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Abstract

A formulation of the evolution of a wave packet inside and outside a scattering superlattice is

presented. Time series of speci�c Gaussian packets, centered at an arbitrary energy Eo, exhibit

interesting back-scattering, trapping and transmission e�ects. These e�ects depend on whether

the energy Eo is in a gap, resonance, or an arbitrary point in a band of the superlattice. The

time evolution depends strongly on the transmission coeÆcient and the superlattice tunneling

time. It is shown that the back-scattered wave could provide much more information than the

transmitted wave on the observation of tunneling time.
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I. INTRODUCTION

The evolution of massive and non-massive particles, inside and outside a potential or scatter-

ing region, dealing with both quantum and electromagnetic systems has been a problem of great

and relevant interest in the scattering theory1;2. The distortion of a wave packet is the most

evident and at the same time the less understood e�ect. In quantum systems the re
ected and

transmitted wave packet components depend in a very precise way on the tunneling probability

amplitudes and on the phase coherence and interference phenomena. The calculation of this

fundamental propertY requires, in the theoretical description, either appropriate or powerful

methods to solve directly or indirectly the wave equations. In general, most if not all of the

existing approaches study the outgoing wave functions in the asymptotic regions. Here we are

interested in describing the time evolution of wave packets both outside and inside the scattering

potential region. The interest in studying the scattering amplitudes in the asymptotic limit is

suggested by the experimental set up. The fact that the calculated scattering amplitudes are

precisely in the asymptotic region is actually not due to intrinsic limitations of the scattering

approach, as is generally believed, but is a consequence of the need to account for physical quan-

tities and results, determined precisely in that region. Besides the topological and geometrical

properties of the scattering process, the lack of detailed information on the scattering potential

forces one to study this �eld in rather general terms without much reference or details to the

speci�c potential function. The quantum analog of classical particle motion is a complex pro-

cess that can be understood only in terms of very precise analytical calculations that will allow

a rigorous and exhaustive analysis of the overwhelming variety of possible e�ects. As will be

seen in the present work, the evolution and the way in which a wave packet gets distorted by a

given scatterer system is an extremely sensitive e�ect and absolutely dependS on all the phys-

ical parameters characterizing the scattering process. When the scattering region has a known

potential shape, or the refraction properties are known, it is possible, in principle, to follow the

dynamics of the transmitted and re
ected components of the wave packets when the theory is

able to determine the transmission and re
ection amplitudes as well as the wave functions along

the scatterer system, for any value of the incoming particle energy, i.e. for each k-component

of the wave packet. This has been shown to be possible for an important class of systems: the

locally periodic systems. The general results of the theory of �nite periodic systems (TFPS)

provide analytical expressions for the calculation of scattering amplitudes, through an arbitrary

periodic region. We can also determine precisely resonance energies in the bands3. Knowing

these properties of a superlattice (SL) we are now able to study their e�ects on the dispersion

of a wave packet. Among these e�ects, we mention the complete or partial back-scattering and

the trapping of a wave packet for the resonance energies. Some particular examples will be

chosen in such a way that the energy is in a gap, a resonance energy E�;� or at an arbitrary

energy in an allowed band. Here � is the label for a band and � is the label for the intraband
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state. In each case it will be interesting to establish the relation with the transmission and

re
ection amplitudes, and also to understand the formation of the stationary pattern and its

persistance in connection with the corresponding tunneling time, which issue has been revived

lately both theoretically4{10 and experimentally11{13. The aim of this work is to determine the

time evolution on a Gaussian wave packet, centered at an arbitrary ko, when it approaches and

gets scattered by a locally periodic potential. The case of scattering by a rectangular barrier was

studied in reference [14]. We shall present here explicit derivations of the principal theoretical

expressions that will then be applied to a number of particular cases. In Section II we start

with the description of a stationary wave function. In section III we present the evolution of a

Gaussian wave packet in all regions of the SL (outside and inside). In section IV we apply our

formulation for speci�c cases which will be continued with a discussion on the results.

II. STATIONARY WAVE FUNCTION

Before studying the time-dependent wave function, we shall �rst consider the stationary state

of the wave function in a superlattice by using the transfer matrix method. Let us consider a �nite

periodic superlattice with n cells where each cell has length lc. We represent the superlattice

by having a square potential barrier of height Vo and width b located in the middle of each cell,

while the remaining part of the cell has zero potential of length a=2 on the left and right of

the barrier so that lc = a + b; see �gure 1. We take the origin z = 0 at the left corner of the

superlattice. In the formalism of transfer matrix, the wave function is represented by a state

vector as

 ̂(z) =

0
BB@  a(z)

 b(z)

1
CCA (1)

where  a(z) and  b(z) are the right-moving (or increasing) and left-moving (or decreasing) wave

functions. The state vector  ̂(z) at an arbitrary point z can be related to the one at an arbitrary

point z0 by

 ̂(z) = T (z; z0) ̂(z0) (2)

where T (z; z0) is the transfer matrix of the form

T (z; z0) =

0
BB@ � �


 Æ

1
CCA : (3)

Here, in the one-propagating mode approximation, � ; � ; 
 ; Æ are complex functions of the

potential parameters and of z, z0. With the multiplicative property of the transfer matrix, the

state vector  j+1(z) at any point z in cell j + 1 of the superlattice can then be written as
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 ̂j+1(z) = T (z; jlc) [T (lc; 0)]
j  ̂1(0) ; j = 0; 1; : : : ; (n� 1) (4)

where T (z; jlc) is the transfer matrix from jlc to z in cell j + 1. T (lc; 0) is the transfer matrix

for one cell and [T (lc; 0)]
j is the transfer matrix for j cells. For square barrier potentials, the

transfer matrix T (lc; 0) of a cell is given by

T (lc; 0) �

0
BB@ � �

�� ��

1
CCA =

0
BB@ �be

ika �b

��b ��be
�ika

1
CCA (5)

where the elements � = �be
ika and � = �b are given as

�b = cosh(�b) �
i

2

�
�

k
�
k

�

�
sinh(�b) (6)

�b = �
i

2

�
�

k
+
k

�

�
sinh(�b) (7)

with

k =

s
2mE

�h2
; � =

s
2m(Vo �E)

�h2
: (8)

The transfer matrix [T (lc; 0)]
j for j full cells is given by

T j(lc; 0) � [T (lc; 0)]
j =

0
BB@ � �

�� ��

1
CCA

j

�

0
BB@ �j �j

��j ��j

1
CCA (9)

which elements �j and �j were shown in reference [3] to be

�j = Uj(�R)� ��Uj�1(�R) ; �j = �Uj�1(�R): (10)

Uj(�R) is the Chebyshev polynomial of the second kind15 evaluated at �R, which is the real

part of �, i.e., � = �R + i�I .

Consider now the situation with an incoming wave from the left of the superlattice so that

 (z) at z < a=2 is given by

 (z) = Aeikz +Be�ikz: (11)

With the condition of outgoing (transmitted) wave moving only to the right, and by using

 ̂n(z) = T n(z; 0) ̂1(0), we �nd that the amplitude rn(k) of re
ection for the whole superlattice

is

rn(k) �
B

A
= �

��n
��n

: (12)

Substituting Eq. (12) into (((to))) Eq. (4), we have the state vector  ̂j+1(z) in cell (j + 1) as
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 ̂j+1(z) = A

0
BBBBBB@

�p
�
�j � �j

��n
��n

�
+ �p

�
��j � ��j

��n
��n

�


p
�
�j � �j

��n
��n

�
+ Æp

�
��j � ��j

��n
��n

�

1
CCCCCCA

� A

0
BB@  j+1;a(z)

 j+1;b(z)

1
CCA : (13)

where �p ; �p ; 
p ; Æp are the elements of T (z; jlc), i.e.,

T (z; jlc) =

0
BB@ �p �p


p Æp

1
CCA : (14)

The actual wave stationary function in cell (j + 1) is then16

 j+1(z) = A

�
(�p + 
p)

�
�j � �j

��n
��n

�
+ (�p + Æp)

�
��j � ��j

��n
��n

��
: (15)

In this function, the components  j+1;a(z) and  j+1;b(z) (clearly expressed in Eq. (13)) are

mixed just for compactness.

To illustrate, we have plotted in �gure 2 the electron wave function in the superlattice

GaAs(Al0:3Ga0:7As/GaAs)
6. In this case, the number of cells is n = 6, a = 50 �A and b = 30

�A so that lc = 130 �A. For the �gure, we have used the barrier height as Vo = 0:23 eV and the

energy of the electron as E = E2;4 = 0:1318 eV, which is the fourth resonance in the second

band.

III. EVOLUTION OF A WAVE PACKET

Having found the stationary state, we now study the evolution of a wave packet as a function

of time t. For clarity of the natural physical di�erences, we will divide the presentation in three

characteristic scattering regionS, ouside (the left- and right-hand side of the superlattice) and

inside the superlattice.

A. The re
ected wave packet

We assume the packet to be located at some position zo < a=2 at an arbitrary time to that

will be taken as to = 0. With the possibility of having a re
ected wave the total wave function

for z < a=2 will be

 (z; t = 0) =

Z
dk g(k)

h
eik(z+zo) + jrn(k)je

�i[k(z�zo)+�r(k)]
i

(16)

where

rn(k) � jrn(k)je
�i�r(k) ; and �r(k) =

�

2
� tan�1

�
�IUn�1(�R)

Un(�R)� �RUn�1(�R)

�
: (17)
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For a concrete study, we take the wave packet to be Gaussian distributed and centered at k = ko

(with energy Eo), i.e.,

g(k) = e�
(k�ko)2 : (18)

At any time t > 0, the wave packet on the left-hand side of the superlattice (z < a=2) is

given by

 (z; t) =

Z
dk e�
(k�ko)2

h
eik(z+zo) + jrn(k)je

�i[k(z�zo)+�r(k)]
i
e�i!(k)t (19)

where !(k) = �hk2=(2m). Performing the Gaussian integration, and using

vg �

�
d!(k)

dk

�
ko

=
�hko
m

; � �
1

2

 
d2!(k)

dk2

!
ko

=
�h

2m
(20)

we obtain, for z < a=2, the wave function

 (z; t) �

�
�


 + i�t

�1=2

exp

"
�
(z + zo � vgt)

2

4(
 + i�t)

#
ei[ko(z+zo)�!(ko)t] +

+

0
@ �


 + i�t+ i
2
d2�r(ko)

dk2

1
A

1=2

jrn(ko)j exp

2
64�

�
z � zo + vgt+

d�r(ko)
dk

�2
4
�

 + i�t+ i

2
d2�r(ko)

dk2

�
3
75�

�e�i[ko(z�zo)+!(ko)t+�r(ko)] : (21)

Here, the �rst term represents the incoming wave centered at z = �zo + vgt, while the second

term represents the re
ected wave centered at z = zo � vgt� (d�r(k)=dk)ko . Therefore, there is

a time delay �(ko) for the back-scattered component that is given by

�(ko) = �
1

vg

"
a+

�
d�r(k)

dk

�
ko

#
: (22)

Notice that � is a phase time17;11. It will be seen below that this is the same as the superlattice

tunneling time10. In �gure 3, we have plotted the time delay �(k) as a function of the energy

E of an electron in a superlattice of GaAs(Al0:3Ga0:7As/GaAs)
6 where the number of cells is

n = 6, a = 50 �A and b = 30 �A (i.e., lc = 130 �A ) and the barrier height is Vo = 0:23 eV.

B. Wave packet inside the superlattice

Let us now consider the time-dependent wave packet inside the superlattice. With the

stationary wave function  j+1(z) in Eq. (15), the time dependent wave packet  j+1(z; t) becomes

 j+1(z; t) =

Z
dk g(k) [ j+1;a(z; k) +  j+1;b(z; k)] e

i[kzo�!(k)t] (23)

where we have de�ned  j+1;a(z; k) �  j+1;a(z) and  j+1;b(z; k) �  j+1;b(z). Performing the

Gaussian integration as before, we get
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 j+1(z; t) �

0
@ �


 + i�t� i
2
d2�j+1;a(ko)

dk2

1
A

1=2

j j+1;a(z; ko)j exp

2
64�

�
vgt� zo �

d�j+1;a(ko)
dk

�2
4
�

 + i�t� i

2
d2�j+1;a(ko)

dk2

�
3
75

�eikozoe�i[!(ko)t��j+1;a(ko)]

+

0
@ �


 + i�t� i
2
d2�j+1;b(ko)

dk2

1
A

1=2

j j+1;b(z; ko)j exp

2
64�

�
vgt� zo �

d�j+1;b(ko)
dk

�2
4
�

 + i�t� i

2
d2�j+1;b(ko)

dk2

�
3
75

�eikozoe�i[!(ko)t��j+1;b(ko)]: (24)

Here, we have de�ned

�j+1;a(ko) � tan�1

 
Re  j+1;a(z; ko)

Im  j+1;a(z; ko)

!
; �j+1;b(ko) � tan�1

 
Re  j+1;b(z; ko)

Im  j+1;a(z; ko)

!
(25)

where Re and Im stand for the real and imaginary parts, respectively. The result in Eq. (24)

certainly goes back to Eq. (21) for j = 0 and z < a=2.

C. The time-dependent transmitted wave packet

The transmitted wave packet is given by Eq. (24) with j = n� 1 and z > [(n� 1)lc+
a
2 + b],

which is

 n(z; t) �

0
@ �


 + i�t� i
2
d2�t(ko)

dk2

1
A

1=2

1

j�nj
exp

2
64�

�
vgt� zo � [z � n`c]�

d�t(ko)
dk

�2
4
�

 + i�t� i

2
d2�t(ko)

dk2

�
3
75�

�eikozoe�i[!(ko)t�k(z�n`c)��t(ko)] ; for z > [(n� 1)`c +
a

2
+ b]: (26)

Here, �n � j�nje
i�t , i.e.,

�t = tan�1
�

�IUn�1(�R)

Un(�R)� �RUn�1(�R)

�
: (27)

Equation (26) gives the center of j n(z; t)j
2 at the position z = vgt � zo + nlc � (d�t=dk)ko so

that it also gives tunneling time tT for the wave packet through the superlattice as

tT = �
1

vg

�
a�

d�t
dk

�
= �: (28)

We see here that, as stated earlier, the tunneling time tT is the same as the time delay �

for re
ection in Eq. (22). Furthermore, we have now recovered the tunneling time derived in

reference [10], which agreed extremely well with the experiments in references [11,12].

IV. WAVE PACKET DISPERSION AND DISCUSSION

We will apply our formulation to study the time and space evolution of a wave packet which

gets scattered and moves through a multilayer GaAs(Al0:3Ga0:7As/GaAs)
6 superlattice. We

7



work in the e�ective mass approximation and take the electron e�ective mass m�

A = 0:067me in

GaAs layers and m�

B = 0:1me in the Al0:3Ga0:7As layers, with me the bare electron mass. We

shall start considering the wave packet with its energy centroid lying in a gap. A particular case

will be taken between the �rst and the second allowed energy bands (see �gure 3). For E = 0:075

eV, the stationary wave function is shown in �gure 4(a). It is clear that the particle prefers to

be localized in the �rst cell. For this reason it is possible to distribute the wave packet near the

SL without much distortion (see �gure 4(b)). This is not the case for energies in the bands, as

will be seen below. As time increases, the packet approaches the SL and gets back-scattered

almost completely. Eventually, the packet will try to recover its previous Gaussian shape with

intermediate steps with very strong phase interference. We notice from �gures 4(c)-(f) that the

probability distribution inside the SL resembles very much the shape of that of the stationary

states.

We now move on to a resonance energy, which will be taken arbitrarily as the second reso-

nance in the second band, i.e., E2;2 = 0:1225 eV. From �gures 5(a) we observe that the stationary

probability is symmetrically distributed around the center of the SL. Contrary to the earlier case,

�gure 5(b) shows that the Gaussian tail is distorted in the SL. This happens because the wave

components with energies around E2;2 are allowed to be transmitted and trapped in the SL with

a probability distribution that again resembles the stationary distribution. When the main part

of the packet enters the system (see �gure 5(d)) the trapping gets more pronounced. As most of

the non-resonant components have left the SL, the resonant component keeps trying to remain

with the stationary distribution for a very long time which is of the order of the tunneling time

and of the decay time �t � �h=�E�;� with �E�;� the resonance width.

Another characteristic example will be an energy around a local minimum in a band, taken

arbitrarily as E = 0:1303 eV which lies between E2;3 and E2;4. a stationary wave function is an

extented asymmetric function. In this case, as is in the previous ones, the tail inside the SL is

distorted and the local probability distribution tends to follow the pattern of the stationary one.

This type of response of the SL is also present in the previous cases showing a kind of universal

behavior. For a wave packet with narrow width in energy, the centroid energy component

dominates and contributes the most to the pattern of the trapped distribution. It is remarkable

that the centroid stationary wave function stays for a very long time, as seen in �gures 6(c)-(e).

While in the case of resonance energy the persistance is due to the long tunneling time, in this

case it is due to the small transmission coeÆcient.

Although scattering processes are very complicated, the procedure presented here allows us

to follow all details of the process clearly.

The ratio of the amount of 
ux leaving the SL to the right and to the left depends on the

ratio of the transmission and re
ection coeÆcients for a particle with energy in the centroid of

the wave packet.
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V. CONCLUSIONS

We have deduced a general expression for Gaussian wave packets moving through a periodic

potential of arbitrary shape, that has been applied to rectangular potentials with arbitrary

number n of cells. We have derived the tunneling time, de�ned as the phase time. It is shown

that for a wave packet with its centroid energy Eo in a gap, the back-scattered wave will provide

much more information on the tunneling time. To summarize, we have studied the evolution of

a Gaussian wave packet in a superlattice of an arbitrary number of cells.
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FIGURES

FIG. 1. A superlattice with n cells and square-barrier periodic potential with periodicity

lc = a+ b.

FIG. 2. The absolute value of the stationary wave function, j j+1(z)j (in arbitrary units), of

an electron with energy E = E2;4 = 0:1381 eV, in a superlattice of GaAs(Al0:3Ga0:7As/GaAs)
6

with n = 6 and lc = 130 �A.

FIG. 3. The time delay �(k) as a function of energy E of an electron in a

GaAs(Al0:3Ga0:7As/GaAs)
6 superlatice with n = 6 and lc = 130 �A.

FIG. 4. The time-series of wave packets with centroid energy Eo in a gap of

GaAs(Al0:3Ga0:7As/GaAs)
6 . 
 = 12; 133 �A2. In (a) the absolute value of the stationary

state (in arbitrary units) for an electron with energy Ef = 0:075 eV. In (b) the approaching

wave packet centered at zo = �3lc = �390 �A. In (c) the wave packet which center has not yet

reached the superlattice. The tail of the packet starts building the stationary partern of the

Ef -component. The wave packet when the center just reaches the �rst barrier at a=2 is shown

in (d). After a time delay � = 6:33� 10�15s the Ef -component of the wave packet gets re
ected

as shown in (e). In (f) the re
ected wave packet has its center back to zo. Compare with (b).

FIG. 5. The time-series for wave packets with Eo in a resonance. 
 = 185; 686:8 �A2. In

(a) the absolute value of the stationary state (in arbitrary units) for an electron with energy

E2;2 = 0:1225 eV. In (b) the approaching wave packet is centered at zo = �lc = �130 �A.

Notice that the right-hand side tail is already distorted. In (d) most of of the wave packet is

already inside the superlattice. The trapped E2;2-component, with negligible re
ection, can be

noticed in (e), (f). In the last �gure this component remains after a very long time compared

to � = 9:54 � 10�13 s).
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FIG. 6. The time-series for wave packets with centroid energy Eo around a local minimum

in a band. 
 = 6; 983:75 �A2. In (a) the absolute value of the stationary state (in arbitrary units)

for an electron with energy Elm = 0:1303 eV. In (b) the approaching wave packet centered at

zo = �lc = �130 �A. In (c) most of the wave packet is already inside the superlattice. The

trapped E2;2-component, with negligible re
ection, can be noticed in (d), (e). In the last �gure

this component remains after a very long time compared to � = 5:04 � 10�13 s).

12


