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Abstract

It is shown in [1] that the Question A of L. R. Williams Dynamic systems and Applica-

tions 3(1994) 103-112 has a negative answer for arbitrary cyclic operators. In this paper, we

prove that the answer to this question is aÆrmative in the case of cyclic hyponormal operators.

Furthermore, we discuss the fat local spectra property for cyclic hyponormal operators.
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1. introduction

Throughout this paper, L(H) will denote the algebra of all linear bounded operators on a

complex separable Hilbert space H. For an operator T 2 L(H), let T � denote its adjoint,

�(T ) its spectrum, �p(T ) its point spectrum, �ap(T ) its approximate point spectrum, �(T ) its

compression spectrum, �e(T ) its essential spectrum, kerT its kernel, ranT its range, r(T ) its

spectral radius,m(T ) = inffkTxk : kxk = 1g its lower bound and let r1(T ) denote sup
n�1

[m(T n)]
1
n

which equals lim
n!+1

[m(T n)]
1
n . For a subset M of H, let

W
M denote the closed linear subspace

generated byM and letM? denote its orthogonal space in H. For any subset Y of a topological

space X we shall denote cl(Y ) its closure in X and for a complex number � 2 C we shall denote

� its conjugate element.

Let T 2 L(H) be a cyclic operator on H with cyclic vector x 2 H i.e., H =
WfT nx : n � 0g.

A complex number � 2 C is said to be a bounded point evaluation of T if there is a constant

M > 0 such that for every complex polynomial p,

jp(�)j �Mkp(T )xk:
The set of all bounded point evaluations of T will be denoted by B(T ). Note that it follows from

Riesz Representation Theorem that � 2 B(T ) if and only if there is a unique vector denoted

k(�) 2 H such that p(�) = hp(T )x ; k(�)i for every complex polynomial p. An open subset O

of C is said to be an analytic set for T if it is contained in B(T ) such that for every y 2 H, the

complex function by de�ned on B(T ) by by(�) = hy ; k(�)i, is analytic on O; equivalently, if the

function � 7�! kk(�)k is bounded on compact subsets of O (see [14, Lemma 1.2]). The largest

analytic set for T will be denoted by Ba(T ) and its points will be called analytic bounded point

evaluations for T .

In the following results, T will denote a cyclic operator in L(H). The proofs can be found in

[3], [13] and [14].

Proposition 1.1. The following are equivalent.

(i) � 2 B(T ).

(ii) � 2 �(T ).

(iii) ker
�
(T � �)�

�
is one dimensional.

Proposition 1.2. �(T )n�ap(T ) � Ba(T ).

An operator T 2 L(H) is said to be subnormal if it has a normal extension and it is said

to be hyponormal if kT �xk � kTxk for every x 2 H. Note that every subnormal operator is

hyponormal. Using the analytic function theory, Tavan Trent proved in [13] that

Ba(T ) = �(T )n�ap(T )
for every cyclic subnormal operator T 2 L(H); L. R. Williams asked ([14] Question A ) if

this equality remains valid for arbitrary cyclic operators. However, it is shown in [1] that the
2



containment in Proposition 1.2 fails to be equality for arbitrary cyclic operators. In the present

paper, we shall prove that the answer to Question A of L. R. Williams is aÆrmative for arbitrary

cyclic hyponormal operators using a di�erent proof of Tavan Trent; our proof is inspired by the

papers of A. Bourhim, C. E. Chidume and E. H. Zerouali [1] and T. L. Miller and V. G. Miller

[6].

2. statement and proofs of main results

Before outlining the statement of our main results, let us introduce some de�nitions. For

an open subset U of C , let H(U;H) denote the space of analytic H�valued functions on U .

Equipped with the topology of uniform convergence on compact subsets of U , the space H(U;H)

is a Fr�echet space. Note that every operator T 2 L(H) induces a continuous mapping TU on

H(U;H) de�ned by TUf(�) = (T � �)f(�) for f 2 H(U;H) and � 2 U . An operator T 2 L(H)

is said to have Bishop's property (�) provided that for every open subset U of C the mapping

TU is injective and has a closed range; equivalently, if for every open subset U of C and for

every sequence (fn)n of H(U;H), the convergence (T ��)fn(�) �! 0 in H(U;H) should always

entail the convergence to 0 of the sequence (fn)n in H(U;H). M. Putinar [7] has shown that

hyponormal operators have Bishop's property (�).

Throughout this section, T will be a cyclic operator of L(H) with cyclic vector x 2 H. We

have the following result.

Theorem 2.1. If the operator T is hyponormal then Ba(T ) = �(T )n�ap(T ).

This theorem follows from the following more general result.

Theorem 2.2. If the operator T has Bishop's property (�) then Ba(T ) = �(T )n�ap(T ) if and

only if Ba(T ) \ �p(T ) = ;.

Proof. If Ba(T ) = �(T )n�ap(T ) then it is clear that Ba(T ) \ �p(T ) = ; since �p(T ) � �ap(T ).

Conversely, suppose that Ba(T ) \ �p(T ) = ;. Since Ba(T ) � B(T ) = �(T ) and �(T )n�ap(T ) �
Ba(T ) (see Proposition 1.2) then it suÆces to prove that Ba(T ) \ �ap(T ) = ;. Suppose that

there is � 2 Ba(T ) \ �ap(T ). It follows then that the range ran(T � �) of (T � �) is not closed.

Let y 2 cl

�
ran(T � �)

�
nran(T � �), then

y 62 ran(T � �) and hy ; k(�)i = 0:

Therefore, there is a sequence of polynomials (pn)n vanishing at � such that pn(T )x converges to

y in H. De�ne on U := Ba(T ) the following analytic H�valued functions by f(�) = y � by(�)x
and fn(�) = pn(T )x � pn(�)x. Since, f(�) = y 62 ran(T � �) then, f 62 ran(TU ). On the other

hand, it is easy to see that fn 2 ran(TU ) for every n � 0. Now, let K be a compact subset of U ,
3



we have

sup
�2K

kfn(�)� f(�)k � kpn(T )x� yk+ sup
�2K

k�pn(�)� by(�)�xk
� kpn(T )x� yk+ kxk sup

�2K
jpn(�)� by(�)j

�
�
1 + kxk sup

�2K
kk(�)k

�
kpn(T )x� yk:

Therefore, fn �! f in H(U;H). Thus, the range ran(TU ) of TU is not closed which contradicts

T has Bishop's property (�) and the proof is complete.

The following is immediate.

Corollary 2.3. If the operator T has Bishop's property (�) such that �p(T ) = ;, then Ba(T ) =

�(T )n�ap(T ).

We also have.

Corollary 2.4. If the operator T has Bishop's property (�) such that H =
Wfk(�) : � 2

Ba(T )g then Ba(T ) = �(T )n�ap(T ).

Proof. Let � 2 Ba(T ). Suppose that there is y 2 H such that Ty = �y. For every � 2 Ba(T ),

we have,

�by(�) = hTy ; k(�)i
= hy ; T �k(�)i
= �by(�):

Hence, the analytic function by is identically zero onBa(T ); and so, y = 0 sinceH =
Wfk(�) : � 2

Ba(T )g. Therefore, Ba(T ) \ �p(T ) = ;: Thus the proof is complete.

Proof of Theorem 2.1. Let � 2 Ba(T ). Suppose that there is y 2 H such that Ty = �y. It

follows that the analytic function by is identically zero on Ba(T ). On the other hand, y = �k(�),

for some � 2 C , since T �y = �y. And so, by(�) = �kk(�)k2 = 0; it follows that y = 0. Therefore,

Ba(T ) \ �p(T ) = ;: Thus the proof is complete.

Remark 2.5. Recall that the operator is said to be M -hyponormal if there is a positive constant

M such that

kT �yk �MkTyk for every y 2 H:

Recall that M -hyponormal operators posses Bishop's property (�) (see [7] and [17]). Using the

same proof of theorem 2.1, we deduce that

Ba(T ) = �(T )n�ap(T )
for every cyclic M -hyponormal operator T .

4



In [17], L. Yang has proved that quasi-similar hyponormal operators have equal essential

spectra. In his paper [14], L. R. Williams mentioned that if the answer to his Question A is

aÆrmative for arbitrary cyclic hyponormal operators, then, using Raphael's techniques (see [9])

and [14, Theorem 1.5], one has a simple proof of this following theorem.

Theorem 2.6. Two quasi-similar cyclic hyponormal operators have equal essential spectra.

3. on a question of l. r. williams

We �rst recall a few basic notions and properties from the local spectral theory which will be

needed in the sequel. Let T 2 L(H) be a bounded operator on H. For an element x 2 H, let

�
T
(x) be its local spectrum and �

T
(x) be its local resolvent (see [2] and [5]). For a closed subset F

of C , let H
T
(F ) = fx 2 H : �

T
(x) � Fg be the corresponding analytic spectral linear subspace.

The operator T is said to have the single valued extension property (SVEP) if zero is the unique

vector x 2 H such that �
T
(x) = ;; equivalently, if the mapping TU is injective for every open set

U � C . Note that if T has SVEP, then for every x 2 H there exists a unique maximal analytic

solution ex on �
T
(x) for which (T ��)ex(�) = x for all � 2 �

T
(x), and satis�es ex(�) = � P

n�0

Tnx
�n+1

on f� 2 C : j�j > r
T
(x)g where r

T
(x) = lim sup

n!+1
kT nxk 1

n is the local radius of T at x; if in

addition T is invertible then ex(�) = P
n�1

�n�1T�nx on f� 2 C : j�j < 1
r
T�1

(x)g. The operator
T is said to satisfy Dunford's Condition (C) (DCC) if for every closed subset F of C , the linear

subspace H
T
(F ) is closed. It is known that every operator which has Bishop's property (�)

satis�es DCC (see [5]), and every operator which satis�es DCC has the single valued extension

property (see [2] and [5]). The operator T is said to have fat local spectra if �
T
(x) = �(T ) for

all non-zero x 2 H. It is clear that every operator with fat local spectra has DCC. The opera-

tor T is said to be pure if the only reducing subspaceM of T such that TjM is normal isM = f0g.

Next, we recall the open Question B of L. R. Williams [14].

Question. Does a pure cyclic hyponormal operator have fat local spectra?

Note that the answer is aÆrmative in the case of hyponormal weighted shifts (see [1, Theorem

3.7] and [15, Theorem 2.5]). At present, however, we do not have neither a counterexample nor

an aÆrmative answer. The following result gives the necessary conditions for the fat local spectra

property.

Lemma 3.1. Let T 2 L(H) be an operator which has fat local spectra. The following properties

hold.

(i) T has DCC.

(ii) �p(T ) = ; whenever �(T ) is not a singleton.
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(iii) r
T
(x) = r(T ) for every non-zero element x 2 H.

(iv) If T is invertible then r
T�1

(x) = r(T�1) for every x 2 Hnf0g.
(v) �(T ) is connected set.

Proof. The �rst four properties are trivial. Suppose that �(T ) is disconnected then �(T ) =

�1 [ �2, where �1 and �2 are two non-empty disjoint compacts. Let x 2 H, x 6= 0 then using

local version of Riesz0s functional calculus, one shows that there are two non-zero elements x1,

x2 of H such that x = x1 + x2 and �T (xi) � �i, i = 1; 2 which contradicts T have fat local

spectra.

Remark 3.2. It follows from Lemma 3.1 that every pure cyclic hyponormal operator on H

satis�es the �rst two properties of Lemma 3.1. A pure cyclic hyponormal operator in L(H) such

that its spectrum is disconnected provides a negative answer to the question above.

After submitting the �rst version of the present paper, we received from L. R. Williams the

reference [16], where the author produced a pure cyclic subnormal operator with disconnected

spectrum; namely, the Bergman shift operator on L2
a(G) where G is a union of two open discs

with disjoint closures. We are thankful to L. R. Williams for pointing out to us this reference [16].

Following example 4.1 of [16], one can give a large class of such operators which provide a

negative answer to L. R. Williams's question. Let T 2 L(H) be a pure cyclic hyponormal oper-

ator, by setting T� = T � (T � �) 2 L(H �H) for � 2 C ; j�j > kTk. It is easy to show that T�

is a pure cyclic hyponormal operator with disconnected spectrum.

Following the proof of Theorem 2.4 of [14].

Proposition 3.3. Let T 2 L(H) be a cyclic hyponormal operator. If T has fat local spectra

then H =
Wfk(�) : � 2 Gg for every connected component G of Ba(T ).

Proof. Since T is a hyponormal operator then
T
�2G

ran(T ��) = HT (C nG). On the other hand,

T has fat local spectra then HT (C nG) = f0g: And so,

_
fk(�) : � 2 Gg =

_
�2G

ker
�
(T � �)�

�
=

� \
�2G

cl
�
ran(T � �)

��?

=

� \
�2G

ran(T � �)

�?
= H:

Conversely, we have the following.

Proposition 3.4. Let T 2 L(H) be a cyclic operator. If H =
Wfk(�) : � 2 Gg for some

connected component G of Ba(T ) then cl(G) � �
T
(x) for every non-zero y 2 H.
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Proof. Let G be a connected component of Ba(T ). Suppose that there is y 2 H such that

G \ �T (y) 6= ;. And so, there is an analytic H� valued function f such that

(T � �)f(�) = y for � 2 V;

where V = G \ �T (y): Hence, for every � 2 V , we have

by(�) = hy ; k(�)i
= h(T � �)f(�) ; k(�)i
= hf(�) ; (T � �)�k(�)i
= 0:

Therefore, by � 0 on G. Since, H =
Wfk(�) : � 2 Gg, it follows then y = 0. Thus the desired

result holds.

Corollary 3.5. If T 2 L(H) is a cyclic hyponormal operator such that �(T ) = cl
�
Ba(T )

�
, then

T has fat local spectra if and only if H =
Wfk(�) : � 2 Gg for every connected component G

of Ba(T ).

4. examples and comments

The weighted shift operators are interesting for solving a lot of problems in operator theory,

they are a rich source of examples and counterexamples to illustrate many properties of oper-

ators. We shall �x some terminology and recall some basic notions concerning their spectral

theory; the survey of A. Shields [11] contains further information. Let S be a unilateral weighted

shift on a Hilbert space H with a positive bounded weight sequence (!n)n�0, that is

Sen = !nen+1;

where (en)n�0 is an orthonormal basis of H. Let W be the following sequence given by:

Wn =

8<
:

!0:::!n�1 if n > 0

1 if n = 0

Note that,

r1(S) = lim
n!1

�
inf
k�0

Wn+k

Wk

� 1
n

and r(S) = lim
n!1

�
sup
k�0

Wn+k

Wk

� 1
n

;

and de�ne,

r2(S) = lim inf
n!1

�
Wn

� 1
n and r3(S) = lim sup

n!1

�
Wn

� 1
n :

Note that, r1(S) � r2(S) � r3(S) � r(S) and recall that for every three non-negative numbers

a; b and c with a � b � c there is a weighted shift operator S such that

r1(S) = a; r2(S) = b and r(S) = c:

On the other hand, one can �nd a weighted shift operator S such that

r1(S) = a; r3(S) = b and r(S) = c:
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For details see W. C. Ridge [10].

We begin �rst with an example of a weighted shift operator which shows us that the converse

of corollary 2.3 is not valid. Let S be a weighted shift such that r1(S) = r2(S) � r3(S) < r(S).

We have Ba(S) = �(S)n�ap(S) (see [1, Theorem 2.2]). Let F = �
S
(e0), the linear subspace

H
S
(F ) is not closed, otherwise, H

S
(F ) = H since it contains the cyclic vector e0 for S, and so,

it follows from [5, Proposition 1.3.2] that �(S) =
S
x2H

� F = �
S
(e0) which is impossible since

r
S
(e0) = r3(S) < r(S): Thus, S does not have neither DCC nor Bishop's property (�).

It remains to give an example of a weighted sequence (!n)n so that the corresponding weighted

shift S satis�es r1(S) = r2(S) � r3(S) < r(S). Let (Ck)k�0 be a sequence of successive disjoint

segments covering N and such that each segment Ck contains k
2 elements. Let k 2 N , for n 2 Ck

we set

!n =

8<
:

2 if n is one of the �rst kth terms of Ck

1 otherwise
(4.1)

For every n � 1, there are two unique integers r = r(n) and s = s(n) such that n = s+
rP

k=1

k2

with 0 � s � (r + 1)2 (i.e., n 2 Cr+1). Hence,

Wn+1 =

� rY
k=1

Y
j2Ck

!j

�
�
8<
:

2s if s � r + 1

2r+1 otherwise

Therefore, it is easy to see that for every n 2 N ,

sup
k

Wn+k

Wk

= 2n and inf
k

Wn+k

Wk

= 1:

And so, r(S) = 2 and r1(S) = 1. On the other hand, for every n � 1, we have

Wn+1 � 2

r+1P

k=1
k

= 2
(r+1)(r+2)

2 :

Since, n �
rP

k=1

k2 = (2r+1)(r+1)r
6 ; then

[Wn+1]
1

n+1 � 2
3(r+2)
(2r+1)r :

And so, this inequality implies that r3(S) � 1. Therefore,

r1(S) = r2(S) = r3(S) = 1 and r(S) = 2:

Now let us see that in Theorem 2.2, one cannot omit the assumption that the operator T

has Bishop's property (�) nor suppose that it satis�es only DCC neither suppose that it has

fat local spectra. Let S be a weighted shift such that r1(S) < r2(S) = r(S). It is shown in [1]

that f� 2 C : j�j � r2(S)g � �S(x) for every non-zero element x 2 H; and so, S has fat local

spectra therefore it has DCC. On the other hand, �(S)n�ap(S)  Ba(S) (see [1, Theorem 2.2])
8



and so, according to Theorem 2.2, S is without Bishop's property (�).

As before, it also remains to produce an example of a such weighted shift. If we modify the

last example and we change in (4.1) 2 by 1 and 1 by 1
2 , we get by the same computation that

r1(S) =
1

2
and r(S) = r2(S) = 1:

It would be interesting to give an example of a pure cyclic hyponormal operator with fat

local spectra which is not a weighted shift hyponormal operator. Let us consider the following

operator T = S�+2S where S is the unweighted shift on H i.e. Sen = en+1 for every n 2 N with

(en)n is an orthonormal basis of H. A simple computation shows that for every x =
P
n

�nen 2 H

we have 

(T �T � TT �)x ; x

�
= 3�20 � 0:

Hence, T is a hyponormal operator. On the other hand, for x = e0 � 2e2 we have

k(T 2)
�

xk = kT �2xk =
p
89 >

p
80 = kT 2xk:

It follows that the operator T is not subnormal since every power of a subnormal operator is

subnormal.

Proposition 4.1. In considering the above operator T , the following properties hold.

(i) T is a pure cyclic hyponormal operator.

(ii) �ap(T ) = fa+ ib 2 C : (a3 )
2 + b2 = 1g.

(iii) �(T ) = fa+ ib 2 C : (a3 )
2 + b2 � 1g.

(iv) T has fat local spectra.

In the proof of (ii) of Proposition 4.1 we shall require the following elementary result. We

begin by recalling that an operator A 2 L(H) is said to be Fredholm if its range ran(A) is closed,

and ker(A) and ker(A�) are �nite dimensional. The essential spectrum �e(A) of A is the set of

all � 2 C such that A�� is not Fredholm, in fact, The essential spectrum �e(A) of A is exactly

the spectrum �
�
�(A)

�
in the Calkin algebra L(H)=C of �(A), where � is the natural quotient

map of L(H) onto L(H)=C, here C denotes the ideal of all compact operators in L(H).

Lemma 4.2. Let A 2 L(H) be cyclic operator such that �p(A) = ;, then �ap(A) = �e(A).

Proof. Since dim

�
ker(A� �)�

�
� 1 for every � 2 C (see Proposition 1.1) and �p(A) = ; then

� 2 �e(A) () ran
�
A� �

�
is not closed

() � 2 �ap(A):

Proof of Proposition 4.1.(i) It is easy to see that e0 is a cyclic vector of the operator T . Now,

let M be a reducing subspace of T . Since,

S =
2T � T �

3
;
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then M is reducing subspace of S. And so, M = f0g or M = H. Hence, T is pure operator.

(ii) Since, �
�
�(S)

�
= T, where T is the unit circle of C , and �(S) is a normal element

in the Calkin algebra then, it follows from the Spectral Mapping Theorem that �
�
�(T )

�
=

f�+ 2� : � 2 Tg. And so, from Lemma 4.2 the desired result holds.

(iii) Note that the operator T is Toeplitz operator T� with associated function � = z+2z. It

follows then from [12, Theorem 5] and [8, Theorem 1] that �(T ) = fa+ ib 2 C : (a3 )
2+ b2 � 1g.

(iv) According Theorem 2.1 and the preceding assertions, we have �(T ) = cl
�
Ba(T )

�
; on the

other hand, it follows from [14, Theorem 2.6] that H =
Wfk(�) : � 2 Ba(T )g. And so, the

desired result follows from Proposition 3.4.

Remark 4.3. The example considered above is not a weighted shift since its spectrum is not a

disc. In fact, this example is given in [4, Problem 209] to show that the square of hyponormal

operator fails to be a hyponormal.
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