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Abstract

An ADM mass formula is derived for a wide class of black solutions
with certain spherical symmetry. By applying this formula, we calculate
the ADM masses for recently discovered black strings and p-branes in di-
verse dimensions. By this, the Bogolmol’nyi equation can be shown to hold
explicitly. A useful observation is made for non-extremal black p-branes
that only for p = 0, i.e. for a black hole, can its ADM mass be read directly
from the asymptotic behaviour of the metric component g00.
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1. Introduction

Black and extremal string and p-brane solutions have been found recently by a num-

ber of authors [1,2,3,4]. As the metric gMN of a black configuration can be written as

gMN = ηMN + hMN , with ηMN the flat Minkowski metric and hMN not necessarily small

everywhere, the total energy density has been given in [1], whose explicit form for extremal

black strings has also been given. The explicit form of the total energy density for extremal

black p-branes was given later, in [4], where p = 1, i.e. string as a special case. Then the

ADM mass for an extremal black p-brane follows the integration of the corresponding ex-

plicit total energy density over the (D − p − 1)-dimensional transverse space. As is well

known, the usual black solution with certain spherical symmetry is most conveniently cast

in terms of some spherical coordinates. Black strings and p-branes fall into this category,

where the formula given in [1] for the total energy density cannot be simply used. We

will use the standard definition of the gravitational energy-momentum pseudo-tensor to

derive the ADM mass in the next section. In this short note, we derive an ADM mass

formula for a class of black solutions with some spherical symmetry, then calculate the

ADM masses explicitly for the recently discovered black strings and p-branes. Finally, we

use the calculated ADM mass to show that the Bogolmol’nyi equation is satisfied for each

of the discovered black strings and p-branes, which provides a way to justify the stability

of the corresponding solutions. An observation is made of when the ADM mass of a black

configuration can be read directly from the asymptotic behaviour of the g00 component of

the metric.

2. ADM mass formula

In general relativity, the local energy density of the gravitational field cannot be

defined uniquely, even in the weak-field limit. We will adopt the standard definition of

the gravitational energy-momentum pseudo-tensor to find the ADM mass for a black hole,

the ADM mass per unit length for a black string, and in general the ADM mass per unit

volume for a p-brane, in what follows. Let us write gMN = g
(0)
MN +hMN , where g

(0)
MN is the

flat limit of the corresponding space-time metric, for example, it could be Minkowski. In
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D > p+3, hMN is asymptotically zero but not necessarily small everywhere. In D = p+3,

hMN is asymptotically logarithmically divergent. Following the discussion for p = 1, i.e.

string in [1], we pretend to take the above definition for those cases, too. To first order in

hMN , the Einstein equation looks like

R
(1)
MN − 1

2
g
(0)
MNR(1) = κ2ΘMN . (2.1)

One can take this as the definition of the “ total” energy-momentum tensor, to which the

ADM mass per unit volume is defined as

Md =
∫

dD−dyΘ00, (2.2)

for a black (d− 1)-dimensional extended object. As g
(0)
MN = ηMN , i.e. the flat Minkowski,

the general R
(1)
MN has been given in [1] as

R
(1)
MN =

1
2

(
∂2hP

M

∂xP ∂xN
+

∂2hP
N

∂xP ∂xM
− ∂2hP

P

∂xM∂xN
− ∂2hMN

∂xP ∂xP

)
, (2.3)

where the indices are raised and lowered using the flat Minkowski metric. Using the above

expression for R
(1)
MN , it is easy to calculate the total energy density for the following metric

ds2 = e2A(r)ηµνdxµdxν + e2B(r)δmndymdyn, (2.4)

as

Θµν =
1

2κ2
ηµν

[
(d− 1)

∂2e2A

∂y2
+ (D − d− 1)

∂2e2B

∂y2

]
, (2.5)

where D is the space-time dimension; d − 1 refers to the spatial dimension of the black

extended object; µ, ν = 0, 1, · · · , d − 1; m, n = d, d + 1, · · · , D − 1, and r =
√

δmnymyn.

Formula (2.5) has been used to calculate the ADM mass per unit volume for elementary or

solitonic (extremal black) p-branes in diverse dimensions in [4], for which the string case

(p = 1) has been given before in [1]. We would like to stress that eq. (2.3) is not suitable

to be used to calculate the total energy density for a metric such as

ds2 = −A(r)dt2 + B(r)dr2 + r2C(r)dΩ2
D−d−1 + D(r)δijdxidxj , (2.6)
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which is just the kind to describe a black (d − 1)-dimensional extended object with a

spherical symmetry SO(D − d), and where r > 0, i runs from 1 to d − 1. The dΩ2
D−d−1

is the line element on a unit (D − d − 1)-sphere. It is the purpose of this paper to find

the total energy density for the metric (2.6) by using eq. (2.1). Now g
(0)
MN is: g

(0)
00 =

−g
(0)
rr = −g

(0)
ii = −1 and the remaining metric components are just r2 times those of the

unit (D−d−1)-sphere. After a rather tedious calculation, we obtain a very simple formula

for Θ00:

Θ00 =− 1
2κ2

1
rd̃+1

∂r

[
(d− 1)rd̃+1∂rD(r) + (d̃ + 1)rd̃+1∂rC(r)

− (d̃ + 1)rd̃
(
B(r)− C(r)

)]
,

(2.7)

whose extremal limit goes back to (2.5) as D = A → e2A, B = C → e2B, and where

d̃ = D − d− 2. By using eq. (2.2), the corresponding ADM mass per unit volume is

Md = −Ωd̃+1

2κ2

[
(d̃+1)rd̃+1∂rC(r)+(d−1)rd̃+1∂rD(r)−(d̃+1)rd̃

(
B(r)−C(r)

)]
r→∞

. (2.8)

3. The ADM mass per unit volume for black strings and p-branes

We would like to calculate the ADM mass per unit volume for the discovered black

strings and p-branes in [2,4], by using the formula developed in the last section. Before

jumping to a calculation of those ADM masses, we wish to give a brief review of those

black solutions. As discussed in detail in [2,4], a (D− d− 3)-brane solution with magnetic

charge 1√
2κ

∫
Fd+1 can be found from the part of the bosonic sector of the D-dimensional

supergravity action, which, in terms of canonical variable, is

ID =
1

2κ2

∫
dDx

√−g

[
R − 1

2
(∂φ)2 − e−α(d)φ 1

(d + 1)!
F 2

d+1

]
, (3.1)

where

α2(d) = 4− 2dd̃

d + d̃
, (3.2)

with d̃ = D − d− 2. It is found that finding a (D − d− 3)-brane solution from the above

action is equivalent to finding a black-hole solution from the following action

Id+3 =
∫

dd+3x̂
√
−ĝ

[
R̂ − 1

2
(∇̂ρ)2 − 1

2
(∇̂σ)2 − 1

2(d + 1)!
eβρF̂ 2

d+1

]
, (3.3)
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through the following field redefinitions

βW = − d(d̃− 1)
(D − 2)(d + 1)

ρ +

√
d̃− 1

2(D − 2)(d + 1)
α(d)σ,

βA =
d

D − 2
ρ−

√
d + 1

2(D − 2)(d̃ + 1)
α(d)σ,

βφ = −α(d)ρ− 2d√
2(D − 2)

d̃− 1
d + 1

σ.

(3.4)

The above β is,

β = −
√

2(d + 2)
d + 1

, (3.5)

and W and A are defined through

ds2 = e2W dŝ2 + e2Adxidxi, (3.6)

where i runs from 1 to D− d− 3, the spatial dimension of the extended object, and dŝ2 is

the rescaled metric of the remaining dimension, which is the one used in the action (3.3).

A, W and dŝ2 are independent of xi in order to have D − d − 3 dimensional translation

and rotation symmetries. The charged static black-hole solutions with spherical symmetry

SO(d + 2) to the equations of motion of (3.3) are asymptotically flat and have a regular

horizon. They are

F = Qεd+1,

dŝ2 = −
[
1−

(
r+

r

)d][
1−

(
r−
r

)d]1−γd

dt2

+
[
1−

(
r+

r

)d]−1[
1−

(
r−
r

)d]γ−1

dr2

+ r2

[
1−

(
r−
r

)d]γ

dΩ2
d+1,

eβρ =
[
1−

(
r−
r

)d]γd

,

σ = 0,

(3.7)

where the exponent is

γ =
d + 2

d(d + 1)
. (3.8)
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Q is the charge of the black hole, and the εn is the volume element of the unit n-sphere.

This is a two-parameter family of solutions labelled by r+ and r−. These two parameters

are algebraically related to the charge and mass of the black hole. The charge Q is given

by

Q = d(r+r−)d/2, (3.9)

and the mass is proportional to

M = − rd−
d + 1

+ rd
+, (3.10)

with a convention-dependent proportionality constant. As discussed in [2], if r− = 0, then

F = 0, ρ = 0 and the above metric reduces to the (d + 3)-dimensional Schwarzschild black

hole. At r = r+, the time-like Killing field becomes null, and there is an event horizon and

the curvature is finite there. Since γ > 0 for d ≥ 1, at r = r−, the area of the sphere goes

to zero and there is a curvature singularity. Thus these solutions describe black holes only

as r+ > r−.

By using (3.4), (3.6) and (3.7), one obtains black (D− d− 3)-brane solutions of (3.1):

F = Qεd+1,

ds2 = −
[
1−

(
r+

r

)d][
1−

(
r−
r

)d]γx−1

dt2

+
[
1−

(
r+

r

)d]−1[
1−

(
r−
r

)d]γΩ−1

dr2

+ r2

[
1−

(
r−
r

)d]γΩ

dΩ2
d+1

+
[
1−

(
r−
r

)d]γx

dxidxi,

e−2φ =
[
1−

(
r−
r

)d]γφ

,

(3.11)

where
γx =

d

D − 2
,

γΩ =
α2(d)

2d
,

γφ = α(d).

(3.12)
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The metric ds2 in (3.11) fits the general expression (2.6), but r > r− rather than r > 0.

In order to use the ADM mass formula developed in the last section, we must do the

replacement rd → rd + rd
− in (3.11). The resulting metric ds2 looks as

ds2 =−
[
1 +

rd
+

rd − (rd
+ − rd−)

]−1[
1 +

(
r−
r

)d] d̃
D−2

dt2

+
[
1 +

(
r−
r

)d] d̃
D−2

[1 + rd
+

rd−(rd
+−rd

−)

1 +
( r−

r

)d
dr2 + r2dΩ2

d+1

]

+
[
1 +

(
r−
r

)d]− d
D−2

dxidxi.

(3.13)

Reading, from the above metric, the B(r), C(r) and D(r) in (2.8), we have the ADM mass

per unit volume for the black (D − d− 3)-brane

Md̃ =
Ωd+1

2κ2

[
(d + 1)rd

+ − rd
−

]
, (3.14)

where Ωn is the volume of the unit n-sphere.

4. Discussion

From the brief review at the beginning of the last section, we know that a black

(D − d − 3)-brane solution from the action (3.1) is essentially a black-hole solution from

the effective action (3.3). Is there any relation between their ADM masses? Examining

eqs. (3.10) and (3.14), we find that they are proportional to each other, so we expect that

they are actually the same, since eq. (3.10) is determined only up to an overall factor. It is

well known that an ADM mass for a black hole can be read directly from the asymptotic

behaviour of the 00-component of the metric. One may ask: does this rule apply to black

(non-extremal) p-branes with p > 0? The answer is simply no. One can check that only

for d̃ = 1, i.e. a black hole, the ADM mass from (3.14) agrees with what you read from

(3.13). Therefore, finding a black extended object through a black hole provides also a

simple way to determine its ADM mass per unit volume.

We have established a Bogolmol’nyi bound for an extremal black, so-called elementary

(electric-like) or solitonic (magnetic-like) (d− 1)-brane in [3,4], which is

κMd ≥ 1√
2
|ed|, (4.1)
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for an elementary one, or

κMd̃ ≥
1√
2
|gd̃|, (4.2)

for a solitonic one, where

ed =
1√
2κ

∫
e−α(d)?Fd+1, (4.3)

and

gd̃ =
1√
2κ

∫
Fd+1. (4.4)

We will show that the Bogolmol’nyi bound (4.2) does hold for the black strings and p-

branes discussed in the last section. The magnetic charge for a black (d̃− 1)-brane, from

(3.9) and (3.11), is

gd̃ =
Ωd+1√

2κ
d(r+r−)d/2. (4.5)

By noticing that r+ ≥ r− and (d + 1)rd
+ − rd

− ≥ drd
+ ≥ d(r+r−)d/2, we finish our proof.

In the previous sections, we have used only the canonical metric, which is the one used

in the usual Einstein-Hilbert action, and probably the most suitable to be used to define the

ADM mass. However, some authors may take, for example, the string σ-model metric to

define the ADM mass. This actually happens in the literature, for example, Giddings and

Strominger used this kind of ADM mass in discussing exact 5-branes in critical superstring

theory [5]. In what follows, an ADM mass per unit (d̃ − 1)-brane volume calculated in

(n− 1)-brane metric is given. The relation between the (n− 1)-brane σ-model metric and

the canonical metric is

gMN (n) = e
α(n)φ

n gMN (canonical), (4.6)

where φ is the dilaton field and α(n) is given by (3.2) upon taking d = n. For example,

taking n = 2, we have α(2) = 1 from (3.2), eq. (4.6) gives just the familiar relation between

the string σ-model metric and the canonical metric. By using this metric, repeating what

we have done in the last two sections, we find

Md̃ =
Ωd+1

2κ2

[
d(D − 2)α(d)α(n)

2n
rd
− + (d + 1)rd

+ − rd
−

]
. (4.7)

Taking n = 2 and D = 10 in the above, we have the ADM mass for a black 5-brane:

M6 = 3Ω3
2κ2 [r2

+ + r2
−], which is the one used by Giddings and Strominger in [5].
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