ISOMETRIC C^{1}-IMMERSIONS FOR PAIRS OF RIEMANNIAN METRICS

Giuseppina D'Ambra ${ }^{1}$
Department of Mathematics, University of Cagliari, Cagliari, Italy
and
Mahuya Datta ${ }^{2}$
Department of Mathematics, University of Calcutta, Calcutta, India.

Abstract

Let h_{1}, h_{2} be two Euclidean metrics on \mathbb{R}^{q}, and let V be a C^{∞}-manifold endowed with two Riemannian metrics g_{1} and g_{2}. We study the existence of C^{1}-immersions $f:\left(V, g_{1}, g_{2}\right) \longrightarrow$ $\left(\mathbb{R}^{q}, h_{1}, h_{2}\right)$ such that $f^{*}\left(h_{i}\right)=g_{i}$ for $i=1,2$.

MIRAMARE - TRIESTE

August 2001

[^0]
1. Introduction

In 1954 Nash [4] proved his C^{1}-isometric Embedding Theorem saying that if an n-dimensional Riemannian manifold (V, g) admits a C^{1}-immersion (resp. embedding) in \mathbb{R}^{q}, where $q \geq \operatorname{dim} V+$ 2 , then it admits a C^{1}-isometric immersion (resp. embedding) in \mathbb{R}^{q}. Kuiper [3] improved this result by showing that it is true even when $q \geq \operatorname{dim} V+1$. The key idea in the proof is to start with a g-short C^{∞} map and to approach g through a sequence of g-short C^{∞}-maps - improving the approximation in every successive step and keeping control over the first derivative of the map - so that finally the required isometric C^{1}-map comes as the C^{1}-limit of the sequence.

The problem of C^{1}-isometric immersions in a general Riemannian Manifold has been treated by Gromov through the Convex Integration Theory [2] which accommodates the essence of Nash-Kuiper techniques.

The aim of this paper is to generalize the result of Nash to the case where the manifolds come with pairs of Riemannian metrics. The problem we consider can be formulated as follows: Let h_{1} be the standard Euclidean metric on \mathbb{R}^{q} with canonical coordinates $\left(x_{1}, x_{2}, \ldots, x_{q}\right)$ and $h_{2}=\sum_{i=1}^{q} \lambda_{i}^{2} d x_{i}^{2}$, where we assume that $0<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{q}$. Consider a C^{∞}-manifold V with two C^{∞}-Riemannian metrics g_{1} and g_{2}. The problem is to determine when there exists a C^{1}-immersion $f:\left(V, g_{1}, g_{2}\right) \longrightarrow\left(\mathbb{R}^{q}, h_{1}, h_{2}\right)$ such that

$$
f^{*}\left(h_{1}\right)=g_{1} \quad \text { and } \quad f^{*}\left(h_{2}\right)=g_{2} .
$$

It is evident that not all pairs $\left(g_{1}, g_{2}\right)$ can be induced from $\left(h_{1}, h_{2}\right)$ by a map. In fact, $\left(g_{1}, g_{2}\right)$ must satisfy the inequality

$$
\lambda_{1}^{2} g_{1} \leq g_{2} \leq \lambda_{q}^{2} g_{1} .
$$

The above condition in general is not sufficient. For example we consider the linear situation, when $V=\mathbb{R}^{n}, g_{1}=\sum_{i=1}^{n} d y_{i}^{2}$, and $g_{2}=\sum_{i=1}^{q} \mu_{i}^{2} d y_{i}^{2}$ with $\mu_{i}>0$ for all $i=1, \ldots, n$. It may be proved by simple calculation that if there are $2 n$ indices $\left\{i_{1}, i_{2}, \ldots, i_{2 n}\right\}$ such that

$$
\lambda_{i_{2 k-1}}<\mu_{k}<\lambda_{i_{2 k}}
$$

for $k=1,2, \ldots, n$, then we obtain an injective linear map $\mathbb{R}^{n} \longrightarrow \mathbb{R}^{q}$ inducing $\left(g_{1}, g_{2}\right)$ from $\left(h_{1}, h_{2}\right)$. In particular, let $a=\min _{k} \mu_{k}$ and $b=\max _{k} \mu_{k}$ be two positive numbers. If there are n many λ_{i} 's smaller than a and an equal number of λ_{i} 's greater than b, then there exists an injective linear map which is isometric with respect to both the pairs $\left(g_{1}, h_{1}\right)$ and $\left(g_{2}, h_{2}\right)$.

On the other hand if we take $g_{1}=g_{2}$ then the existence of such a linear map necessarily implies the existence of an injective linear map $L: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{q}$ which is ($h_{2}-h_{1}$)-isotropic, that is $L^{*}\left(h_{2}-h_{1}\right)=0$. If $q_{+}(h)$ and $q_{-}(h)$ respectively denote the positive and the negative ranks of $h=h_{2}-h_{1}$ then such an isotropic map exists only if $q_{+} \geq n$ and $q_{-} \geq n$, for the set of h-isotropic vectors contains at the most an m-dimensional subspace for $m=\min \left(q_{+}, q_{-}\right)$.

We now state the main result of this paper and an immediate corollary to it.

Theorem 1.1. Let $\left(\mathbb{R}^{q}, h_{1}, h_{2}\right)$ be as above and let V be an n-dimensional C^{∞}-manifold. Let a, b be two positive numbers, $a<b$, such that $\lambda_{i}<a$ for all $i \leq 3 n+2$ and $\lambda_{i}>b$ for $i \geq q-3 n-1$, and none of the λ_{i} 's lies between a and b. If g_{1} and g_{2} are two Riemannian metrics on V satisfying the relation $a^{2} g_{1}<g_{2}<b^{2} g_{1}$ then there exists a C^{1}-immersion $f: V \longrightarrow \mathbb{R}^{q}$ such that

$$
f^{*}\left(h_{1}\right)=g_{1} \quad \text { and } \quad f^{*}\left(h_{2}\right)=g_{2} .
$$

Corollary 1.2. Let (V, g) be a smooth Riemannian manifold of dimension n, and let $\left(\mathbb{R}^{q}, h_{1}, h_{2}\right)$ be as in Theorem 1.1. If $h_{1}-h_{2}$ is non-singular, and if the positive rank q_{+}and the negative rank q_{-}of $h_{1}-h_{2}$ satisfy $q_{+} \geq 3 n+2$ and $q_{-} \geq 3 n+2$ then there exists a C^{1}-immersion $f: V \longrightarrow \mathbb{R}^{q}$ such that $f^{*}\left(h_{1}\right)=g=f^{*}\left(h_{2}\right)$.

Observe that the map f in the corollary is, in particular, an isotropic immersion relative to $h_{1}-h_{2}$. One may compare the above corollary with a result of Gromov ([2], 2.4.9(B)) which says that if (W, h) is a pseudo-Riemannian manifold with $q_{+}, q_{-} \geq 2 n$ then an arbitrary C^{∞}-manifold V admits a isotropic C^{1}-immersion in W.

We shall closely follow Nash in our proof of Theorem 1.1. We explain the basic ideas of Nash's techniques [4] in Section 2. Through Section 3 to Section 5 we shall make preparation for the adaptation of Nash's techniques in our context. Finally in Section 6 and 7 we prove Theorem 1.1

2. Preliminaries

Here we briefly discuss Nash's proof of C^{1}-Isometric Embedding Theorem. For a detailed treatment we refer the reader to [1] [4].

Theorem 2.1. (Nash) If a Riemannian manifold (V, g) admits a smooth immersion (or embedding) in \mathbb{R}^{q}, then there exists an isometric C^{1}-immersion (respectively, a C^{1}-embedding) $f:(V, g) \longrightarrow\left(\mathbb{R}^{q}, h\right)$, provided $\operatorname{dim} V \leq q-2$, where h denotes the canonical Euclidean metric on \mathbb{R}^{q}.

To prove the theorem Nash starts with a C^{∞}-immersion $f_{0}: V \longrightarrow\left(\mathbb{R}^{q}, h\right)$ which is strictly short relative to the C^{∞}-Riemannian metric g on V. Recall that a C^{1}-map $f_{0}: V \longrightarrow \mathbb{R}^{q}$ is strictly short if the difference $g_{1}-f_{0}^{*} h_{1}$ is positive definite. This is expressed by the notation $g_{1}-f_{0}^{*} h_{1}>0$ or $g_{1}>f_{0}^{*} h_{1}$. Short immersions $V \longrightarrow \mathbb{R}^{q}$ exist whenever V admits an immersion in \mathbb{R}^{q}.

The basic idea is to construct a sequence of strictly short C^{∞}-immersions $f_{j}:(V, g) \longrightarrow\left(\mathbb{R}^{q}, h\right)$ satisfying the two properties:

1. $\left\|g-f_{j}^{*}(h)\right\|_{0}<\frac{2}{3}\left\|g-f_{j-1}^{*}(h)\right\|_{0}$,
2. $\left\|f_{j}-f_{j-1}\right\|_{1}<c(n)\left\|g-f_{j-1}^{*}(h)\right\|_{0}^{\frac{1}{2}}$,
where $\|\cdot\|_{r}$ denotes the norm in the C^{r} topology and $c(n)$ is a constant depending on the dimension n of the manifold V. It then follows that the sequence $\left\{f_{j}\right\}$ is a Cauchy sequence in
the C^{1}-topology and hence it converges to some C^{1}-function $f: V \longrightarrow \mathbb{R}^{q}$ such that $f^{*}(h)=g$. The problem therefore boils down to the following:

Lemma 2.2. Assume $q \geq \operatorname{dim} V+2$ and let $f_{0}: V \longrightarrow\left(\mathbb{R}^{q}, h\right)$ be a strictly short C^{∞}-immersion. Then there exists a $C^{\infty}{ }_{-i m m e r s i o n ~} f_{1}: V \longrightarrow\left(\mathbb{R}^{q}, h\right)$ such that:
(i) f_{1} is strictly short,
(ii) $\left\|g-f_{1}^{*}(h)\right\|_{0}<\frac{2}{3}\left\|g-f_{0}^{*}(h)\right\|_{0}$,
(iii) $\left\|f_{1}-f_{0}\right\|_{1}<c(n)\left\|g-f_{0}^{*}(h)\right\|_{0}^{1 / 2}$.

Proof. The construction of f_{1} involves a sequence of successive 'stretching' and 'twisting' on f_{0}. We fix a locally finite covering $\mathcal{U}=\left\{U_{p}: p \in \mathbb{Z}\right\}$ of V by contractible coordinate neighbourhoods U_{p} in V. Nash noted in his paper that a positive definite C^{∞}-metric g on a manifold V admits a decomposition as stated below:

$$
\begin{equation*}
g=\sum_{i=1}^{\infty} \phi_{i}^{2} d \psi_{i}^{2} \tag{1}
\end{equation*}
$$

where ϕ_{i} and ψ_{i} are C^{∞}-functions on V with support of ϕ_{i} compact and contained in some $U_{p} \in \mathcal{U}$. Further, almost all ϕ_{i} 's vanish on a U_{p}, and there are at most N many ϕ_{i} 's which are simultaneously non-zero at any point of V, where N is a constant depending on the dimension of V. This observation plays a crucial role in his proof of Theorem 2.1. Since f_{0} is strictly short, $\delta=g-f_{0}^{*}(h)$ is positive definite. Hence $\delta / 2$ can be decomposed as $\delta / 2=\sum_{i=1}^{\infty} \phi_{i}^{2} d \psi_{i}^{2}$, where ψ_{i} and ϕ_{i} are C^{∞}-functions on V as in equation (1).

We first construct a sequence of C^{∞}-immersions, $\left\{\bar{f}_{i}\right\}$ with $\bar{f}_{0}=f_{0}$. In the i-th successive step we deform \bar{f}_{i-1} on some $U_{p} \in \mathcal{U}$ where $U_{p} \supset \operatorname{supp} \phi_{i}$, to obtain \bar{f}_{i} such that the induced metric is approximately augmented by the factor $\phi_{i}^{2} d \psi_{i}^{2}$.

Fix any $\varepsilon_{1}>0$. We describe how f_{0} can be deformed within its ε_{1}-neighbourhood (relative to the C^{0} topology) to a C^{∞}-immersion \bar{f}_{1} such that the induced metric $\bar{f}_{1}^{*}(h)=f_{0}^{*}(h)+\phi_{1}^{2} d \psi_{1}^{2}+$ $O\left(\varepsilon_{1}\right)$.

Normal Extension(stretching): From the above decomposition of $\delta / 2$ we obtain an $U_{p} \in \mathcal{U}$ such that $\operatorname{supp} \phi_{1} \subset U_{p}$. We extend the map f_{0} to $\tilde{f}_{0}: U_{p} \times \mathbb{R}^{2} \longrightarrow \mathbb{R}^{q}$ in such a way that

$$
\tilde{f}_{0}^{*}(h)=f_{0}^{*}(h) \oplus d t^{2} \oplus d s^{2}
$$

on $\left.T \mathbb{R}^{q}\right|_{U_{p}}$, where (t, s) denote the global coordinates on \mathbb{R}^{2}. To get the extension we merely have to choose two vector fields namely τ_{1} and τ_{1}^{\prime} on U_{p} which are mutually orthogonal and also normal to $T V$. Since f_{0} is an immersion and $q \geq \operatorname{dim} V+2$ such vector fields always exist on contractible sets. Then we define $\tilde{f}_{0}: U_{p} \times \mathbb{R}^{2} \longrightarrow \mathbb{R}^{q}$ by the formula: $(y, t, s) \mapsto f_{0}(y)+t \tau_{1}+s \tau_{1}^{\prime}$. The difference $\tilde{f}_{0}^{*}(h)-f_{0}^{*}(h) \oplus d t^{2} \oplus d s^{2}$ on $U_{p} \times D_{\varepsilon_{1}}^{2}$ is of the order of ε_{1}, where $D_{\varepsilon_{1}}^{2}$ denotes the ε_{1}-ball in \mathbb{R}^{2} centered at the origin.

Adding $\phi_{1}^{2} d \psi_{1}^{2}$ (twisting): Consider the $C^{\infty}{ }^{-}$map $\alpha: \mathbb{R} \longrightarrow \mathbb{R}^{2}$ defined by $u \mapsto$ $\left(\varepsilon_{1} \cos \varepsilon_{1}^{-1} u, \varepsilon_{1} \sin \varepsilon_{1}^{-1} u\right)$. Note that the map α is an isometry with respect to the canonical

Euclidean metrics on \mathbb{R} and \mathbb{R}^{2}. Moreover, it takes \mathbb{R} into the ε_{1}-ball D_{ε}^{2} in \mathbb{R}^{2} centered at the origin.

Define a map $\alpha_{1}: U_{p} \longrightarrow U_{p} \times \mathbb{R}^{2}$ as follows:

$$
u \mapsto\left(u, \varepsilon_{1} \phi_{1}(u) \cos \varepsilon_{1}^{-1} \psi_{1}(u), \varepsilon_{1} \phi_{1}(u) \sin \varepsilon_{1}^{-1} \psi_{1}(u)\right) .
$$

It can be shown that $\alpha_{1}^{*}\left(d t^{2} \oplus d s^{2}\right)=\phi_{1}^{2} d \psi^{2}+\varepsilon_{1}^{2} d \phi^{2}$. Since ϕ_{1} has its support contained in U_{p}, the composite map

$$
\bar{f}_{1}: U_{p} \xrightarrow{\alpha_{1}} U_{p} \times \mathbb{R}^{2} \xrightarrow{\tilde{f}_{0}} \mathbb{R}^{q}
$$

extends to a C^{∞}-map on all of V such that it coincides with f_{0} outside U_{1}. We shall denote this extension also by \bar{f}_{1}. Then

$$
\bar{f}_{1}^{*}(h)=f_{0}^{*}(h)+\phi_{1}^{2} d \psi_{1}^{2}+O\left(\varepsilon_{1}\right) .
$$

The difference $\bar{f}_{1}^{*}(h)-f_{0}^{*}(h)-\phi_{1}^{2} d \psi_{1}^{2}$ can be made arbitrarily small in the C^{0} topology by controlling ε_{1}.

On the other hand it is clear from the construction that the C^{0}-distance between \bar{f}_{1} and $\bar{f}_{0}=f_{0}$ is less than ε_{1}. Moreover, if $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ is a coordinate system on U_{p} then

$$
\left|\frac{\partial \bar{f}_{1}}{\partial y_{j}}-\frac{\partial \bar{f}_{0}}{\partial y_{j}}\right|=\phi_{1}\left|\frac{\partial \psi_{1}}{\partial y_{j}}\right|+O\left(\varepsilon_{1}\right)
$$

for all $j=1,2, \ldots, n$.
Repeating the above two steps for $\phi_{2}^{2} d \psi_{2}^{2}$ on \bar{f}_{1} and so on in succession, we obtain a sequence of maps $\bar{f}_{1}, \bar{f}_{2}, \ldots$ Since \mathcal{U} is locally finite and supports of only finitely many ϕ_{i} 's intersect an U_{p}, the sequence $\left\{\bar{f}_{i}\right\}$ is eventually constant on each U_{p}. Therefore, $\lim \bar{f}_{i}$ exists uniformly on it. Let $f_{1}=\lim \bar{f}_{i}$. Then, f_{1} is a C^{∞} map and $f_{1}^{*}(h)=f_{0}^{*}(h)+\frac{\delta}{2}-\sum_{i} O\left(\varepsilon_{i}\right)$ which gives

$$
g-f_{1}^{*}(h)=\frac{1}{2}\left(g-f_{0}^{*}(h)\right)-\sum_{i} O\left(\varepsilon_{i}\right),
$$

where $\sum_{i} O\left(\varepsilon_{i}\right)$ can be made arbitrarily small in the fine C^{0} topology.
Also, on any $U_{p} \in \mathcal{U}$ with coordinate functions $\left\{y_{1}, \ldots, y_{n}\right\}$ we have,

$$
\left|\frac{\partial f_{1}}{\partial y_{j}}-\frac{\partial \bar{f}_{0}}{\partial y_{j}}\right|=\sum_{i}\left|\frac{\partial \bar{f}_{i}}{\partial y_{j}}-\frac{\partial \bar{f}_{i-1}}{\partial y_{j}}\right|=\sum_{i} \phi_{i}\left|\frac{\partial \psi_{i}}{\partial y_{j}}\right|+\sum_{i} O\left(\varepsilon_{i}\right) .
$$

Since at most N many ϕ_{i} 's (N depending on n) are non-vanishing at a point, we can apply the Cauchy-Schwartz inequality on the first sum on the right hand side expression to obtain

$$
\begin{aligned}
\left(\sum_{i}\left|\phi_{i} \frac{\partial \psi_{i}}{\partial y_{j}}\right|\right)^{2} & \leq N \sum_{i} \phi_{i}^{2}\left(\frac{\partial \psi_{i}}{\partial y_{j}}\right)^{2} \\
& \leq N \sum_{i} \phi_{i}^{2} d \psi_{i}^{2}\left(\frac{\partial}{\partial y_{j}}, \frac{\partial}{\partial y_{j}}\right) \\
& \left.\leq N \sum_{i} \phi_{i}^{2} d \psi_{i}^{2}\right)\left(\frac{\partial}{\partial y_{j}}, \frac{\partial}{\partial y_{j}}\right) \\
& =\frac{N}{2} \delta\left(\frac{\partial}{\partial y_{j}}, \frac{\partial}{\partial y_{j}}\right)
\end{aligned}
$$

Therefore,

$$
\left\|f_{1}-f_{0}\right\|_{1} \leq c(n)\|\delta\|_{0}^{\frac{1}{2}}+\sum_{i} O\left(\varepsilon_{i}\right) .
$$

on each U_{p}, where $c(n)$ is a constant which depends on n.

We can choose ε_{i} at the i-th step for $i=1,2, \ldots$ in such a way that f_{1} is strictly short, and that the term $\sum_{i} O\left(\varepsilon_{i}\right)$ is strictly less than $\frac{1}{6}\left\|g-f_{0}^{*}(h)\right\|_{0}$. This gives relation (ii) and (iii).

We shall modify Nash's techniques to give a proof of Theorem 1.1. The initial map $f_{0}: V \longrightarrow$ \mathbb{R}^{q} in our context should be such that:
(a) $g_{1}-f_{0}^{*} h_{1}$ and $g_{2}-f_{0}^{*} h_{2}$ are positive definite, and they have simultaneous decomposition as $g_{1}-f_{0}^{*} h_{1}=\sum_{i} \phi_{i}^{2} d \psi_{i}^{2}$ and $g_{2}-f_{0}^{*} h_{2}=\sum_{i} c_{i}^{2} \phi_{i}^{2} d \psi_{i}^{2}$ for some C^{∞}-functions ϕ_{i} and ψ_{i} as above and some constants c_{i}.
(b) f_{0} admits a 'normal extension' \tilde{f}_{0}; that is, $\tilde{f}_{0}^{*}\left(h_{1}\right)=f_{0}^{*}\left(h_{1}\right) \oplus d t^{2} \oplus d s^{2} \tilde{f}_{0}^{*}\left(h_{2}\right)=f_{0}^{*}\left(h_{2}\right) \oplus$ $c^{2} d t^{2} \oplus c^{2} d s^{2}$ on V for some specific constant c which appear in the decomposition.

3. Decomposition Lemma

In this section and in the two subsequent ones we shall make the preparation for the Nash process. Here we state and prove the decomposition lemma in our context.

We first fix a countable covering $\mathcal{U}=\left\{U_{p} \mid p \in \mathbb{Z}\right\}$ of the manifold V which has the following properties:
(a) each U_{p} is a coordinate neighbourhood in V and
(b) for any $p_{0}, U_{p_{0}}$ intersects atmost m different U_{p} 's including itself (m is an integer depending on $n=\operatorname{dim} V)$.
Let $\left\{\phi_{p}\right\}$ be a smooth partition of unity on V subordinate to this covering $\left\{U_{p}\right\}$ such that support of ϕ_{p}, denoted supp ϕ_{p}, is compact for each p. Let $K_{p}=\operatorname{supp} \phi_{p} \subset U_{p}$.

Lemma 3.1. Let g_{1} and g_{2} be two Riemannian metrics on V such that $a^{2} g_{1}<g_{2}<b^{2} g_{1}$, where a, b are two numbers with $0<a<b$. Then there exists a decomposition of g_{1} and g_{2} as:

$$
g_{1}=\sum_{i=1}^{\infty} \phi_{i}^{2}\left(d \psi_{i}\right)^{2}, \quad g_{2}=\sum_{i=1}^{\infty} c_{i}^{2} \phi_{i}^{2}\left(d \psi_{i}\right)^{2},
$$

where for each i, ϕ_{i} and ψ_{i} are C^{∞} functions on V with supp ϕ_{i} contained in some U_{p} and c_{i} 's are real numbers such that $a<c_{i}<b$. Moreover, almost all ϕ_{i} 's vanish on an U_{p} and there are at most N many ϕ_{i} which are simultaneously non-zero at any point of V, where N is an integer depending on n.

Proof. Let P denote the vector space of quadratic forms on \mathbb{R}^{n}. Then $\operatorname{dim} P$ is $n(n+1) / 2$. Let \bar{P} be the subset of $P \times P$ consisting of ordered pairs of positive definite quadratic forms (α, β) such that $a^{2} \alpha<\beta<b^{2} \alpha$. Then \bar{P} is an open convex subset of $P \times P$. We cover \bar{P} by geometrical open simplexes which lie completely within it. The collection of these gemetrical simplexes is locally finite and is such that no point lies in more than N_{1} simplexes, where N_{1} is a number depending on n.

Now, since $a^{2} g_{1}<g_{2}<b^{2} g_{1}$, $\left(g_{1}, g_{2}\right)$ maps K_{p} onto a compact set in \bar{P} and hence the image intersects only a finite number of simplexes, say $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n_{p}}$. Denote the vertices of
$\sigma_{\mu}, \mu=1,2, \ldots, n_{p}$, by $\left(\alpha_{\mu 1}, \beta_{\mu 1}\right), \ldots,\left(\alpha_{\mu N_{2}}, \beta_{\mu N_{2}}\right)$ where $N_{2}=n(n+1)+1$. If $\left(g_{1}(x), g_{2}(x)\right)$ lies in the interior to some simplex σ_{i} then we can express $\left(g_{1}, g_{2}\right)$ at x as $\left(g_{1}(x), g_{2}(x)\right)=$ $\sum_{\nu} c_{\mu \nu}(x)\left(\alpha_{\mu \nu}, \beta_{\mu \nu}\right)$, where $c_{\mu \nu}(x)>0$ for each ν and $\sum_{\nu} c_{\mu \nu}(x)=1$.

We introduce, for each $\mu=1,2, \ldots n_{p}$, a weight function ω_{μ} by the following formula:

$$
\omega_{\mu}=\frac{\exp \left\{-\sum_{k} 1 / c_{\mu k}\right\}}{\sum_{j} \exp \left\{-\sum_{k} 1 / c_{j k}\right\}} .
$$

Observe that ω_{μ} is a smooth function on a neighbourhood of K_{p} and $\sum_{\mu} \omega_{\mu}=1$. These functions distribute a point over all the simplices in which it lies in the interior. Let $c_{\mu \nu}^{*}=c_{\mu \nu} \omega_{\mu}$, $\mu=1, \ldots n_{p}$ and $\nu=1, \ldots, N_{2}$. Then it may be easily seen that $g_{1}=\sum_{\mu, \nu} c_{\mu \nu}^{*} \alpha_{\mu \nu}$ and $g_{2}=\sum_{\mu, \nu} c_{\mu \nu}^{*} \beta_{\mu \nu}$ on a neighbourhood of K_{p}.

Now for each pair ($\alpha_{\mu \nu}, \beta_{\mu \nu}$) we can obtain a set of n-vectors $V_{\mu \nu}^{1}, \ldots, V_{\mu \nu}^{n}$ with respect to which $\alpha_{\mu \nu}$ and $\beta_{\mu \nu}$ can be simultaneously diagonalised in such a way that

$$
\alpha_{\mu \nu}=\sum_{r=1}^{n}\left(d \psi_{\mu \nu}^{r}\right)^{2} \text { and } \beta_{\mu \nu}=\sum_{r=1}^{n}\left(v_{\mu \nu}^{r}\right)^{2}\left(d \psi_{\mu \nu}^{r}\right)^{2},
$$

where $v_{\mu \nu}^{1}, \ldots, v_{\mu \nu}^{n}$ are n numbers, and $\psi_{\mu \nu}^{r}$ is the linear functional defined on $\left(U_{p} ; y_{1}, y_{2}, \ldots, y_{n}\right)$ by $\psi_{\mu \nu}^{r}=V_{\mu \nu}^{r} \cdot\left(y_{1}, \ldots, y_{n}\right)$. Clearly $a<v_{\mu \nu}^{r}<b$ for all $r=1,2, \ldots, n$.

Now $\left(g_{1}, g_{2}\right)=\left(\sum_{p} \phi_{p} g_{1}, \sum_{p} \phi_{p} g_{2}\right)$. Since $\operatorname{supp} \phi_{p}=K_{p}$ the following expressions make sense all over V :

$$
\begin{aligned}
\phi_{p} g_{2} & =\phi_{p} \sum_{\mu, \nu} c_{\mu \nu}^{*} \beta_{\mu \nu} \\
& =\phi_{p} \sum_{\mu, \nu} c_{\mu \nu}^{*} \sum_{r=1}^{n}\left(v_{\mu \nu}^{r}\right)^{2}\left(d \psi_{\mu \nu}^{r}\right)^{2} \\
& =\sum_{\mu, \nu} \phi_{p} c_{\mu \nu}^{*} \sum_{r=1}^{n}\left(v_{\mu \nu}^{r}\right)^{2}\left(d \psi_{\mu \nu}^{r}\right)^{2} \\
& =\sum_{r=1}^{n} \sum_{\mu, \nu}\left(v_{\mu \nu}^{r}\right)^{2}\left(\phi_{\mu \nu}^{r}\right)^{2}\left(d \psi_{\mu \nu}^{r}\right)^{2}
\end{aligned}
$$

Similarly,

$$
\phi_{p} g_{1}=\sum_{r=1}^{n} \sum_{\mu, \nu}\left(\phi_{\mu \nu}^{r}\right)^{2}\left(d \psi_{\mu \nu}^{r}\right)^{2}
$$

where $\phi_{\mu \nu}^{r}=\left(\phi_{p} \cdot c_{\mu \nu}^{*}\right)^{1 / 2}$ are smooth functions on V which are supported in U_{p}. Also, note that the functions $\psi_{\mu \nu}^{r}$ in the above can be replaced by smooth functions which are defined all over V.

Reindexing and then summing over p we get:

$$
g_{1}=\sum_{p=1}^{\infty} \sum_{r=1}^{n n_{p} N_{2}}\left(\phi_{p}^{r}\right)^{2}\left(d \psi_{p}^{r}\right)^{2} \quad g_{2}=\sum_{p=1}^{\infty} \sum_{r=1}^{n n_{p} N_{2}}\left(v_{p}^{r}\right)^{2}\left(\phi_{p}^{r}\right)^{2}\left(d \psi_{p}^{r}\right)^{2}
$$

where supports of the functions ϕ_{p}^{r} are compact and contained in U_{p} and $a<v_{p}^{r}<b$ for all $r=1,2, \ldots, n n_{p} N_{2}, p=1,2, \ldots$.

Further this decomposition is such that there can be at the most $m n N_{1} N_{2}$ terms which are non-vanishing at a given point of V. This proves that the above decomposition has all the required features.

Remark 3.2. We assume g_{1}, g_{2} to be C^{∞} for convenience only. If they are C^{0} we can approximate them inside each U_{p} by C^{∞} metrics which are sufficiently C^{0} close to g_{1}, g_{2}. It can be shown following Nash that the accumulated error at the end of each stage arising from this preliminary approximation can be controlled according to our requirement.

4. Existence of (g_{1}, g_{2})-short maps

Definition 4.1. Let V be a manifold with two Riamannian metrics g_{1} and g_{2}. A C^{1}-map $f_{0}: V \longrightarrow\left(\mathbb{R}^{q}, h_{1}, h_{2}\right)$ is $\left(g_{1}, g_{2}\right)$-short if the metrics $g_{1}-f_{0}^{*}\left(h_{1}\right)$ and $g_{2}-f_{0}^{*}\left(h_{2}\right)$ on V are positive definite. This will be expressed by $g_{i}-f_{0}^{*}\left(h_{i}\right)>0$ or $g_{i}>f_{0}^{*}\left(h_{i}\right), i=1,2$.

Proposition 4.2. Let V be a C^{∞}-manifold with two Riemannian metrics g_{1} and g_{2} which are related by $a^{2} g_{1}<g_{2}<b^{2} g_{1}$ for some constants $0<a<b$. Then there exists a $\left(g_{1}, g_{2}\right)$-short C^{∞}-immersion $f_{0}: V \longrightarrow\left(\mathbb{R}^{q}, h_{1}, h_{2}\right)$ which also satisfies the following inequalities:

$$
\begin{equation*}
a^{2}\left(g_{1}-f_{0}^{*} h_{1}\right)<\left(g_{2}-f_{0}^{*} h_{2}\right)<b^{2}\left(g_{1}-f_{0}^{*} h_{1}\right) . \tag{1}
\end{equation*}
$$

Proof. Here we prove the existence of f_{0} when V is a compact manifold. This is done by scaling a given C^{∞}-immersion with a suitable scalar.

Let f. be any immersion from V to \mathbb{R}^{q}. Consider the following four maps: $F_{1}, F_{2}: T V \times \mathbb{R} \longrightarrow$ \mathbb{R} defined respectively by

$$
(v, t) \mapsto\left(g_{1}-t^{2} f^{*} h_{1}\right) \text { and }(v, t) \mapsto\left(g_{2}-t^{2} f^{*} h_{2}\right)
$$

$G_{1}, G_{2}: T V \times \mathbb{R} \longrightarrow \mathbb{R}$ defined respectively by

$$
\begin{aligned}
(v, t) & \mapsto\left(g_{2}-a^{2} g_{1}\right)(v, v)-t^{2}\left(f^{*} h_{2}-a^{2} f^{*} h_{1}\right)(v, v) \\
\text { and }(v, t) & \mapsto\left(b^{2} g_{1}-g_{2}\right)(v, v)-t^{2}\left(b^{2} f^{*} h_{1}-f^{*} h_{2}\right)(v, v)
\end{aligned}
$$

for $v \in T V_{x}, x \in V, t \in \mathbb{R}$.
Let $S V$ denote the sphere bundle associated to $T V$. Since by our hypothesis $g_{1}, g_{2}, g_{2}-a^{2} g_{1}$ and $b^{2} g_{1}-g_{2}$ are positive-definite, all the above maps, when restricted to $S V \times\{0\}$ are strictly positive. Therefore, there exists a real-valued continuous function $\lambda: V \longrightarrow \mathbb{R}_{+}$such that $F_{i}(v, t)>0, G_{i}(v, t)>0$ for all $v \in T V_{x}$ and $t \in(0, \lambda(x)), x \in V, i=1$, 2. If V is compact, the function λ has a global minima. Let it be called λ_{0} which is strictly positive. Then the function $f_{0}=\lambda_{0} . f$. has all the desired property.

The open case can be treated as in Nash[4] combining the above observation with a partition of unity argument.

Remark 4.3. The set of $\left(g_{1}, g_{2}\right)$-short immersions which also satisfy the inequality (1) is an open set in the fine C^{∞}-topology.

5. Regular Maps

In this section we identify a class of maps which admit 'normal extension' in our context (Section 6). We start with the following definition.

Definition 5.1. An immersion $f: V \longrightarrow \mathbb{R}^{q}$ is said to be $\left(h_{1}, h_{2}\right)$ regular or simply regular (when the Euclidean metrics h_{1} and h_{2} on \mathbb{R}^{q} are well understood from the context), if the $h_{1}-$ orthogonal complement of $d f_{x}\left(T V_{x}\right)$ is transversal to the h_{2}-orthogonal complement of $d f_{x}\left(T V_{x}\right)$ at each $x \in V$.

Let A denote the linear transformation $\mathbb{R}^{q} \longrightarrow \mathbb{R}^{q}$ defined by the relation: $h_{2}\left(w, w^{\prime}\right)=$ $h_{1}\left(A w, w^{\prime}\right)$ for all $w, w^{\prime} \in \mathbb{R}^{q}$. Then it can be shown easily that a map $f: V \longrightarrow \mathbb{R}^{q}$ is regular if and only if $d f_{x}\left(T V_{x}\right) \oplus A\left(d f_{x}\left(T V_{x}\right)\right)$ has the maximum dimension at every $x \in V$.

Proposition 5.2. A generic map $f: V \longrightarrow \mathbb{R}^{q}$ is regular if $q>3 \operatorname{dim} V-1$.

Proof: Let $\operatorname{dim} V=n$. Let Σ be a subset of the Grassmannian manifold $G r_{n}\left(\mathbb{R}^{q}\right)$ which consists of all n-planes T in \mathbb{R}^{q} such that $T \cap A(T) \neq 0$. Then Σ is the disjoint union of two sets Σ^{\prime} and $\Sigma^{\prime \prime}$ where

1. Σ^{\prime} consists of all n-planes T in \mathbb{R}^{q} which contains an eigenvector of A,
2. $\Sigma^{\prime \prime}$ consists of all n-planes T in \mathbb{R}^{q} which contains a 2 -dimensional subspace spanned by a pair $\{v, A v\}$.

The subset Σ^{\prime} of $G r_{n}\left(\mathbb{R}^{q}\right)$ is of dimension $(n-1)(q-n)$ since λ_{i} 's are all distinct. On the other hand $\Sigma^{\prime \prime}$ is of dimension $(q-1)+(n-2)(q-n)$. Therefore, $\operatorname{dim} \Sigma=\max \left(\operatorname{dim} \Sigma^{\prime}, \operatorname{dim} \Sigma^{\prime \prime}\right)=$ $(q-1)+(n-2)(q-n)$.

Let \mathcal{R} denote the open subset of $J^{1}\left(V, \mathbb{R}^{q}\right)$ consisting of 1-jets of germs of immersions from V to \mathbb{R}^{q}. There is a canonical projection map $p: \mathcal{R} \longrightarrow G r_{n}\left(\mathbb{R}^{q}\right)$ which maps an 1-jet $j_{f}^{1}(x)$, $x \in V$, onto the n-subspace $\operatorname{Im} d f_{x}$ in \mathbb{R}^{q}. Let $f: V \rightarrow \mathbb{R}^{q}$ be a C^{1}-immersion and let $j_{f}^{1}: V \longrightarrow J^{1}\left(V, \mathbb{R}^{q}\right)$ denote the 1-jet map of f. Then f is regular if $p \circ j_{f}^{1}$ misses the set Σ.

If $q>3 n-1$ then $\operatorname{codim} \Sigma>n$, and hence by the Thom Transversality Theorem $p \circ j_{f}^{1}$ misses Σ for a generic f. Thus a generic map $f: V \longrightarrow \mathbb{R}^{q}$ is regular if $q>3 \operatorname{dim} V-1$.

Notation 5.3. For brevity we shall use the symbol T_{x} for the subspace $d f_{x}\left(T V_{x}\right)$ in \mathbb{R}^{q}. T will denote the subbundle of $f^{*}\left(T \mathbb{R}^{q}\right)$ whose fibre over x is T_{x}. The notation for the orthogonal complement of the subspace T_{x} relative to the metric h_{i} will be $T_{x}^{\perp_{i}}, i=1,2$.

Definition 5.4. Let $f: V \longrightarrow \mathbb{R}^{q}$ be a regular map. Then the dimension of $T_{x}^{\perp_{1}} \cap T_{x}^{\perp_{2}}$ is $q-2 n$ for every $x \in V$, where $T_{x}=d f_{x}\left(T V_{x}\right)$. Therefore, $\bigcup_{x \in V} T_{x}^{\perp_{1}} \cap T_{x}^{\perp_{2}}$ defines a vector subbundle of $f^{*}\left(T \mathbb{R}^{q}\right)$ of rank $q-2 n$.

In the following, we denote this subbundle by $B N$ and we call it the $\left(h_{1}, h_{2}\right)$-normal bundle of f.

Remark 5.5. It follows from Remark 4.3 and Proposition 5.2 that any $\left(g_{1}, g_{2}\right)$-short immersion $f: V \longrightarrow \mathbb{R}^{q}$ satisfying the inequality $a^{2}\left(g_{1}-f_{0}^{*} h_{1}\right)<\left(g_{2}-f_{0}^{*} h_{2}\right)<b^{2}\left(g_{1}-f_{0}^{*} h_{1}\right)$ can be approximated in the fine C^{∞}-topology by a regular $\left(g_{1}, g_{2}\right)$-short immersion which satisfies the same inequality.

6. Normal Extension

Let $f: V \longrightarrow\left(\mathbb{R}^{q}, h_{1}, h_{2}\right)$ be a C^{∞}-immersion which is regular on an open set U of V, and let a, b be two numbers satisfying the hypothesis of Theorem 1.1. We shall show that f admits a normal extension $\tilde{f}: U \times \mathbb{R}^{2} \longrightarrow W$ over U such that

$$
\tilde{f}^{*}\left(h_{1}\right)=f^{*}\left(h_{1}\right) \oplus d t^{2} \oplus d s^{2} \text { and } \tilde{f}^{*}\left(h_{2}\right)=f^{*}\left(h_{2}\right) \oplus c^{2} d t^{2} \oplus c^{2} d s^{2}
$$

on $U \times\{0\}$, for any constant c with $a<c<b$.
Observe that to obtain such an extension we require two smooth vector fields τ and τ^{\prime} along f in \mathbb{R}^{q} with the following properties:
P1. τ and τ^{\prime} are h_{1} - as well as h_{2}-orthogonal to T (see Notation 5.3);
P2. $\|\tau\|_{1}=\left\|\tau^{\prime}\right\|_{1}=1$ and $\|\tau\|_{2}=\left\|\tau^{\prime}\right\|_{2}=c$;
P3. τ and τ^{\prime} are mutually orthogonal relative to both h_{1} and h_{2}.
Indeed if such vector fields exist then we can define $\tilde{f}: U \times \mathbb{R}^{2} \longrightarrow \mathbb{R}^{q}$ by the formula $\tilde{f}(x, t, s)=$ $f(x)+s \tau+t \tau^{\prime}$.

Now, P1 amounts to saying that τ and τ^{\prime} are sections of the vector bundle $B N$ over U. If U is contractible such fields always exist.

Let \bar{h} denote the pseudo-Riemannian metric $c^{2} h_{1}-h_{2}$ on \mathbb{R}^{q}, for $a<c<b$. The hypothesis of Theorem 1.1 implies that

1. \bar{h} is non-singular;
2. the positive and the negative ranks of \bar{h} are greater than or equal to $3 n+2$.

Let h denote the quadratic form on $B N$ induced from \bar{h}, and let h_{x} be the restriction of h to the fibre $B N_{x}$. If we denote the positive and the negative ranks of h_{x} by $q_{+}(x)$ and $q_{-}(x)$ respectively, then by our hypothesis $q_{+}(x) \geq n+2$ and $q_{-}(x) \geq n+2$ for all $x \in V$.

Then the existence of τ and τ^{\prime} satisfying P2 and P3 means
$\mathrm{P}^{\prime}{ }^{\prime}$. the vector fields τ and τ^{\prime} are h-isotropic; that is, $h(\tau, \tau)=0$ and $h\left(\tau^{\prime}, \tau^{\prime}\right)=0$;
P3 ${ }^{\prime} . h\left(\tau, \tau^{\prime}\right)=0$.
Hence τ and τ^{\prime} define in each fibre of $B N$ an h-isotropic 2 -subspace.
Before we proceed further, we set our terminology and recall some basic results.
Definition 6.1. Let h be an indefinite quadratic form on \mathbb{R}^{q}. Recall that the kernel or the null space of h consists of all those vectors v for which $h(v,.) \equiv 0$. A subspace L in \mathbb{R}^{q} is called h-regular (or simply regular) if $L \cap \operatorname{ker} h=0$ ([2], 2.4.9(B)). A subspace of \mathbb{R}^{q} which is regular as well as isotropic will be referred to as regular isotropic subspace.

An isotropic vector which does not lie in the kernel of h will be called a regular isotropic vector.

Given an indefinite quadratic form h on \mathbb{R}^{q}, it may be recalled that the space of regular isotropic vectors has the same homotopy type as $S^{q_{+}-1} \times S^{q_{-}-1}$. Hence this space is k-connected for $k=\min \left(q_{+}(h)-2, q_{-}(h)-2\right)$. In general, the space of regular isotropic m-subspaces
in \mathbb{R}^{q} has the homotopy type of $V_{m}\left(\mathbb{R}^{q_{+}}\right) \times V_{m}\left(\mathbb{R}^{q_{-}}\right)$and is therefore $(k-1)$-connected for $k \leq \min \left(q_{+}-m, q_{-}-m\right)([2], 3.3 .1(\mathrm{C}))$.

Now we consider in the total space $B N$ the subset which consists of all h_{x}-regular isotropic vectors for all $x \in U$ and call it Iso. If Iso has a section, then normalizing this section relative to h_{1} we get a section τ satisfying conditions P 1 and P 3 .

To obtain a pair of such sections which also satisfy P 2 we consider the subset $I s o_{2}$ in $B N \oplus B N$ defined as follows:

$$
I s o_{2}=\left\{(v, w) \in B N \oplus B N: \begin{array}{l}
\text { span of } v, w \text { is a regular } \\
h-\text { isotropic 2-subspace }
\end{array}\right\}
$$

Lemma 6.2. $I s o_{2}$ is a submanifold in $B N \oplus B N$ and $\left.p \oplus p\right|_{I s o_{2}}$ is a submersion.

Proof. Consider the 2-frame bundle of $B N$ and denote it by $V_{2}(B N)$. An element (v, w) in $V_{2}(B N)$ which lies over x, will be denoted by (x, v, w). Further consider all those 2 -frames (v, w) in the fibres which span a h-regular subspace. We denote this set of vectors by $V_{2}^{r e g}(B N)$. Clearly this is an open subset in the total space $B N \oplus B N$.

Let $\phi: V_{2}^{r e g}(B N) \longrightarrow \mathbb{R}^{3}$ be the smooth map defined by

$$
\phi(x, v, w)=\left(h_{x}(v, v), h_{x}(w, w), h_{x}(v, w)\right) .
$$

Note that $\phi^{-1}(0)$ is precisely the subset $I o_{2}$. We shall show that ϕ is a submersion.
Let $(x, v, w) \in V_{2}^{r e g}(B N)$. In order to prove that ϕ is a submersion at this point it would be enough to verify that the linear map $\phi^{\prime}: B N_{x} \oplus B N_{x} \longrightarrow \mathbb{R}^{3}$ defined by

$$
\left(v^{\prime}, w^{\prime}\right) \mapsto d \phi_{(x, v, w)}\left(0, v^{\prime}, w^{\prime}\right)
$$

is surjective, since $d \phi_{(x, v, w)}\left(u, v^{\prime}, w^{\prime}\right)=d \phi_{(x, v, w)}(u, 0,0)+d \phi_{(x, v, w)}\left(0, v^{\prime}, w^{\prime}\right)$.
To compute $d \phi_{(x, v, w)}\left(0, v^{\prime}, w^{\prime}\right)$ we need to calculate the derivative of the map $(v, w) \mapsto$ $\left(h_{x}(v, v), h_{x}(w, w), h_{x}(v, w)\right)$. Observing that h_{x} is a bilinear pairing we easily obtain: $d \phi_{(x, v, w)}\left(0, v^{\prime}, w^{\prime}\right)=\left(2 h_{x}\left(v, v^{\prime}\right), 2 h_{x}\left(w, w^{\prime}\right), h_{x}\left(v, w^{\prime}\right)+h_{x}\left(w, v^{\prime}\right)\right)$.

Now, the linear map $\left(v^{\prime}, w^{\prime}\right) \mapsto\left(2 h_{x}\left(v, v^{\prime}\right), 2 h_{x}\left(w, w^{\prime}\right)\right)$ has maximum rank if and only if v, w are regular vectors and $\operatorname{ker} h_{x}(v,) \neq \operatorname{ker} h_{x}(w$,$) . Note that if v$ and w are regular then, $\operatorname{ker} h_{x}(v)=,\operatorname{ker} h_{x}(w$,$) if and only if there exists a \lambda \in \mathbb{R}$ such that $\lambda v-w$ is in ker h_{x}, that is the span of v and w is not a regular subspace. Thus, if $(x, v, w) \in V_{2}^{r e g}(B N)$ then $\left(v^{\prime}, w^{\prime}\right) \mapsto\left(2 h_{x}\left(v, v^{\prime}\right), 2 h_{x}\left(w, w^{\prime}\right)\right)$ is surjective. On the other hand since $\operatorname{ker} h_{x}(v,) \neq \operatorname{ker} h_{x}(w),$, there exists a $v^{\prime} \in B N_{x}$ such that $h_{x}\left(v, v^{\prime}\right)=0$ and $h_{x}\left(w, v^{\prime}\right) \neq 0$. Therefore, ϕ^{\prime} is surjective at each $(x, v, w) \in V_{2}^{r e g}(B N)$. Hence, ϕ is a submersion, and consequently $\phi^{-1}(0)=I s o_{2}$ is a submanifold of $V_{2}^{\text {reg }}(B N)$.

Finally, note that the tangent space to Iso_{2} at a point (x, v, w) is given by the equation $d \phi_{(x, v, w)}\left(u, v^{\prime}, w^{\prime}\right)=0$. Since $d \phi_{(x, v, w)}$ restricted $B N_{x} \oplus B N_{x}$ is surjective, for any given $u \in T V_{x}$, there exists a $\left(v^{\prime}, w^{\prime}\right) \in B N_{x} \oplus B N_{x}$ such that $d \phi_{(x, v, w)}\left(0, v^{\prime}, w^{\prime}\right)=-d \phi_{(x, v, w)}(u, 0,0)$. Clearly then $\left(u, v^{\prime}, w^{\prime}\right)$ belongs to the tangent space of $I s o_{2}$. This proves that $\left.p \oplus p\right|_{I s o_{2}}$ is a
submersion.

The fibre of Iso_{2} over x consists of all 2 -frames which span a h_{x}-regular isotropic subspace in the fibre $B N_{x}$. Hence it has the homotopy type of $V_{2}\left(\mathbb{R}^{q_{+}(x)}\right) \times V_{2}\left(\mathbb{R}^{q_{-}(x)}\right)$. By our hypothesis this is at least $n-1$ connected. Thus we obtain a section $\left(\eta, \eta^{\prime}\right)$ of $I s_{2}$ over $U \subset V$ ([2], 3.3.1(A)). Then clearly η and η^{\prime} satisfy the properties $\mathrm{P} 1, \mathrm{P} 2^{\prime}$ and P^{\prime}. Moreover, span of η and η^{\prime} defines a field σ of two dimensional isotropic subspaces over U. We normalize the vector field η with respect to h_{1} and call it τ. Since h_{1} is positive definite, $\tau^{\perp_{1}}$ in \mathbb{R}^{q} intersects σ in a 1 -dimensional subspace in each fibre. This uniquely determines τ^{\prime}. Indeed, if τ lies in σ and has unit norm relative to h_{1}, then its h_{2} norm is c. Also, if τ and τ^{\prime} lie in σ and if they are orthogonal relative to h_{1} then they are orthogonal relative to h_{2} also.

Thus we obtain vector fields τ and τ^{\prime} over U which satisfy the properties P1, P2 and P3.

7. Proof of the Main Theorem

We are now in a position to prove Theorem 1.1. We start with a $\left(h_{1}, h_{2}\right)$-regular C^{∞} immersion $f_{0}: V \longrightarrow \mathbb{R}^{q}$ which is $\left(g_{1}, g_{2}\right)$-short and satisfies the inequality

$$
a^{2}\left(g_{1}-f_{0}^{*} h_{1}\right)<g_{2}-f_{0}^{*} h_{2}<b^{2}\left(g_{1}-f_{0}^{*} h_{1}\right)
$$

It follows from our discussion in Section 4 and 5 that such a map exists under the hypothesis $a^{2} g_{1}<g_{2}<b^{2} g_{1}$ and $q \geq 6 n+4$.

We shall obtain a sequence of regular $\left(g_{1}, g_{2}\right)$-short C^{∞}-immersions $\left\{f_{j}\right\}$ which satisfy the inequality

$$
\begin{equation*}
a^{2}\left(g_{1}-f_{j}^{*} h_{1}\right)<g_{2}-f_{j}^{*} h_{2}<b^{2}\left(g_{1}-f_{j}^{*} h_{1}\right) \tag{1}
\end{equation*}
$$

and are such that

$$
\begin{gather*}
\left\|g_{1}-f_{j}^{*} h_{1}\right\|_{0}<\frac{2}{3}\left\|g_{1}-f_{j-1}^{*} h_{1}\right\|_{0}, \\
\left\|f_{j}-f_{j-1}\right\|_{C^{1}}<c(n)\left\|g_{1}-f_{j-1}^{*} h_{1}\right\|_{0}^{\frac{1}{2}} \tag{2}
\end{gather*}
$$

Then, the above three conditions would together imply that $\left\{f_{j}\right\}$ is a Cauchy sequence in the C^{1}-topology and hence converges to a C^{1}-map $f: V \longrightarrow \mathbb{R}^{q}$ such that $f^{*} h_{1}=g_{1}$ and $f^{*} h_{2}=g_{2}$. Thus Theorem 1.1 will be proved.

Observe that the sequence $\left\{f_{j}\right\}$ can be constructed inductively once we know how to get f_{1} from the starting map f_{0}. Since f_{0} is $\left(g_{1}, g_{2}\right)$-short, both $\delta_{1}=g_{1}-f_{0}^{*} h_{1}$ and $\delta_{2}=g_{2}-f_{0}^{*} h_{2}$ are positive definite Riemannian metrics on V such that $a^{2} \delta_{1}<\delta_{2}<b^{2} \delta_{1}$. Therefore we can apply Lemma 3.1 for the pair (δ_{1}, δ_{2}) and obtain

$$
\delta_{1} / 2=\sum_{i=1}^{\infty} \phi_{i}^{2} d \psi_{i}^{2} \quad \text { and } \quad \delta_{2} / 2=\sum_{i=1}^{\infty} c_{i}^{2} \phi_{i}^{2} d \psi_{i}^{2}
$$

where ϕ_{i} and ψ_{i} are smooth functions on V as described in the lemma, and c_{i} 's are constants satisfying $a<c_{i}<b$ for all i.

The map f_{1} will be obtained through a sequence of smooth maps $\left\{\bar{f}_{i}\right\}$ as $\lim _{i} \bar{f}_{i}=f_{1}$, where $\bar{f}_{0}=f_{0}$, and

$$
\begin{gathered}
\bar{f}_{i}^{*}\left(h_{1}\right)={\overline{f_{i-1}^{*}}}_{*}^{*}\left(h_{1}\right)+\phi_{i}^{2} d \psi_{i}^{2}+E_{i} \\
\bar{f}_{i}^{*}\left(h_{2}\right)=\bar{f}_{i-1}^{*}\left(h_{2}\right)+c_{i}^{2} \phi_{i}^{2} d \psi_{i}^{2}+E_{i}^{\prime} .
\end{gathered}
$$

The error terms E_{i} and E_{i}^{\prime} can be controlled simultaneously according to our requirement. The procedure of obtaining \bar{f}_{i} from \bar{f}_{i-1} is the same for each i and so we only describe how to get \bar{f}_{1} from \bar{f}_{0}.

Suppose supp $\phi_{1} \subset U_{p}$, where $U_{p} \in \mathcal{U}, \mathcal{U}$ being the covering of V described in Section 3. Since f_{0} is regular and $a<c_{1}<b$, where a, b satisfy the hypothesis of Theorem 1.1, we can get an extension $\tilde{f}_{0}: U_{p} \times \mathbb{R}^{2} \longrightarrow \mathbb{R}^{q}$ of the map \bar{f}_{0} such that

$$
\tilde{f}_{0}^{*}\left(h_{1}\right)=f_{0}^{*}\left(h_{1}\right) \oplus d t^{2} \oplus d s^{2} \text { and } \tilde{f}_{0}^{*}\left(h_{2}\right)=f_{0}^{*}\left(h_{2}\right) \oplus c_{1}^{2} d t^{2} \oplus c_{1}^{2} d s^{2}
$$

on $U_{p} \times\{0\}$ (see Section 6). Moreover, the difference $\tilde{f}_{0}^{*}(h)-f_{0}^{*}(h) \oplus d t^{2} \oplus d s^{2}$ on $U_{p} \times D_{\varepsilon}^{2}$ is of the order of ε, where D_{ε}^{2} denotes the ε-ball in \mathbb{R}^{2} centred at the origin.

Now, proceeding exactly as in the proof of Lemma 2.2 we get a smooth map $\bar{f}_{1}: V \longrightarrow \mathbb{R}^{q}$ such that

$$
\begin{gathered}
\bar{f}_{1}^{*}\left(h_{1}\right)=f_{0}^{*}\left(h_{1}\right)+\phi_{1}^{2} d \psi_{1}^{2}+\varepsilon_{1}^{2} d \phi_{1}^{2} \\
\bar{f}_{1}^{*}\left(h_{2}\right)=f_{0}^{*}\left(h_{2}\right)+c_{1}^{2} \phi_{1}^{2} d \psi_{1}^{2}+c_{1}^{2} \varepsilon_{1}^{2} d \phi_{1}^{2} .
\end{gathered}
$$

The map \bar{f}_{1} obtained above may not be regular. However, a small perturbation near supp ϕ_{2} can make it regular there (as regularity is a generic property). Hence we can repeat the above steps on \bar{f}_{1} to get \bar{f}_{2} and so on in succession. The sequence $\left\{\bar{f}_{i}\right\}$ then converges uniformly to a C^{∞}-map f_{1} since only finitely many ϕ_{i} 's are non-vanishing on any open set U_{p}. Now observe that

$$
\begin{gathered}
g_{1}-f_{1}^{*}\left(h_{1}\right)=\frac{1}{2}\left(g_{1}-f_{0}^{*}\left(h_{1}\right)\right)-\sum_{i} O\left(\varepsilon_{i}\right) \\
g_{2}-f_{1}^{*}\left(h_{2}\right)=\frac{1}{2}\left(g_{2}-f_{0}^{*}\left(h_{2}\right)\right)-\sum_{i} c_{i}^{2} O\left(\varepsilon_{i}\right) .
\end{gathered}
$$

We can choose ε_{i} at each stage in such a way that
(a) $g_{1}-f_{1}^{*}\left(h_{1}\right)$ and $g_{2}-f_{1}^{*}\left(h_{2}\right)$ are positive definite;
(b) the error terms satisfy the inequalities:

$$
\sum_{i} O\left(\varepsilon_{i}\right)<\frac{1}{6}\left\|g_{1}-f_{0}^{*}\left(h_{1}\right)\right\|_{0}
$$

Then inequalities (2) follow from the discussion made in Section 2. Further, if we have

$$
\begin{aligned}
& \sum_{i}\left(b^{2}-c_{i}^{2}\right) O\left(\varepsilon_{i}\right)<\frac{1}{2}\left[b^{2}\left(g_{1}-f_{0}^{*} h_{1}\right)-\left(g_{2}-f_{0}^{*} h_{2}\right)\right] \\
& \sum_{i}\left(c_{i}^{2}-a^{2}\right) O\left(\varepsilon_{i}\right)<\frac{1}{2}\left[\left(g_{2}-f_{0}^{*} h_{2}\right)-a^{2}\left(g_{1}-f_{0}^{*} h_{1}\right)\right]
\end{aligned}
$$

then f_{1} also satisfies inequality (1). Now, by Remark 5.5 we can assume f_{1} to be (h_{1}, h_{2})-regular. This completes the proof of Theorem 1.1

Acknowledgements. The authors would like to thank Professor Misha Gromov for his valuable comments on this paper. The second author is also thankful to the ICTP and IHES for their hospitality and other supports.

References

[1] G. D'Ambra: Nash C^{1}-embedding theorem for Carnot-Caratheodory metrics, Differential Geometry and its Applications 5(1995) 105-119.
[2] M. Gromov, Partial Differential Relations, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge Band 9. Springer-Verlag, 1986.
[3] N.H.Kuiper, C^{1}-isometric embeddings, I Proc. Koninkl. Nederl. Ak. Wet. A, 58(1955) 545-556.
[4] J.Nash, C^{1}-isometric embeddings, Annals of Math. 60(1954) 383-396.

[^0]: ${ }^{1}$ E-mail: dambra@vaxca1.unica.it
 ${ }^{2}$ E-mail: mahuyad@hotmail.com

