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Abstract

The critical behavior of a quenched random hypercubic sample of linear size L is considered,

within the \random-Tc" �eld-theoretical model and the mean-�eld approximation. A �nite-size

scaling behavior is established and analyzed and the problem of self-averaging is clari�ed for dif-

ferent critical regimes.
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I. INTRODUCTION

During the last few decades, the description of e�ects of disorder on the critical behavior of

�nite-size systems has attracted a lot of interest [1{8]. Up to now the discussion takes place of

whether the introduced disorder inuences the �nite-size scaling (FSS) results [3,8], compared to the

standard ones, known for pure systems [9{11]. A formulation of general FSS concepts for the case of

disorder is strongly complicated due to the additional averaging over the di�erent random samples.

For a random sample with volume Ld, where L is a linear dimension, any observable property X,

singular in the thermodynamic limit, has di�erent values for di�erent realizations of the randomness

and can be considered as stochastic variable with mean X and variance (�X)2 := X2�X2
, where

the over line indicates an average over all realizations of the randomness. Here, an important

theoretical problem of interest is related with the property of self-averaging (SA) [12]. If the system

does not exhibit SA a measurement performed on a single sample does not give a meaningful result

and must be repeated on many samples. A numerical study of such a system will also be quite

diÆcult. This point has been studied recently by means of FSS arguments [1,4], renormalization

group (RG) analysis [2,5] and Monte Carlo simulations [4,6]. Quantities of physical interest are the

Binders cumulant B and the relative variance RX(L) := (�X)2=X
2
. A system is said to exhibit

\strong SA" if RX(L) � L�d as L!1. This is the case if the system is away from criticality, i.e.

if L� �. At the criticality, i.e. when L� �, the situation depends upon whether the randomness

is irrelevant (�pure > 2=d, e.g. \pure", P-case) or relevant (�random > 2=d, e.g. \random" R-case)

[2]. One calls the former case \weak SA", since RX(L) � L(�=�)pure , and the latter case \no SA",

since RX(L) is �xed nonzero universal quantity even in the thermodynamic limit [2].

In the present paper we are analyzing the mean-�eld regime d � 4 of a N-component (N � 1)

model of randomly diluted magnet with hypercubic geometry of linear size L and we are dealing

with conditions for the presence or absence of a SA.

The paper is organized as follows. In Section II we de�ne the model and the e�ective Hamilto-

nian. In Section III we perform the analysis in the zero-mode approximation. The analysis of the

problem of SA is given in Section IV. Finally in Section V we present our main conclusions.

II. MODEL

We consider the "random - Tc" Ginzburg-Landau-Wilson model of disordered ferromagnets

(see, e.g. [13{18])

Hr = �1
2

Z
Ld
ddx[tj (x)j2 + '(x)j (x)j2 + cjr (x)j2 + u

12
j (x)j4]; (2.1)

where  (x) is a N-component �eld with  2(x) =
PN
i=1  

2
i (x) and the random variable '(x) has a

Gaussian distribution
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P ('(x)) =
exp[�'(x)2

2� ]p
2��

(2.2)

with mean

'(x) = 0 (2.3)

and variance

'(x)'(x0) = �Æd(x� x0): (2.4)

The over line in (2.4) indicates a random average performed with the distribution P ('(x)). Here

we will consider a system in a �nite cube of volume Ld with periodic boundary conditions. This

means that the following expansion takes place

 (x) =
1

Ld

X
k

~ (k) exp(ik:x) (2.5a)

and

'(x) =
1

Ld

X
k

~'(k) exp(ik:x); (2.5b)

where k is a discrete vector with components ki = 2�ni=L , ni = 0;�1;�2; :::, i = 1; :::; d and a

cuto� � � a�1 (a is the lattice spacing). In this paper, we are interested in the continuum limit,

i.e. a! 0.

In our case of quenched randomness, one must average the logarithm of the partition function

over the Gaussian distribution (2.2) to produce the free energy

F [Hr] = �
Z 1
�1

D'(x)P ('(x)) lnZr; (2.6)

where

Zr = Tr exp[Hr]: (2.7)

It is well known that the direct average of Hr over the Gaussian leads to equivalent results for

the critical behavior as the n = 0 limit of the following "pure" translationally invariant model [19]:

Hp(n) = �1
2

nX
�=1

Z
Ld
ddx[tj �(x)j2 + cjr �(x)j2 + u

12
j �(x)j4]

+
�

8

nX
�;�=1

Z
Ld
ddxj �(x)j2j �(x)j2]: (2.8)

Here  �(x), � = 1; : : : ; n (n being the number of replicas) are components of an (n�N)-components

�eld ~ (x). Because of this equivalence, the model Hp has been the object of intensive �eld-

theoretical studies (see [20] and refs. therein) in the bulk case. Much less is known for the

equivalence of Hr and the n = 0-limit of Hp in the �nite - size case. Problems may arise when

�nite-size techniques are used, since both procedures L ! 1 and removing the disorder by the

\trick" n! 0 may not commute.
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III. THE FSS EXPRESSIONS FOR THE FREE ENERGY AND CUMULANTS

In our case we have two possibilities: to consider the random model Eq. (2.1) or to consider

the replicated pure model Eq. (2.8). The last one is closer to the case treated in [21] and [22] by

getting around the diÆculties due to random average performed with P ('(x)) and is used in the

present study. For this case, the replicated partition function is given by

Zp(n) =
Z
D ~ exp [Hp(n)] : (3.1)

We decompose the �eld ~ (x) into a zero momentum component ~� = L�d
R
ddx~ (x), which plays

the role of the uniform magnetization and a second part depending upon the non-zero modes

~� = L�d
P
k 6=0

~~ (k) exp(�ik:x). Neglecting uctuations completely one has the mean-�led result

Zp(n) =
Z
D~� exp

8<
:�L

d

2

nX
�=1

�
t�2� +

u

12
�4�

�
+
Ld�

8

 
nX

�=1

�2�

!2
9=
; (3.2)

With the help of the identity

exp

 
aA2

2

!
=

1

(2�a)1=2

Z 1
�1

dy exp[�(1=2a)y2 + yA]; (3.3)

we get

Zp(n) =
Z 1
�1

dyP (y)

�
SN

Z 1
0

d��N�1 exp(He�
r )

�n
; (3.4)

where

He�
r = �1

2
Ld
��
t+

y

Ld=2

�
�2 +

1

12
u�4

�
(3.5)

is an e�ective Hamiltonian with a random variable y with Gaussian distribution (depending on �)

P (y) =
1p
2��

exp

 
� y2

2�

!
(3.6)

and SN = 2�N=2

�(N=2) is the surface of a N -dimensional unit sphere.

Let us note that the above mentioned equivalence between the models (2.1) and (2.8) may be

mathematically expressed, within the used approximation, by the following relation:

F [Hr] = � @

@n
Zp(n)

����
n=0

: (3.7)

From Eqs. (3.4) and (3.7), and by using the identity

@

@n
An
����
n=0

= lnA (3.8)

for the free energy, we get
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F [Hr] = �
Z 1
�1

dyP (y) lnZr(0); (3.9)

where

Zr(0) = SN

Z 1
0

d��N�1 exp[He�
r ] (3.10)

is the partition function for the random system (3.5). The obtained e�ective \random-Tc model"

(3.5), distributed with Gaussian weight (3.6), is the analytic basis of this paper. For describing the

�nite-size properties of the initial model (2.1), as follows from Eqs. (3.9) and (3.10), it is necessary

to set n to zero.

Now using an appropriate rescaling of the �eld � = (uLd)�1=4� and introducing the scaling

variable

� = tLd=2u�1=2; (3.11)

for the partition function Eq. (3.10) in the mean-�eld approximation we obtain

ZMF
r (0) =

 
12�2

uLd

!N=4
exp

�
3

4
(�+ y=u1=2)2

�
D�N=2

hp
3(�+ y=u1=2)

i
: (3.12)

Here we have expressed the partition function in terms of the parabolic cylinder function Dp(z)

trough the identity [23]

Z 1
0

x��1e��x
2�xdx = (2�)��=2�(�) exp

 
2

8�

!
D��

�
p
2�

�
: (3.13)

From Eqs. (3.9) and (3.12) we get for the free energy

F
h
HMF
r

i
= � 1p

2��

Z 1
�1

dy exp

 
�1
2

y2

�

!
ln
n
(uLd)�N=4IN (�+ y=u1=2)

o
: (3.14)

where

IN (z) = (12�)N=4 exp

�
3

4
z2
�
D�N=2(

p
3z); (3.15)

If we introduce a second scaling variable

� =
�

u
; (3.16)

Eq. (3.14) takes its �nal form

F
h
HMF
r

i
= � 1p

2��

Z 1
�1

dxe�(x��)
2=(2�) ln

h
D�N=2(

p
3x)
i
� 3

4
(�+ �2)

+
N

4
ln

 
uLd

12�2

!
: (3.17)
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In the large N limit (N ! 1), the behavior of the model is expected to be similar to that

of the spherical model [11]. Similar result for the density of the free energy in this case can be

obtained after a suitable rescaling by a factor N of the interaction parameters u and � in the

Hamiltonian (2.8). The corresponding expression in the limit �! 0 is given by

f =
1

2
ln

"
tLd

2�

#
+

1

24

u

t2Ld
: (3.18)

Note that the large N limit of the present model has meaning only for the pure model, i.e. � = 0,

since the renormalization group arguments reveal non physical behavior for N > 4.

In addition to the free energy, one also needs to know the correlation functions. Within the

replica method the averages of the �elds f��g are de�ned by (see e.g. [12])

hj�� j2miHMF
r

= lim
n!0

"
ZMF
p (n)�1SnN

Z  nY
�=1

dj��j
!
(j��j)N�1(j�� j)2m exp(HMF

p )

#
; (3.19)

where

ZMF
p (n) = SnN

Z  nY
�=1

dj��j
!
(j��j)N�1 exp(HMF

p ): (3.20)

After taking the limit n! 0, we end up with the following expression

M2m := hj�� j2miHMF
r

=
(uLd)�m=2p

2��

Z 1
�1

dx
IN+2m(x)

IN (x) e�(x��)
2=2�: (3.21)

In a similar way

(M2)2 := hj��j2j�� j2iHMF
r

=
(uLd)�1p

2��

Z 1
�1

dx

�IN+2(x)

IN (x)
�2
e�(x��)

2=2�: (3.22)

From Eqs. (3.21) and (3.22), when � = 0 and N = 1 we obtain the results of Ref. [6] .

In terms of the second moment, the susceptibility is given by

� = LdM2: (3.23)

Another quantity of importance for numerical analysis is the Binder cumulant de�ned by

B = 1� 1

3

M4

M2
2 (3.24)

and the cumulant, speci�c for the random system, de�ned as

R =
(M2)2 �M2

2

M2
2 : (3.25)

Since the parameter R is the relative variance of the observable (the susceptibility), as we said

in the Introduction, it is a measure of the self-averaging in the random system. If self-averaging

takes place, this quantity should be zero in the thermodynamic limit.
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Now for the evaluation of the above correlation functions, the integrand in Eq. (3.21) can be

rewritten in a very simple form

M2m(x) :=
IN+2m(�+

p
�x)

IN (�+
p
�x)

=
�
12�2

�m
2
D�m�N=2((�+

p
�x)

p
3)

D�N=2((�+
p
�x)

p
3)

: (3.26)

For small � � 1 (i.e. in the vicinity of the critical point) the asymptotic form of the ratio

(3.26) is given by

M2m(x) =
�
12�2

�m
2

(
D�m�N=2(x

p
3�)

D�N=2(x
p
3�)

+
�
p
3

2

2
64ND�N=2�1(x

p
3�)D�m�N=2(x

p
3�)�

D�N=2(x
p
3�)

�2 � (2m+N)
D�m�N=2�1(x

p
3�)

D�N=2(x
p
3�)

3
75

+O(�)2
o
: (3.27)

At the critical point, we have � = 0 and M2m is equal to the �rst term in the r.h.s. of Eq.

(3.27).

For large � � 1, the asymptotic behavior of the ratio M2m is obtained with the help of the

well-known Watson's Lemma (see for example [24]). According to it, we have

M2(x) =
�
12�2

�1=2 N
�

"
1� x

p
�

�
+
6x2��N � 2

6�2
+O

�
1

�3

�#
(3.28)

and

M4(x) = 12�2
N(N + 2)

�2

"
1� 2x

p
�

�
+
9x2��N � 3

3�2
+O

�
1

�3

�#
: (3.29)

Using the asymptotics ofM2 andM4 for large �, we can get the behavior of the cumulants R

and B in the case d � 4. They are given by

B = 1� 1

3

�
1 +

2

N

� �
1 +

3�� 1

3�2

�
+O

�
1

�3

�
(3.30)

and

R =
�

�2
+O

�
1

�3

�
: (3.31)

IV. CUMULANTS AND SELF-AVERAGING

Let us concentrate on the calculation of the Binder cumulant B (3.24) and the variance R

(3.25) in the case d � 4. In Table I we present the corresponding universal numbers for B and R

at d � 4 in the region Lt�R = L
� � 1, i.e. in the vicinity of the critical point. The calculations are
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performed with variables � = 0 and � = 4�N
12 . The last expression comes from renormalization-

group arguments [25]. The numerical values of B and R in the random case and for N = 1,

presented in Table I, are in full agreement with those obtained in Ref. [6], while those of B for the

pure case and N = 1 (Table I) are in full agreement with Ref. [21]. The �nite value of R con�rms

the statement of the lack of SA [6].

The �nite size correction to the bulk critical behavior of the cumulants B and R in the region

Lt�R = L
� � 1, i.e. away from the critical point, are obtained with the help of the asymptotics for

� � 1 leading to Eqs. (3.30) and (3.31). As one can see, the asymptotics of R for �nite disorder

(� 6= 0) and large � � 1 con�rms the statement that away from the critical point, a strong SA

emerges in the system [2].

V. CONCLUSIONS

In the present paper we propose a scheme for the FSS scaling analysis of a �nite disordered

O(N) system within the mean �eld approximation. The method, we use here, is an extension of

the �eld theoretical methods used to analyze FSS properties in pure systems. The nature of the

symmetry of the model complicates the perturbative structure of the theory in comparison with the

corresponding O(N) pure one. The meaning to consider the case d � 4 is in its simple analytical

non perturbative treatment.

Our main results are related to the formulation of the problem for some numbers of components

N of the uctuating �eld for dimensions d � 4. Our results are a generalization of those obtained

in [6] for N = 1. Due to the presence of randomness, it is shown that we are dealing with two

variables problem with scaling variables � = tLd=2u�1=2 and � = �=u. Evaluating numerically the

corresponding analytic expressions for the Binder's cumulant B and the relative variance R, we

demonstrate a monotonic increase of B as a function of N in both pure and random cases and a

monotonic decrease of R (to zero for N = 4) in the random case (see Table I), showing �nally the

validity of the SA in the di�erent regimes. In FIG. 1, we present the plot of Binder's cumulant as

a function of the number of component of the order parameter N . The tendency of B ! 2=3 for

N large is clearly seen.

The formulation of the problem for the case of a large number of the components N of the

order parameter relates our �ndings to the exact results for the pure spherical model [11] when

� = 0.

In our opinion, the present FSS study can also be applied in the \canonical" case [5], where

the disorder is characterized by a constant total number of the occupied sites (or bonds), instead

of the constant average density. We hope that the above results will also hold in the case of �nite

geometry, relating in this way our theoretical �ndings with the Monte-Carlo simulations.
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TABLES

TABLE I. Numerical values for the Binder cumulant B from Eq. (3.24) and the relative

variance R from Eq. (3.25) in the mean-�eld regime i.e. d � 4.

Random Pure

N B R B R

1 0.216368 0.310240 0.270520 0

2 0.451486 0.111381 0.476401 0

3 0.533513 0.038365 0.543053 0

4 0.575587 0 0.575587 0
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FIGURES
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FIG. 1. Behavior of the Binder's cumulant as a function of N in the pure limit.
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