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1. Introduction

Denote
�!
M

�(g; c) a moduli space of non-classical directed Klein surfaces of genus g with c � 0

distinguished points; in other words, the moduli space of non-orientable Riemann surfaces of

genus g with one boundary curve and c � 0 permutable punctures. The purpose of this article

is to compute homology groups of the moduli spaces
�!
M

�(g; c) with Z2-coeÆcients. The starting

point is the work of [B1] which gives a new description of the moduli spaces
�!
M(g) of directed

Riemann surfaces of genus g. The homology groups of moduli spaces of Riemann (orientable)

surfaces with rational coeÆcients (resp. integer coeÆcients) have been computed in [H] (resp. in

[Eh]). The method used in these work do not apply to the non-orientable surfaes. The problem

of computation of H�(
�!
M(g)) remained untouched. That is our motivation for the present work.

We �rst give a topological description for the model space B�(h; c) for
�!
M

�(g; c) in terms

of certain classes of parallel slit h-pairs in the complex plane C . We then describe the cell

structure of B�(h; c). It is similar to the decomposition of other con�guration spaces such as

the classifying spaces of symmetric groups and braid groups. The boundary operator @ has

two kinds of face operators. We point out that the cellular chain complex of the model space

resembles formally with the Hochschild resolution of a noncommutative algebra without unity.

This cyclic structure gives rise to a double complex analogous to that of [LQ] and hence to

a Connes-Gysin long exact sequence relating Hochschild and cyclic homology. The incidence

system on the cell complex gives a unique way to de�ne the orientation of the cell complex.

By an inductive construction of closed galleries which are closed chains of overlapping highest

dimensional cells, we obtain a new result concerning the orientablity of the moduli spaces of

non-classical Klein surfaces.
�!
M�(g; c) is non-orientable for any genus g and c � 0 distinguished

points.

By computing the homology groups of the model complex for h = 2; 3, we obtain the homology

groups of the moduli spaces
�!
M�(g; c) of genus g � 2. Due to the large number of cells, the

computation for h = 3 is done by the computer. Our new results in computing homology groups

of the moduli space
�!
M�(g; c) concern the following cases

�
�!
M�(0; 1), the moduli space of projective planes with a puncture

�
�!
M�(0; 2), the moduli space of projective planes with two punctures

�
�!
M�(1; 0), the moduli space of Klein bottles

�
�!
M�(1; 1), the moduli space of Klein bottles with a puncture

�
�!
M�(2; 0), the moduli space of non-classical Klein surfaces of genus 2.

We recall a brief description of
�!
M�(g; c). Let F d be a double covering of a Klein (non-

orientable) surface F . Then F d is a compact orientable surface without boundary. For each

dianalytic structure X of F there exists a unique analytic structure Xd of F d with the properties

(i) it agrees with the orientation of F d (ii) � : Xd ! Xd is an anti-holomorphic involution and

(iii) � : Xd ! X is dianalytic cf.[AG]. The group Di�(F ) of di�eomorphisms of F acts on the set
2



K(F ) of dianalytic structures on F . Since the isotopy subgroup Di�0(F ) acts freely on K(F ) (cf.

[EE]); the quotient T (F ) := K(F )=Di�0(F ) is a Teichm�uller space of non-classical Klein surfaces

F . The quotientM(F ) := K(F )=Di�(F ) is the moduli space of non-classical Klein surfaces. By

a non-classical directed Klein surface we mean a closed non-orientable Klein surface F of some

genus g, with a tangent direction X at a given base point O. Here a tangential direction X = (x)

is a non-zero tangent vector x, up to a positive multiple. The moduli space
�!
M

�(g; c) consists

of dianalytic equivalent classes [F;X;O; fS1; S2; : : : ; Scg] where S1; S2; : : : ; Sc are distinguished

permutable points on F ; here a dianalytic equivalence is a dianalytic homeomorphism f : F �!

F 0 such that
(i) f(O) = O0

(ii) df(X) = X0

(iii) ffS1; S2; : : : ; Scg = fS01; S
0
2; : : : ; S

0
cg:

�!
M

�(g; c) is a smooth, non-compact, non-orientable manifold of (real) dimension 3g � 3c. For

the description of moduli spaces of directed Riemann surfaces, we refer to [ADKP] and [B1].

2. Configurations of Slit Pairs and Associated Surfaces F�(L)

A parallel slit Lk is of the form fz = (x; y) 2 C jx � xk; y = ykg for any given point zk =

(xk; yk) in C . Let h > 0 be an integer. An element � of a symmetric group �2h is said to be a

pairing if it is a �xed point free involution. A signature of the pairing � is de�ned by either +1

or �1 for each pair i and �(i). The index pair having the value +1 is called type I , otherwise

type II.

By a con�guration of parallel slit pairs of type I and type II we mean a collection consisting

of the followings:

1. An ordered sequence L1; L2; : : : ; L2h of parallel slits in C such that yk � yk+1 and xk = x�(k)

for 1 � k � 2h,

2. a pairing � 2 �2h,

3. the type sequence T = (t1; t2; : : : ; t2h) with ti = t�(i) and ti = I or II.

The con�guration of parallel slits is denoted by L = (L1; : : : ; L2hj�jT ). The slits in L are not

necessarily to be distinct; some of them can be equal Li = Li+1, or contained in each other,

Li � Li+1. If all slits in L are disjoint, L is called generic.

Identifying edges of slits associates to each L a closed surface F�(L) of some genus g. Set

Fk = f(x; y) 2 C jyk � y � yk+1g for k = 1; : : : ; 2h � 1, F0 = f(x; y) 2 C jy � y1g and

F2h = f(x; y) 2 C jy2h � yg. Then the Fk are closed strips between the slits. Apart from the

point at in�nity, Fk are disjoint. On the disjoint union of F0; : : : ; F2h the points are identi�ed

by the following rules.

(1) Fk 3 (x; yk) � (x; yk) 2 Fk+1for x > xk
(2)[typeI] Fk 3 (x; yk) � (x; y�(k)) 2 F�(k)�1

Fk�1 3 (x; yk) � (x; y�(k)) 2 F�(k) for x � xk
(3)[typeII] Fk 3 (x; yk) � (x; y�(k)) 2 F�(k)

Fk�1 3 (x; yk) � (x; y�(k)) 2 F�(k�1) for x � xk
3



The identi�cation rule(3) of a slit pair of type II reverses the orientation of an adjacent angle.

Hence a surface F�(L) obtained by the con�guration L consisting of slit pairs of type II is

always non-orientable. We now assume that any con�guration L contains at least one slit pair

of type II. The quotient space F0(L) :=
F2h
k=0 Fk= s obtains the quotient topology. Later this

space will be compacti�ed. The resulting compact space will also be denoted by F�(L). By

abuse of notation F�(L) will be used for both spaces.

3. The Non-classical Directed Klein Surface F�(L)

Lemma 3.1. Let L = (L1; : : : ; L2hj�jT ) be given. Then the pairing � 2 �2h induces a unique

permutation � in �4h de�ned by

�(i+) :=

�
(�(i + 1))+ if (i+ 1) is of type I

(�(i + 1))� if (i+ 1) is of type II

�(i�) :=

�
(�(i � 1))� if (i� 1) is of type I

(�(i � 1))+ if (i� 1) is of type II

Proof: For each index i 2 �, we have two copies of indices, say i+; i�. The � is well-de�ned by

the following direct veri�cation: Take any two indices i 6= j from �. Consider the cases: [Case

1:] If �(i+)+ = �(j�)+ , then by the formula of � (i+1) must be of the type I and (j � 1) must

be of type II; and �(i+1) = �(j � 1). Thus i+1 = j � 1 having di�erent types. Contradiction.

[Case 2:] If �(i+)+ = �(j+)+, then again by the formula of �, both (i+1) and (j +1) are of the

same type I and �(i+ 1) = �(j + 1). Hence i = j. 2

Such a � is called �-extended permutation. It is straightforward to check that the permutation

� has an even number of disjoint cycles.

The disjoint cycles of � can be equally seperated into two di�erent parts; we call these the

forward permutation (resp. backward permutation) and denote them by Æ� (resp. Æ�). Signatures

of Æ� and Æ� are de�ned by setting +1 for i+ and �1 for (i+1)�. Hence we have two associated

vectors � = (�1; : : : ; �2h) and � = (�1; : : : ; �2h) with coordinates �i = �1 and �i = �1.

Remark 3.2. If L is a con�guration of slit pairs of type I only, then the associated surface F�(L)

is orientable, and the Æ� is the same as the permutation de�ned by the formula �� in [B1], where

� is the transposition i 7�! i+ 1 on 2h indices.

The connectivity, denoted by c, of L = (L1; : : : ; L2hj�jT ) is de�ned by the formula

c = 1=2(number of disjoint cycles of �)� 1:

If L contains only a slit pair of type II, then the connectivity c = 0. (If L contained only a

slit pair of type I, then the connectivity c would be 1, which would not happen since any L we

consider contains at least a slit pair of type II). Hence the connectivity c is strictly less than the

number h of slit pairs, at most c = h� 1.
4



The connectivity c tells exactly distinguished points S1; : : : ; Sc di�erent from the base point

O on the associated closed surface F�(L).

Let S � C be the smallest rectangle containing all endpoints z1; : : : ; z2h of the slits in L. The

smallest means that the left lower corner of S has the coordinate fmin(xk), min(yk)g and the

right upper coordinate of S is fmax(xk), max(yk)g for 1 � k � 2h. Such a rectangle S is called

the support of the con�guration L. For x0 � min(xk), the line l = f(x; y) 2 C jx = x0g is drawn

parallel to the vertical boundary of S. It yields the closed intervals Y0; Y1; : : : ; Y2h where Y0 is

below the cut of L1 and YK is between the cuts of Lk; Lk+1 and Y2h is above the cut of L2h.

Some intervals may be points. These intervals Yi are needed to re-glue in a certain permuted

order since on meeting an edge of a slit, a path goes on at the corresponding edge in the same or

the opposite direction until the path is closed. Æ� prescribes the gluing way, � gives the unique

orientation for the Yi. Therefore Yi is followed by YÆ�(i); and the orientation of Yi is preserved if

�i = 1, unless Yi is re-glued in the reverse orientation; see the following �gure. (In the �gure a

slit is depicted as a horizontal half-line unbounded to the left, a pair is depicted by an arc from

an endpoint of a slit to the corresponding endpoint of another slit, and symbols I, II denote the

type of slit pairs. )

?

?
6
6

?
6

?
?

I I

II II

II II

Y0

Y1 YÆ(1)

Y2 YÆ(2)

Y3 YÆ(3)

Y4 YÆ(4)

Y5 YÆ(5)

Y6 Y6

Y0

� = (15)(26)(34)

T = (I;II;II;II;I;II)

Æ� = (51432)

� = (1;�1;1;�1;�1)

Figure 1

Remark 3.3. From the dynamical point of view the whole e�ect of re-gluing the intervals Yi is

a discontinuous, orientation preserving and reversing, piecewise isometric self-map of the real

line. It is a non-orientable, non-ergodic (if c 6= 0) interval exchange transformation.

Let Y 0 be the complex obtained by regluing Yi. Then Y 0 is a subset F0(L) and has (c +

1) path-connected components. For each L, there exists a distinguished component, namely

the component containing Y2h. Such a distinguished component of Y 0 is called the principal

component. The existence of remaining components in Y 0 depends on L. Let R0 be a set in

F 0(L) which is induced by the support S in the construction for F 0(L). The complement of R0

in F 0(L) has the same (c + 1) components as that of Y 0. It also has a principal component

and another c components. The principal component and the other components associated to

points at in�nity correspond to a base point O and to the distinguished points S1; : : : ; Sc of the

surface F0(L), respectively. We de�ne

F�(L) := F0(L)
a
fO; S1; : : : ; Scg:
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The Euler-characteristic of F�(L) is c� h+ 2 and hence the genus g of F�(L) is h� c� 1.

Since slits in L are not necessarily to be disjoint, they may touch. If so, then they jump. We

now de�ne jumps of slits as follows

1: � := (�(k + 1) : : : (k + 1)k) if Lk � Lk+1; �(k + 1) > k + 1; (k + 1) = I
2: � := (�(k + 1) + 1 : : : k) if Lk � Lk+1; �(k + 1) < k; (k + 1) = I
3: � := (�(k + 1)� 1 : : : k) if Lk � Lk+1; �(k + 1) > k + 1; (k + 1) = II
4: � := (�(k + 1) : : : k) if Lk � Lk+1; �(k + 1) < k; (k + 1) = II

Here � is a transposition in �2h, k + 1 = I means Lk+1 is of type I.

After each jump, a new con�guration ~L = (~L1; : : : ; ~L2hj~�j ~T ) is obtained as follows. Set

~Lp(j) = Lj for j 6= k, j = 1; : : : ; 2h. For (1) and (2), set the endpoint of ~Lp(k) as (xk; y�(k+1))

and as (xk; y�(k�1)) for the other cases. De�ne ~� = ����1. For (3) and (4) the type of index

k in � is changed in ~�. The jumps (1) and (2) are called Jump I, known as Rauzy jumps and

the others are called Jump II. The relation generated by Jump I and Jump II is an equivalence

relation on the set of con�gurations. The equivalence class of the con�guration L is denoted

by L = [L1; : : : ; L2hj�jT ]. The following �gure illustrates how a slit jumps and takes a new

position.

k + 1

�(k + 1)

I

k

-
�

�(k) ��(�)

�(�)

I

�(k)=�(k+1)

k + 1

�(k + 1)

I/II

II

k

-
�

�(k)II/I

��(�)

�(�)

II

�(k)=�(k+1)�1

Figure 2

For the proof of the following Proposition, see [Z].

Proposition 3.4. If L and ~L are equivalent, then F�(L) and F�(~L) are dianalytically equiva-

lent.

One of the crucial points is to exclude con�gurations which will lead to singular surfaces. By

a non-degenerate con�guration L we mean a con�guration L which induces an associated surface

F�(L) that is non-singular (smooth) at all points z except at O.

The criterion to determine the degeneracy is as follows: If L contains a slit LK such that

Lk+i � Lk = L�(k) for any (if exists) index i between k and �(k) (assume k < �(k)), then

such a con�guration L is called degenerate. It is possible that in two equivalent con�gurations,

one satis�es the above condition and another does not. Hence an equivalent class L is called

degenerate if it contains a representative con�guration L 2 L that is degenerate. Since F�(L)

depends only on the class of L, write the surface F�(L) instead F�(L). Hence F�(L) is a

smooth surface away from 1 if and only if L is non-degenerate.
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Let L = (L1; : : : ; Lk; : : : ; L2hj�jT ) be in a class L and let Lk � Lk�1. Then k � �n(k) =

� : : : �| {z }
n

(k) for �nite n 2 N. If all such k 2 N, then k < �n(k) for all n. Such a con�guration L is

called the normal form in L. Here � are the transpositions in �2h.

Theorem 3.5. Let L be a non-degenerate class of con�gurations. Then F�(L) is a non-classical

directed punctured Klein surface of genus g = h� c� 1.

Proof: See [Z].

4. The Spaces of Parallel Slit Domains

Let Conf(h; c) denote the space of all con�gurations L with connectivity c 6= 0. Then

Conf(h; c) � C
2h � �2h, where �2h is regarded as a discrete space. Let RegConf(h; c) �

Conf(h; c) be the subset of all non-degenerate con�gurations. The quotient space PSC�(h; c) :=

RegConf(h; c)= sJumps is the space of all classes L of non-degenerate con�gurations. The

elements L are called parallel slit domains. Let Sim(C ) be a group of similarities of C . It is

generated by translations and (positive) dilations, it is a subgroup of GL(2; C ) consisting of

matrices of the forms:

M =

�
a b
0 1

�
; a 2 R+ ; b 2 C :

The matrix M is identi�ed with the associated M�obius transformation M(z) = (az + b). These

transformations are automorphisms of the Klein surface, which �x 1 and map horizontal lines

to horizontal lines. The action is de�ned by

M � L := [M(L1); : : : ;M(L2h)j�jT ]:

TheM �L is non-degenerate when L is non-degenerate. Moreover, if L � L0, thenM �L �M �L0

and the group Sim(C ) acts freely on PSC�(h; c). For each M 2 Sim(C ), it is obvious that the

associated surfaces F�(L) and F�(M � L) are conformally equivalent. Hence we have

Theorem 4.1. Let M 2 Sim(C );L 2 PSC�(h; c) and L0 = M � L, let F�(L) and F�(L0) be

associated non-classical directed Klein surfaces. Then M induces a conformal map

�M : F�(L) �! F�(L0)

such that �M(O) = O0;
�!
D�M (X) = X0 and �MfS1; : : : ; Scg = fS01; : : : ; S

0
cg.

We now de�ne a normalization on L as follows:

(i) y1 = 0; (ii) y2h = 1; (iii) min(xk) = 0:

Since these conditions are invariant under the jumps, and thus conditions on a class. LetK�(h; c)

be the space of all classes L of normalized non-degenerate con�gurations L. We impose one more

condition on K�(h; c):

max(xk) < 1:
7



This additional condition restricts the conformal type, and obviously selects a proper subspace

denoted byB�(h; c) which is homeomorphic toK�(h; c); a homeomorphism is given by applying

to the x-coordinates of the slit end points that reparametrizes [0;1[ as [0; 1[ �xing 0.

By Theorem 3.5 and Theorem 4.1, we have a continuous map

� : K�(h; c) �!
�!
M

�(g; c)

de�ned by L 7! [F;X;O; fS1; S2; : : : ; Scg].

The inverse of � is obtained as follows. On a directed closed orientable surface F , there is a

function u :! �R = R[1 such that (1) u is harmonic away from O (2) u(z)�Re(1=z) is smooth

and vanishes at O for any local parameter z around O such that z(O) = 0 and z(fS1; : : : ; Scg) =

f1; 2; : : : ; cg for z around distinguished points and dz(X) = �dx. This characterizes u uniquely

up to an additive and a positive multiplicative constant. The gradient 
ow of u determines

the critical graph K � F consisting of the dipole O, all zeros of the 
ow and critical points

as vertices and unstable submanifolds of the 
ow as edges. Since F 0 = F � K is connected

and simply-connected, there is a holomorphic map w = u + iv : F 0 �! C which is unique up

to another additive constant for harmonic conjugate v of u.The complement of w(F 0) � C is

described as the con�guration L of slit pairs in C . Here u transforms into the function x, and

the gradient 
ow into the horizontal 
ow �@=@x.

As 3-dimensional contractible group Sim(C ) acts freely on PSC�(h; c), two normalization

constants (the translations in x- resp. y-direction) correspond to the real additive integral

constants of harmonic functions u and v, and the dilations correspond to the undetermined

length of the tangent vector representing the direction X. For the construction of the dipole

function for non-classical Klein surface F , we consider the double covering F d of F and transform

results to F . The potential w depends on the position O of F only and not on the orientation

of F in the neighbourhood of O. It follows that the complement of w(F 0) � C will comprise all

moduli of the class [F;X;O; fS1; S2; : : : ; Scg]. Hence we have

Theorem 4.2. The moduli space
�!
M�(g; c) of non-classical directed Klein surfaces F�(L) is

homeomorphic with the space K�(h; c) of all classes of normalized non-degenerate con�gurations

L and hence
�!
M�(g; c) �= B�(h; c).

For the compacti�cation of
�!
M�(g; c), we �rst take R�(h; c), a closure of the space of all

normalized non-degenerate con�gurations with the condition max (xk) � 1. Its topology is

induced by the space C 2h � �2h which is homeomorphic with 2h-disjoint copies of C 2h . The

condition max(xk) � 1 is clearly invariant under the jumps. The compacti�cation of this moduli

space is de�ned by R�(h; c)= sJumps, denoted by P�(h; c).

We de�ne subspaces of P�(h; c). Let N�(h; c) be the set of all L such that max(xk) =

1. Classes in N�(h; c) may be degenerate or not. The non-degenerate ones form a partial

boundary to the manifold B�(h; c). Let D�(h; c) be the set of all degenerate classes. The union

W�(h; c) := N�(h; c) [ D�(h; c) is a periphery of B�(h; c) = P�(h; c) � W�(h; c). P�(h; c)
8



is a 3h � 3 dimensional pseudo-manifold and (P�(h; c);W�(h; c)) is a 3h � 3 dimensional real

relative manifold. For more detail, we refer to [Z].

5. The Orientability of Moduli Spaces of Nonclassical Klein Surfaces

Let L 2 R�(h; c) be such that the slits of L lie on (n + 2)-distinct y-levels 0 = v0 < v1 <

� � � < vn+1 = 1 and let ai be the number of slits lying at the level y = vi. Then 0 < ai <

2h;
Pn+1

i=0 ai = 2h, where 0 � n � 2h � 2: The set of indices whose slits are lying at the level

y = vi is denoted by Ai � f1; : : : ; 2hg. Assume that the endpoints of the slits of L lie at (m+1)

distinct x-levels 0 = u0 < u1 < � � � < um < 1. (If max(xi) = 1, assume the endpoints lie at

(m+2)-distinct levels 0 = u0 < � � � < um < um+1 = 1). The set of indices of the slits ending over

x = uj is denoted by Bj � f1; : : : ; 2hg. Then B0tB1t� � �tBm+1 = f1; : : : ; 2hg; 0 � m � h�1.

All these data are collected in a symbol E = (a0; : : : ; an+1j�jB0; : : : ; Bm+1). We will also write

E = (a0; : : : ; an+1j�jB0; : : : ; Bm+1;T ) with the type sequence T .

Set ri = vi+1 � vi; i = 0; : : : ; n and sj = uj+1 � uj ; j = 0; : : : ;m. We have
Pn

i=0 ri =

1;
Pm

j=0 sj = 1. Hence (r0; r1; : : : ; rn) and (s0; s1; : : : ; sm) are barycentric coordinates in open

simplices4n and4m respectively. By varying the coordinates ri and sj, we get the con�guration

to which the same symbol E is associated. To each symbol E we de�ne a map

fE : �4n � �4m ! R�(h; c) ; (r0; : : : ; rn; s0; : : : ; sm) 7�! (L1; : : : ; L2hj�jT ) ;

where �4n; �4m are closed simplices of dimensions n and m, respectively. The map fE is a

characteristic map for each (n+m)-cell E. The highest dimension of a cell in R�(h; c) is 3h�3.

Hence

Theorem 5.1. The (n+m) cell E = (a0; : : : ; an+1j�jB0; : : : ; Bm+1) in R�(h; c) together with

n+1X
i=0

ai = 2h; B0; : : : ; Bm 6= ;;
m+1G
j=0

Bj = f1; : : : ; 2hg

where 0 � n � 2h � 2; 0 � m � h � 1 de�nes a �nite cellular structure for R�(h; c). Hence

R�(h; c) is a compact regular (3h� 3)-dimensional cell complex.

The boundary operator @ has two kinds of face operators @
0

, @
00

for a (n+m)-cell E.

@
0

iE : = (a0; : : : ; ai + ai+1; : : : ; an+1j�jB0; : : : ; Bm+1)

@
00

j E : = (a0; : : : ; an+1j�jB0; : : : ; Bj tBj+1; : : : ; Bm+1)

for i = 0; : : : ; n; j = 0; : : : ;m:

9
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The boundary @ is de�ned by

@ := @0 + (�1)n@00; where @
0

:=

nX
i=0

(�1)i@
0

i ; @
00

:=

mX
j=0

(�1)j@
00

j :

The face operators satisfy the following relations.

(1) @0i@
0
j = @0j�1@

0
i for 0 � i < j � n

(2) @0i@
0

i = @0i@
0

i+1 for 0 � i � n
(3) @00i @

00

j = @00j�1@
00

i for 0 � i < j � n

(4) @00j @
00

j = @0j@
00

j+1 for 0 � j � n

(5) @0i@
00

j = @00j @
0

i for 0 � i � n; 0 � j � m :

Assume that E = (a0; : : : ; an+1j�jB0; : : : ; Bm+1) is a (n + m)-cell of R�(h; c) with indices

(k � 1; k) 2 Ai1 for k 2 f1; : : : ; 2hg and i1 2 f0; : : : ; n + 1g, �(k) 6= k � 1. Assume that

�(k) 2 Ai2 ; k � 1 2 Bj1 and k; �(k) 2 Bj2 with j1 � j2. (Such indices always exist whenever

slits Lk�1 � Lk in the con�guration associated to the cell E.) To each cell E, the jumps can be

applied. The new cell �E is of the form:

�E := (a0; : : : ; ai1 � 1; : : : ; ai2 + 1; : : : ; an+1j���
�1j�B0; : : : ; �Bm+1)

where � = (�(k) : : : k � 1) if �(k) > k and k 2 Bj2 is of type I
� = (�(k) + 1 : : : k � 1) if �(k) < k and k 2 Bj2 is of type I
� = (�(k) � 1 : : : k � 1) if �(k) > k and k 2 Bj2 is of type II
� = (�(k) : : : k � 1) if �(k) < k and k 2 Bj2 is of type II :

The map f : E 7! �E de�nes an identi�cation on R�(h; c). The space P�(h; c) is a �nite,

connected cell complex of dimension (3h � 3). A cell of P�(h; c) is written by a symbol E :=

[a0; : : : ; an+1j�jB0; : : : ; Bm+1]. De�ne the numbers [E : @
0

iE] := (�1)i and [E : @
00

j E] := (�1)n+j

where i = 0; : : : ; n; j = 0; : : : ;m: Set [E : F ] := 0 for any other (n+m� 1)-cells F which are

not faces of E.

If En+m�2 = @00j@
0

iE = @
0

i@
00

j E; then

[E : @
0

iE][@
0

iE : En+m�2] + [E : @
00

j E][@
00

j E : En+m�2]

= (�1)i(�1)n+j�1 + (�1)n+j(�1)i

= 0:

A similar result is obtained for other possible (n+m� 2)-cells

En+m�2 = @0j�1@
0

iE = @
0

i@
0

jE; E
n+m�2 = @00j�1@

00

i E = @
00

i @
00

j E ; for i+ 1 � j:

It is obvious that the incidence system is invariant under the identi�cation induced by the

jumps. Thus the incidence system determines a unique way an orientation for the cell E =

[a0; : : : ; an+1j�jB0; : : : ; Bm+1] of P
�(h; c). We take this orientation as the standard orientation.
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Each cell E can now be associated with a sign, �(E) = �1 with respect to the chosen orientation.

We write an oriented cell E by �(E)E.

By a chamber we mean a cell E of dimension 3h � 3 in P�(h; c). Two chambers E and E
0

are called adjacent if they have a common face F of co-dimension 1 in P�(h; c). By a gallery G

joining E0 and Eq we mean a �nite sequence of adjacent chambers Ei together with boundary

operators di :

G := (E0; d0; E1; d1; : : : ; dq�1; Eq; dq)

where diEi = di+1Ei+1 and di 2 f@
0
0; : : : ; @

0

2h�2; @
00

0 ; : : : ; @
00

h�2g:.

The oriented chambers �(E)E and �(E
0

)E
0

are said to be oriented coherently with respect to

a common face F of co-dimension 1 if their incidence numbers satisfy the condition

[�(E)E : F ] + [�(E
0

)E
0

: F ] = 0:(5.1)

This condition is independent on the choice of the orientation for F . Hence we can choose a

de�nite orientation on each chamber.

(P�(h; c);W�(h; c)) is said to be orientable if all chambers of (P�(h; c);W�(h; c)) can be

simultaneously oriented so that any pair having a common face of co-dimension 1 are coherently

oriented; i.e. all triple (E;E
0

; F ) of chambers E;E
0

with a common face F of co-dimension 1

satisfy 5.1. Otherwise it is non-orientable.

Let G = (E0; d0; : : : ; dq�1; Eq; dq). If we choose the sign �(E0) of E0, we can then deter-

mine signs �(Ei) of the other chambers Ei in the gallery G. Hence we get a gallery G :=

(�(E0)E0; d0; : : : ; dq�1; �(Eq)Eq; dq) of coherently oriented chambers. If E0 = Eq in the gallery

G, then G is called closed gallery of the chamber E0. The closed gallery G is said to be

orientation preserving if �(E0) = �(Eq); otherwise orientation reversing. Hence chambers of

(P�(h; c);W�(h; c)) are all simultaneously oriented coherently with respect to their common

faces when all possible closed galleries of chambers of (P�(h; c), W�(h; c)) are orientation pre-

serving. If some closed galleries of (P�(h; c);W�(h; c)) are orientation reversing, then coherent

orientation for all chambers of (P�(h; c);W�(h; c)) is impossible.

Lemma 5.2. The cell complex (P�(h; c);W�(h; c)) is orientable if all closed galleries of (P�(h; c),

W�(h; c)) are orientation preserving. If there exist some closed galleries which are orientation

reversing, then (P�(h; c), W�(h; c)) is non-orientable.

Theorem 5.3. The cell complex (P�(h; c);W�(h; c)) is always non-orientable independently

on the parameters h and c.

Proof: There are only two complexes (P�(2; 0);W�(2; 0)) and (P�(2; 1);W�(2; 1)) for h = 2.

From (P�(2; 0);W�(2; 0)), pick up the following chambers E1; E2; E3; E4; E5 and E6 ;
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Take the face @
0

2E1 of E1. Then @
0

2E1 = @00E5, i.e. E1 and E5 are adjacent. Since @000E5 =

@000E6, then E6 is adjacent to E5. We take E1; E5; E6 into our constructing gallery. We now

choose another one which is adjacent to E6 and take it into our constructing gallery. We repeat

this procedure until all the six chambers were taken up into our gallery. Finally we have a closed

gallery G2;0 := (E1; @
0

2; E5; @
00

0 ; E6; @
0

2; E2; @
00

0 ; E4; @
0

2; E3; @
00

0 ; E1; @
00

0 ).
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We now show that G2;0 is orientation-reserving. Choose �(E1) = +1. Then the signs of other

chambers in G2;0 have to be set as follows:

�(E5) = �1; �(E6) = +1; �(E2) = +1; �(E4) = �1; �(E3) = +1; �(E1) = �1:

Hence G2;0 := (+E1; @
0

2;�E5; @
00

0 ;+E6; @
0

2; E2; @
00

0 ;�E4; @
0

2;+E3; @
00

0 ;�E1; @
00

0 ) is orientation re-

versing. Thus (P�(2; 0);W�(2; 0)) is a non-orientable cell complex.

Similarly, we can show that (P�(2; 1);W�(2; 1)) is also non-orientable.

We now give the proof for any h. We take a hook (i.e. a slit pair (Li; Li�1) with �(i� 1) = i)

(L5; L6) of type II such that endpoints of slits have the form x5 < xi; i = 1; 2; 3; 4 and y6 > y5 >

� � � > y1. We add this hook to each con�guration associated to the chambers E1; : : : ; E6 o� the

closed gallery G2;0. It is obvious that adding a hook of type II leaves the connectivity invariant.
12



Since face operators @0i; i = 0; 1; 2 and @000 make no e�ect on the added hooks, we have an

orientation reversing gallery in (P�(3; 0);W�(3; 0)), i.e. we have a stabilization

Stab : (P�(2; 0);W�(2; 0)) ! (P�(3; 0);W�(3; 0))

which commutes with the boundary operator @. By induction on the number of slits this settles

for any number h.

We now prove for any c � 0. We take a hook (L5; L6) of type I. We add this hook to

each con�guration associated to chambers E1; : : : ; E6 of the closed gallery G2;0. Since adding a

hook of type I increases one connectivity of the con�gurations, then we get a closed gallery in

(P�(3; 1);W�(3; 1)). By the same argument, it is orientation reversing. By induction on h, the

proof of the Theorem is completed. 2

Hence we conclude our result concerning the orientability of
�!
M

�(g; c)

Theorem 5.4. The moduli space
�!
M

�(g; c) of non-classical directed Klein surfaces is non-

orientable for any g and c.

Remark 5.5. It is well known that moduli spaces of Riemann surfaces with c distinguished points

are orientable for c = 0; 1 and are non-orientable for c � 2; see for instance [Mu].

6. The homology groups of the moduli spaces
�!
M

�

(g; c)

We now compute homology groups of the moduli spaces
�!
M�(g; c) of non-classical Klein sur-

faces for genus g � 2. Due to the non-orientability, we restrict to Z2-coeÆcients to apply the

following Poincar�e-Duality,

�H�((P
�(h; c);W�(h; c));Z2) �= H3h�3��(

�!
M

�(g; c);Z2) ;

where g = h� (c+ 1).

Since (P�(h; c);W�(h; c)) is �nite, its chain groups have �nite ranks and its homology groups

are �nitely generated. By computing the incidence matrices of the cells E, we obtain the Betti

numbers and torsion coeÆcients.

In (P�(2; 0);W�(2; 0)), there are eight 3-cells: E1; E2; : : : ; E8, thirteen 2-cells: E9; : : : ; E21,

�ve 1-cells: E23; : : : ; E26 and one 0-cell. The complete list of these cells is given below.
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E1 = [1; 1; 1; 1j (13)(24)j f2; 4g; f1; 3g; T = (II; I; II; I)]
E2 = [1; 1; 1; 1j (13)(24)j f1; 3g; f2; 4g; T = (I; II; I; II)]
E3 = [1; 1; 1; 1j (13)(24)j f1; 3g; f2; 4g; T = (II; I; II; I)]
E4 = [1; 1; 1; 1j (13)(24)j f2; 4g; f1; 3g; T = (I; II; I; II)]
E5 = [1; 1; 1; 1j (14)(23)j f2; 3g; f1; 4g; T = (II; II; II; II)]
E6 = [1; 1; 1; 1j (14)(23)j f1; 4g; f2; 3g; T = (II; II; II; II)]
E7 = [1; 1; 1; 1j (12)(34)j f1; 2g; f3; 4g; T = (II; II; II; II)]
E8 = [1; 1; 1; 1j (12)(34)j f3; 4g; f1; 2g; T = (II; II; II; II)]

E9 = [2; 1; 1; 0j (14)(23)j f2; 3g; f1; 4g; T = (II; II; II; II)]
E10 = [2; 1; 1; 0j (14)(23)j f1; 4g; f2; 3g; T = (II; II; II; II)]
E11 = [2; 1; 1; 0j (14)(23)j f1; 4g; f2; 3g; T = (II; II; II; II)]
E12 = [1; 2; 1; 0j (12)(34)j f1; 2g; f3; 4g; T = (II; II; II; II)]
E13 = [1; 2; 1; 0j (13)(24)j f1; 3g; f2; 4g; T = (I; II; I; II)]
E14 = [2; 1; 1; 0j (13)(24)j f1; 3g; f2; 4g; T = (I; II; I; II)]
E15 = [1; 2; 1; 0j (13)(24)j f1; 3g; f2; 4g; T = (II; I; II; I)]
E16 = [2; 1; 1; 0j (13)(24)j f1; 3g; f2; 4g; T = (II; I; II; I)]
E17 = [2; 1; 1; 0j (13)(24)j f2; 4g; f1; 3g; T = (I; II; I; II)]
E18 = [1; 1; 1; 1j (13)(24)j f1; 2; 3; 4g; T = (II; I; II; I)]
E19 = [1; 1; 1; 1j (13)(24)j f1; 2; 3; 4g; T = (I; II; I; II)]
E20 = [1; 1; 1; 1j (14)(23)j f1; 2; 3; 4g; T = (II; II; II; II)]
E21 = [1; 1; 1; 1j (12)(34)j f1; 2; 3; 4g; T = (II; II; II; II)]

E22 = [3; 1; 0; 0j (13)(24)j f1; 3g; f2; 4g; T = (I; II; I; II)]
E23 = [3; 1; 0; 0j (13)(24)j f1; 3g; f2; 4g; T = (II; I; II; I)]
E24 = [2; 1; 1; 0j (14)(23)j f1; 2; 3; 4g; T = (II; II; II; II)]
E25 = [2; 1; 1; 0j (13)(24)j f1; 2; 3; 4g; T = (II; I; II; I)]
E26 = [2; 1; 1; 0j (13)(24)j f1; 2; 3; 4g; T = (I; II; I; II)]

By computing the incident matrices of these cells, we obtain the homology groups of the cell

complex (P�(2; 0);W�(2; 0)) with Z-coeÆcients:

H�(P
�(2; 0);W�(2; 0);Z) �=

8>><
>>:

0 ; � � 3
Z
L
Z2 ; � = 2

Z ; � = 1
Z ; � = 0 :

By the Universal CoeÆcient Theorem, the homology groups of (P�(2; 0);W�(2; 0)) with Z2-

coeÆcients are

H�(P
�(2; 0);W�(2; 0);Z2) =

8>><
>>:

Z2 ; � = 3
Z2
L

Z2 ; � = 2
Z2 ; � = 1
Z2 ; � = 0 :

By Poincar�e-Duality, the homology groups of moduli space
�!
M�(1; 0) of Klein bottles are

H�(
�!
M

�(1; 0);Z2) =

8>><
>>:

Z2 ; � = 0
Z2
L

Z2 ; � = 1
Z2 ; � = 2
0 ; � � 3 :

Note. The homology classes fE15 +E17 +E20g and fE9 �E10g represent basis elements for

H2(P
�(2; 0),W�(2; 0)) and the homology class fE22g represents a basis element forH1(P

�(2; 0),

W�(2; 0)).
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The complex (P�(2; 1);W�(2; 1)) consists of ten 3-cells, fourteen 2-cells, four 1-cells and one

0-cell. By computing the rank and the elementary divisors from their incidence matrices, we

obtain

H�(P
�(2; 1);W�(2; 1);Z) �=

8>><
>>:

0 ; � � 3
Z2 ; � = 2
0 ; � = 1
Z ; � = 0 :

The homology groups with Z2 of the moduli space
�!
M

�(0; 1) of projective planes with a

puncture are

H�(
�!
M

�(0; 1);Z2) =

8<
:

Z2 ; � = 0
Z2 ; � = 1
0 ; � � 2

From the computation of the complex (P�(3; 0);W�(3; 0)), we obtain the following:

Dim. No. of Cells H�((P
�(3;0);W�(3;0));Z) H�((P

�(3;0);W�(3;0));Z2)

6 246 0 Z2

5 786 Z2 Z2
L

Z2

4 907 Z2 Z2
L

Z2
L

Z2

3 440 Z2
L

Z2 Z2
L

Z2

2 73 0 0
1 0 0 0
0 1 Z Z2

We have the homology groups of the moduli space
�!
M�(2; 0) of non-classical Klein surfaces of

genus g = 2:

H�(
�!
M

�(2; 0);Z2) =

8>>>><
>>>>:

Z2 ; � = 0
Z2
L

Z2 ; � = 1
Z2
L

Z2
L

Z2 ; � = 2
Z2
L

Z2 ; � = 3
0 ; � � 4 :

From the computation for h = 3; c = 1, we obtain the following

Dim. No. of Cells H�((P
�(3;1);W�(3;1));Z) H�((P

�(3;1);W�(3;1);Z2)

6 252 0 Z2

5 747 Z
L
Z2 Z2

L
Z2

4 786 Z Z2
L

Z2

3 339 Z2 Z2

2 48 0 0
1 0 0 0
0 1 Z Z2

Hence the homology groups of the moduli space
�!
M�(1; 1) of Klein bottles with a puncture are

H�(
�!
M

�(1; 1);Z2) =

8>>>><
>>>>:

Z2 ; � = 0
Z2
L

Z2 ; � = 1
Z2
L

Z2 ; � = 2
Z2 ; � = 3
0 ; � � 4 :

15



The computation for h = 3; c = 2 gives the following

Dim. No. of Cells H�((P
�(3;2);W�(3;2));Z) H�((P

�(3;2);W�(3;2));Z2)

6 132 0 Z2

5 357 Z2 Z2
L

Z2

4 330 Z4 Z2

3 117 0 0
2 12 0 0
1 0 0 0
0 1 Z Z2

The homology groups of the moduli space
�!
M�(0; 2) of projective planes with two punctures are

H�(
�!
M

�(0; 2);Z2) =

8>><
>>:

Z2 ; � = 0
Z2
L

Z2 ; � = 1
Z2 ; � = 2
0 ; � � 3 :
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