is a Banach

space. Let T 2 L(X ); the local resolvent set �
T
(x) of T at a point x 2 X is the union of all open

subsets U � C for which there is an analytic X -valued function � on U such that

(T � �)�(�) = x for every � 2 U:

The complement in C of �
T
(x) is called the local spectrum of T at x and will be denoted by �

T
(x).

The operator T is said to have the single-valued extension property if zero is the unique element
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x of X for which �
T
(x) = ;. For a closed subset F of C , let X

T
(F ) := fx 2 X : �

T
(x) � Fg

be the corresponding analytic spectral subspace; it is a T�hyperinvariant subspace, generally

non-closed in X . The operator T is said to satisfy Dunford's Condition (C) if for every closed

subset F of C , the linear subspace X
T
(F ) is closed. Recall also that the operator T is said

to possess Bishop's property (�) if for every open subset U of C and for every sequence (fn)n

of analytic X�valued functions on U , the convergence (T � �)fn(�) �! 0 in the topology of

uniform convergence on compact subsets of U should always entail the convergence to 0 of the

sequence (fn)n in the same topology. It is known that the Bishop's property (�) implies the

Dunford's condition (C) and it turns out that the single-valued extension property follows from

the Dunford's condition (C). J. G. Stampi [16] and M. Radjabalipour [13] have shown that

hyponormal operators satisfy the Dunford's Condition (C), and Putinar [11] has shown that

hyponormal operators, M�hyponormal operators and more generally subscalar operators have

Bishop's property (�). For thorough presentations of the local spectral theory, we refer to the

monographs [7] and [10].

Theorem 1.2. Suppose that X and Y are Banach spaces. Let T 2 L(X ), S 2 L(Y) and let

X : X ! Y be a bounded linear transformation with dense range such that XT = SX: If S has

Dunford's condition (C), then �(S) � �(T ).

The following result gives a complete description of the Fredholm set of cyclic Hilbert operators

which have the single-valued extension property. We shall require some notations and de�nitions.

Let X be a Banach space. Recall that an operator T 2 L(X ) is said to be semi-Fredholm if

ranT is closed and at least one of the subspaces kerT and kerT � is �nite dimensional. The

class of all semi-Fredholm operators will be denoted by S�(X ). Note that if T 2 S�(X ) then

T � 2 S�(X �). The non-empty compact set

�
lre
(T ) = f� 2 C : T � � 62 S�(X )g

is called the Wolf spectrum of T . Its complement in C , �
s�F

(T ) := C n�
lre
(T ), is called the

semi-Fredholm domain of T . If T 2 L(X ), we set

(T ) := f� 2 �p(T ) \ �(T ) : ran(T � �) is closed and dimker
�
T � �

�
= 1g:

Proposition 1.3. Suppose that H is a Hilbert space. For every cyclic operator T 2 L(H) which

has the single-valued extension property, we have

�e(T ) = �
s�F

(T ) = f� 2 C : ran(T � �) is closedg

= �(T )n�ap(T ) [ �(T ) [ (T ):

Moreover, if the linear subspace, generated by fk(�) : � 2 Ba(T )g, is dense in H then

�e(T ) = �(T )n�ap(T ) [ �(T ):
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Suppose that X and Y are Banach spaces. Recall that two operators T 2 L(X ) and S 2 L(Y)

are said to be densely similar if there exist two bounded linear transformations X : X ! Y and

Y : Y ! X having dense range such that

XT = SX and TY = Y S:

Moreover, if the operators X and Y are also injective then we say that T and S are quasisimilar.

It is well known that the quasisimilarity preserves spectrum and essential spectrum of subnor-

mal operators, hyponormal operators, M�hyponormal operators and operators having Bishop's

property (�) (see [8], [12], [14] and [19]). However, the proofs in the case of cyclic subnormal

operators, hyponormal operators andM�hyponormal operators follows from the fact that those

operators answered positively the L. R. Williams Question A of [18] (see [5], [14] and [19]). On

the other hand, it shown in [5] that if T 2 L(H) is a cyclic operator and possess Bishop's prop-

erty (�) then Ba(T ) = �(T )n�ap(T ) if and only if Ba(T ) \ �p(T ) = ;. However, M. Mbekhta

and E. H. Zerouali proved recently that the answer of L. R. Williams question is positive for

all cyclic Hilbert-operators which have Bishop's property (�). Those results and the preceding

results motivate us to introduce the new so-called DW-operators and show that the spectrum

and some of its parts of DW-operators are preserved under densely similarity.

De�nition 1.4. Suppose that H is a Hilbert space. A cyclic operator T 2 L(H) is said to be a

DW-operator if the following hold.

(a) T satisfy the Dunford's condition (C).

(b) Ba(T ) = �(T )n�ap(T ):

The class of DW-operators on H will be denoted by DW(H).

Note that no one of the conditions (a) and (b) in the de�nition 1.4 implies the other (see

[5]). On the other hand, it is shown in [4] that the condition (b) is not satis�ed for every cyclic

Hilbert operator. Immediate examples of DW-operators are provided by all cyclic subnormal

operators, hyponormal operators, M�hyponormal operators and more generally by all cyclic

Hilbert-operators which have Bishop's property (�). However, we do not know whether DW-

operators have Bishop's property (�).

Proposition 1.5. Suppose that H1 and H2 are Hilbert spaces. If T 2 DW(H1) and S 2

DW(H2) are densely similar then the following hold.

(a) �(T ) = �(S).

(b) �(T ) = �(S).

(c) �ap(T ) = �ap(S).

(d) �e(T ) = �e(S) if and only if (T ) = (S).
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2. Preliminary

In the sequel, we shall need the following elementary lemmas. The proofs of lemma 2.1 and

lemma 2.2 can be found in [3], [8] and [17].

Lemma 2.1. Let x be a cyclic vector of an operator T on a Hilbert space H. The following are

equivalent.

(a) � 2 B(T ).

(b) � 2 �(T ).

(c) ker
�
(T � �)�

�
is one dimensional.

Moreover, if � 2 B(T ) then for every eigenvector u of T � corresponding to the eigenvalue �, we

have u = hx; uik(�).

From lemma 2.1, we note that for every cyclic Hilbert operator T , we have

�
lre
(T ) = f� 2 C : ran(T � �) is not closed g

since for every � 2 C , dim
�
ker(T � � �)

�
� 1.

Lemma 2.2. Let T be a cyclic operator on a Hilbert space H and let O be an open set of C

contained in B(T ). Then O � Ba(T ) if and only if the function � 7�! kk(�)k is bounded on

compact subsets of O.

Lemma 2.3. Suppose that X is a Banach space. The analytic residuum S
T
of an operator

T 2 L(X ) is the set of complex numbers � 2 C for which there exists an analytic function

� : V ! X without zeros on some open neighborhood V of � so that

(T � �)�(�) = 0 for all � 2 V:

Proof. Let � 2 S
T
, then there is an open neighborhood V of � and a non-zero analytic function

� : V ! X on V such that

(T � �)�(�) = 0 for all � 2 V:

Since the zeros of � are isolated, there is an open discW centered at � contained in V, an integer

n � 0 and an analytic function  : W ! X such that �(�) = (� � �)n (�) and  (�) 6= 0 for

every � 2 W. And so, for every � 2 W, we have

0 = (T � �)�(�)

= (T � �)

�
(�� �)n (�)

�
= (�� �)n(T � �) (�):

Therefore, for every � 2 W such that � 6= �, we have

(T � �) (�) = 0:

By continuity we have (T � �) (�) = 0 for every � 2 W. Thus, the proof is complete.
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Remark 2.4. For every operator T 2 L(X ), we have S
T
� int(�p(T )): Moreover, T has the

single-valued extension property if and only if S
T
= ;.

Lemma 2.5. Suppose that X and Y are Banach spaces. Let T 2 L(X ), S 2 L(Y) and let

X : X ! Y be an injective bounded linear transformation such that XT = SX: Then

�p(T ) � �p(S) and ST
� S

S
:

Proof. It is clear that �p(T ) � �p(S). Let V be a non-empty open set of C and let � : V ! X

be a non-zero analytic function on V such that

(T � �)�(�) = 0 for every � 2 V:

For every � 2 C , we have X(T � �) = (S � �)X since XT = SX. And so,

(S � �)X�(�) = 0 for every � 2 V:

On the other hand, X� : V ! Y is a non-zero analytic function on V since X is injective.

Therefore, V � S
S
. Thus, S

T
� S

S
.

We end this Section by quoting, without proof, the following theorem from [2].

Theorem 2.6. Suppose that X is a Banach space. For every T 2 S�(X ), the following are

equivalent.

(a) 0 2 S
T
.

(b) 0 is a limit point of �p(T ):

3. Analytic bounded point evaluations for cyclic operators

We now prove theorem 1.1.

Proof of theorem 1.1. Let � 2 S
T�
; it follows from lemma 2.3 that there exist an open neighbor-

hood V of � and an analytic H�valued function � : V ! H without zeros such that

(T � � �)�(�) = 0 for every � 2 V:

Hence, V � �p(T
�) = B(T ). Therefore, k(�) = �(�)

hx;�(�)i
for every � 2 V: In particular, the

function k : V ! H is continuous. So, the function � 7�! kk(�)k is bounded on compact subsets

of V: By lemma 2.2, V � Ba(T ): Therefore, ST�
� Ba(T ).

Conversely, let O := Ba(T ). First let us see that the function � : � 7�! k(�) is a non-zero

analytic H-valued function on O. To do this, we have to show that for every y 2 H, the function

� 7�! h�(�); yi is di�erentiable on O. Indeed, let �0 be a �xed point of O. For every y 2 H, we
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have

lim
�!�0

h�(�); yi � h�(�0); yi

�� �0
= lim

�!�0

hk(�); yi � hk(�0); yi

�� �0

= lim
�!�0

by(�)� by(�0)
�� �0

=

�
lim
�!�0

by(�)� by(�0)
�� �0

�
= by 0(�0):

On the other hand, it is obvious that

(T � � �)�(�) = 0 for every � 2 O:

Hence, O = Ba(T ) � S
T�
: And the proof is complete.

Remark 3.1. Let T 2 L(H) be a cyclic operator. Since it is shown in the proof of theorem

1.1 that the function � : � 7�! k(�) is analytic on Ba(T ), it follows that the H-valued function

k : � 7�! k(�) is continuous on Ba(T ).

Remark 3.2. Let T 2 L(H) be a cyclic operator. Since the conjugate element of every � 2 B(T )

is a simple eigenvalue of T � with a corresponding eigenvector k(�) (see lemma 2.1), it follows

from [2, theorem 1.9] that

Ba(T ) = f� 2 B(T ) : �
T���

(k(�)) = ;g

= f� 2 B(T ) : �
T�
(k(�)) = ;g:

As immediate consequences of theorem 1.1, we derive the following corollaries.

Corollary 3.3. Let T 2 L(H) be cyclic operator. Then Ba(T ) = ; if and only if T � has the

single-valued extension property. In particular, if T is a cyclic normal operator then Ba(T ) = ;.

Corollary 3.4. Let T 2 L(H) be a cyclic operator and let V be an open set of C such that

V � B(T ). The following are equivalent.

(a) V is an analytic set for T .

(b) The function k : V ! H is continuous.

Proof. Suppose that the function k : V ! H is continuous, then it is clear that the function

� 7�! kk(�)k is bounded on compact sets of V. Hence, by lemma 2.2, V is an analytic set for

T . The converse follows from remark 3.1.

Here, we mention that theorem 1.1 allows us to derive by shorter proofs some results from

[18].

Corollary 3.5. Let T 2 L(H) be a cyclic operator. Then Ba(T ) does not depend on the choice

of the cyclic element for T .
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Proposition 3.6. Suppose that H1 and H2 are Hilbert spaces, T 2 L(H1), and S 2 L(H2). If

T and S are densely similar cyclic operators then

B(T ) = B(S) and Ba(T ) = Ba(S):

Proof. Since T and S are densely similar, there exist two bounded linear transformations X :

H1 !H2 and Y : H2 !H1 having dense range such that

XT = SX and TY = Y S:

Hence, X� and Y � are injective bounded linear transformations and

T �X� = X�S� and Y �T � = S�Y �:

By lemma 2.5, we have

�p(T
�) = �p(S

�) and S
T�

= S
S�
:

And the proof is complete.

Proposition 3.7. For every cyclic operator T 2 L(H), we have

�(T )n�ap(T ) � int(B(T )) \ �
s�F

(T ) � Ba(T ):

Proof. Note that for every � 62 �ap(T ), the operator T � � is injective and has closed range.

Hence, �(T )n�ap(T ) � �
s�F

(T ). Since �(T ) = �(T )[�ap(T ) then �(T )n�ap(T ) = �(T )n�ap(T ).

On the other hand, �(T )n�ap(T ) = int
�
�(T )

�
n�ap(T ) since the boundary of the spectrum of

T is contained in �ap(T ). So, �(T )n�ap(T ) is open subset of C contained in B(T ). Hence,

�(T )n�ap(T ) � int(B(T )). Therefore, �(T )n�ap(T ) � int(B(T )) \ �
s�F

(T ).

If � 2 int(B(T )) \ �
s�F

(T ), then � is a limits point of �p(T
�) and (T � � �) 2 S�(H). Hence,

by theorem 2.6, � 2 S
T�
: Therefore, int(B(T )) \ �

s�F
(T ) � S

T�
. By theorem 1.1, the desired

result holds.

Following the proof of proposition II.7.12 of [8], we have

Proposition 3.8. If T 2 L(H) is a cyclic operator, then every connected component of Ba(T )

is simply connected. In particular, every connected component of S
T�

is simply connected.

Proof. Let  be a closed curve in Ba(T ), we show that the inside of , ins(), is contained in

Ba(T ). It follows from lemma 2.2 that there is a positive constant M such that kk(�)k �M for

every � 2 . And so, for every polynomial p and for every � 2 , we have

jp(�)j �Mkp(T )xk:

By the Maximum Modulus Principal, for every polynomial p, we have

jp(�)j �Mkp(T )xk for every � 2 ins():
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This implies that ins() � B(T ) and sup
�2ins()

kk(�)k � M: It follows from lemma 2.2 that

ins() � Ba(T ): And the proof is complete.

Remark 3.9. If T 2 L(H) is not a cyclic operator, then it is not true that every connected

component of S
T�

is simply connected.

Example 1. Let H be the Hilbert space of all bilateral sequences x := (xn)n2Z such that

kxk2 =
P
n2Z

jxnj
2 <1. Let T be the injective bilateral weighted shift on H given by

Ten =

8<
:

2en+1 if n � 0

1
2en+1 if n < 0:

where (en)n2Z is the standard orthonormal basis of H. It follows from theorem 9 of [15] that

f� 2 C :
1

2
< j�j < 2g � �p(T

�) � f� 2 C :
1

2
� j�j � 2g:

Hence, T has no cyclic elements (see proposition 42 of [15]) and

S
T�
� O := f� 2 C :

1

2
< j�j < 2g:

Conversely, consider the following non-zero analytic H� valued function � de�ned on O by

�(�) :=
X
n2Z

2�jnj�n:

It is clear that (T � � �)�(�) = 0 for every � 2 O. Hence,

O = f� 2 C :
1

2
< j�j < 2g � S

T�
:

Therefore, S
T�

= f� 2 C : 1
2 < j�j < 2g is a connected open set but not a simply connected. In

fact T is hyponormal operator and

S
T�

= S
T�

= �(T )n�ap(T ) = f� 2 C :
1

2
< j�j < 2g (see [15]):

Example 2. Let H = L2
a(G) denote the Bergman space of analytic functions on G := f� 2 C :

1 < j�j < 2g that are square integrables with respect to area measure; it is a Hilbert space. The

Bergman operator S for G is the operator multiplication by z on L2
a(G); i.e., (Sf)(z) = zf(z) for

every f 2 L2
a(G). It is a bounded subnormal operator but not cyclic. We show that S

S�
= G.

It follows from theorem II.8.5 part (a) of [8] that

�p(S
�) � �(S�) = f� 2 C : 1 � j�j � 2g:

Hence, S
S�
� int(�p(S

�)) � G = f� 2 C : 1 < j�j < 2g: On the other hand, it follows from

theorem II.8.5 part (c) of [8] that G � �p(S
�): By theorem 2.6 and theorem II.8.5 part (c) of

[8], we deduce that G � S
S�
: Thus, S

S�
= G is a connected open set but not simply connected.
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4. Densely similarity of DW-operators

In this Section, we begin by proving theorem 1.2.

Proof of theorem 1.2. We will �rst prove that �
S
(Xx) � �

T
(x) for every x 2 X . Let x 2 X . If

Xx = 0, then �
S
(Xx) = ; � �

T
(x). Thus, we may suppose that Xx 6= 0: Let �0 2 �

T
(x). So,

there is an open neighborhood V of �0 and a non-zero analytic X -valued function � : V ! X

such that

(T � �)�(�) = x for every � 2 V:

Since X(T � �) = (S � �)X for every � 2 C , it follows that

(S � �)X�(�) = Xx for every � 2 V:

It is clear that the analytic Y-valued function X� : V ! Y is without zeros since Xx 6= 0.

Hence, V � �
S
(Xx); thus, �

S
(Xx) � �

T
(x) for every x 2 X . And so, for every x 2 X , we have

Xx 2 Y
S

�
�(T )

�
. Since X has dense range and S has Dunford's condition (C), it follows that

Y
S

�
�(T )

�
= Y. Therefore, �(S) =

S
y2Y

�
S
(y) � �(T ).

Corollary 4.1. Suppose that X and Y are Banach spaces. Let T 2 L(X ) and S 2 L(Y) are

densely similar. If T and S have Dunford's condition (C), then �(S) = �(T ).

Remark 4.2. In theorem 1.2, the inclusion �(S) � �(T ) can be strict. Indeed, J. Agler, E.

Franks and D. A. Herrero [1] gave an example of an operator T which is quasisimilar with

the unweighted unilateral shift such that �(T ) does not coincide with the unit disc. Hence, the

Dunford's condition (C) or the Bishop's property (�) is not preserved under quasisimilarity.

Proof of proposition 1.3. We have dim
�
ker(T � �)�

�
� 1 for every � 2 C since T is cyclic

operator. On the other hand, for every � 2 �(T )n�ap(T ); ran(T ��) is closed and dim
�
ker(T �

�)
�
= 0. Hence, �(T )n�ap(T ) � �e(T ). And so,

�(T )n�ap(T ) [ �(T ) [ (T ) � �e(T ) � �s�F (T ) � f� 2 C : ran(T � �) is closedg:

Conversely, let � 62 �(T )n�ap(T )[�(T ) such that ran(T ��) is closed. If � 62 �(T ), then T �� is

surjective. And so, it follows from proposition 1.2.10 of [10] that T � � is invertible since T has

the single-valued extension property, contradiction with the assumption, and hence � 2 �(T ).

On the other hand, by corollary 2.7 of [2], we have dimker
�
T � �

�
� 1. Since � 2 �ap(T ) and

ran(T � �) is closed, � 2 �p(T ). Hence, dimker
�
T � �

�
= 1. Therefore, � 2 (T ). Thus,

�e(T ) = �(T )n�ap(T ) [ �(T ) [ (T ):

Now, suppose that the linear subspace, generated by fk(�) : � 2 Ba(T )g, is dense in H and let

� 2 �(T ) such that there is y 2 H for which Ty = �y; we show that y = 0. For every � 2 Ba(T ),
10



we have,

�by(�) = hTy; k(�)i

= hy; T �k(�)i

= �by(�):
Hence, the analytic function by is identically zero on Ba(T ); and so, y = 0. Therefore, (T ) = ;;

thus, the proof is complete.

Corollary 4.3. Suppose that T is a cyclic operator on a Hilbert space H. If T has the single-

valued extension property and Ba(T ) = �(T )n�ap(T ), then all points of (T ) are isolated and

(T ) � Fr
�
Ba(T ) [ �(T )

�
.

Proof. By theorem 2.6, every point of (T ) is not a limit point of �p(T ). In particular, all points

of (T ) are isolated. Note that,

(T ) � Fr
�
Ba(T ) [ �(T )

�
() (T ) � cl

�
Ba(T ) [ �(T )

�
;

since

�
Ba(T ) [ �(T )

�
\ (T ) = ;: Suppose that,

(T ) 6� cl
�
Ba(T ) [ �(T )

�
:

It follows that,

�e(T ) \

�
C ncl

�
Ba(T ) [ �(T )

��
= (T ) \

�
C ncl

�
Ba(T ) [ �(T )

��
is a non-empty open subset of C contained in �p(T ). By theorem 2.6, this is impossible since T

has the single-valued extension property. And the proof is complete.

Proof of proposition 1.5. The properties (a) and (b) follow respectively from theorem 1.2 and

proposition 3.6. It follows from proposition 3.6 and de�nition 1.4 that

�(T )n�ap(T ) = �(S)n�ap(S):

Hence,

�(T )n�ap(T ) = �(S)n�ap(S):

And so, �ap(T ) = �ap(S). And the part (c) is proved.

The last part follows from proposition 1.3 and the properties (a), (b) and (c).

Remark 4.4. (a) Suppose that X and Y are Banach spaces. Note that if T 2 L(X ) and

S 2 L(Y) are densely similar and possess Bishop's property (�) but not necessarily cyclic, then

the following hold

(a) �(T ) = �(S).

(b) �(T ) = �(S).

(c) �e(T ) = �e(S).
11



But T and S can have unequal approximate point spectra.

(b) Following the �rst part of the proof of theorem 1.1, we note that for every operator T not

necessarily cyclic on a Hilbert space H, we have �(T )n�ap(T ) � S
T�
. This inclusion fails, in

general, to be equality even for subnormal operator.

Example. Let (en)n�0 be an orthonormal basis of a separable Hilbert space H. Let

Uen = en+1 8n � 0;

be the unweighted unilateral shift on H. For every integer n � 0, denote by Sn the unilateral

weighted shift on H given by

Snek =

8<
:

1
n+1e1 if k = 0

ek+1 if k > 0

Denote by T = U � U � U � ::: 2 L( bH) and S = S0 � S1 � S2 � ::: 2 L( bH) where

bH =

+1X
k=0

�Hk

is the orthogonal direct sum of the Hilbert spaces (Hk)k�0 with Hk = H for each integer k � 0.

It is clear that T and S are subnormal operators since U and every Sn are subnormal unilateral

weighted shifts on H. On the other hand, each Sn is similar to U (see theorem 2 [15]); it follows

then from theorem 2.5 of [9] that T and S are quasisimilar subnormal operators. We claim that

the following hold.

(a) �ap(T ) 6= �ap(S). Hence, quasisimilarity is s weaker relation than the similarity.

(b) �(T )n�ap(T )$ ST�
or �(S)n�ap(S)$ SS�

. Hence, T and S are not cyclic operators.

Indeed,

(a) For every k � 0, let

bek = (0; 0; :::; e0|{z}
k+1th position

; 0; :::):

We have, kS bekk = 1
k+1 for every k � 0. Hence, 0 2 �ap(S). On the other hand, 0 62 �ap(T ) since

T is an isometry. Thus, part (a) is proved.

(b) Suppose that

�(T )n�ap(T ) = S
T�

and �(S)n�ap(S) = S
S�
:

It follows from lemma 2.5 that

�(T )n�ap(T ) = �(S)n�ap(S):

As before, we have �ap(T ) = �ap(S), contradiction with part (a).

Remark 4.5. We quoted the above example from [6]. In fact one can show that

S
T�

= S
S�

= f� 2 C : j�j < 1g:
12



Hence, it is clear that �(S)n�ap(S) $ S
S�

since 0 2 �ap(S). And so, the cyclicity of subnormal

operators or hyponormal operators R is a necessary condition in [5, theorem 2.1] and in [17,

theorem 1.1] in order to have

S
R�

= �(R)n�ap(R):

We end this paper by two interesting problems.

Problem 1. Does every DW-operator posses Bishop's property (�)?

Problem 2. Does two densely similar DW-operators have equal essential spectra?
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