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1. INTRODUCTION

Finiteness of the discrete spectrum of the SO (Schr�odinger operator) H of a system of three

arbitrary rapidly decreasing interactions was established by Yafaev in [1] and by Zhislin in [2].

In [3,4,5], it was established that the discrete spectrum of the SO can also be in�nite.

The so-called DSO's (discrete SO) which are the lattice analogues of SO in the continuous

space appear in the models of solid state physics [6] and in the lattice �eld theory [7]. For these

operators, it is interesting to study �niteness or in�niteness of the discrete spectrum. The works

[8,9] were devoted to this problem.

In [10], the DSO of a system of three identical particles (bosons) interacting via pairwise

contact attractive potentials was considered. It is proved that the discrete spectrum of three-

particle DSO in the case when the operators described by the subsystems of two particles have

no virtual levels, is �nite.

Note that in the continuous (Euclidean space) case, the energy of the motion of the center-

of-mass can be separated from the total Hamiltonian so that the essential spectrum and "bound

states" are eigenvectors of the energy operator with total momentum separated (and this oper-

ator does not, in fact, depend on the values of the total momentum).

In lattice terms the "center-of-mass separation" corresponds to a realization of the Hamil-

tonians as a "�bered operator", i.e., as the "direct integral of a family of operators" H�;�(K)

depending on the values of the total quasi-momentum K2T 3 (T 3 being the three dimensional

torus, � > 0 and � > 0 are energies of the interactions of two and three-particles respectively). In

this case a "bound state" is an eigenvector of the operator H�;�(K) for some K2T 3. Typically,

this eigenvector depends continuously on K.

In this paper we consider the di�erence of DSO H�;�(K) with pair contact and three-particle

interactions on the neighboring nodes.

We prove �niteness of the discrete spectrum of the operator H�;�(K) for K in the some setQ � T 3 and all � > 0; � > 0:

2. Description of di�erence three-particle DSO

Let Z3 be a three dimensional lattice, `2((Z
3)3) the Hilbert space of square summable func-

tions which are de�ned on (Z3)3; and `s2((Z
3)3) � `2((Z

3)3) a subspace consisting of functions

 (n1; n2; n3) which are symmetric with respect to the permutation of any two arguments.

In the coordinate representation, the DSO of a system of three bosons with pair contact and

three-particle interactions on the neighboring nodes acts on the space `s2((Z
3)3) and has the

form

( ~H�;�')(n1; n2; n3) =
1

2

X
jsj=1

[3'(n1; n2; n3)� '(n1 + s; n2; n3)� '(n1; n2 + s; n3)�

�'(n1; n2; n3 + s)]� �(Æn1n2 + Æn2n3 + Æn3n1)'(n1; n2; n3)�
�

2
[Æn1n2(Æjn1�n3j1+
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+Æjn2�n3j1) + Æn2n3(Æjn1�n3j1 + Æjn2�n1j1) + Æn3n1(Æjn2�n1j1 + Æjn2�n3j1)]'(n1; n2; n3):

Here � > 0 and � > 0 are the interaction energies of two and three particles respectively; Ænm is

the Kronecker delta; s = (s(1); s(2); s(3)) 2 Z3; j s j=j s(1) j + j s(2) j + j s(3) j :
The operator ~H�;� commutes with the group of operators f ~Us; s 2 Z3g acting on the Hilbert

space `s2((Z
3)3) by the formula

~Us'(n1; n2; n3) = '(n1 + s; n2 + s; n3 + s):

Let T 3 be the three-dimensional torus, Ls
2((T

3)3) the space of square integrable symmetric

functions de�ned on (T 3)3:

In the momentum representation the DSO described above acts in Ls
2((T

3)3) to

(H�;�f)(k1; k2; k3) = ("(k1) + "(k2) + "(k3))f(k1; k2; k3)�

��
3X

�=1

Z
Æ(k� � k0�)Æ(k� + k
 � k0� � k0
)f(k

0
1; k

0
2; k

0
3)dk

0
1dk

0
2dk

0
3�

��
Z 3X

i=1

[3� "(ki � k0i)]Æ(k1 + k2 + k3 � k01 � k02 � k03)f(k
0
1; k

0
2; k

0
3)dk

0
1dk

0
2dk

0
3:

Here � 6 =� 6 =
 6 =�; "(p) =
P3

i=1(1 � cospi); p = (p1; p2; p3) 2 T 3; Æ(k) is the three-

particle Dirac delta function. Here we choose a unit measure on the torus T 3; i.e.
R
T 3 dk = 1:

Throughout, an integral without limits denotes integration over the whole range of variation of

the variables of integration.

Taking the Fourier transform the group of translations f ~Us; s 2 Z3g; can be transformed to

the group of operators fUs; s 2 Z3g so that

(Usf)(k1; k2; k3) = expf�i(s; k1 + k2 + k3)gf(k1; k2; k3);

where (k; s) =
P3

i=1 kisi is a scalar product of vectors k 2 T 3; s 2 Z3:

Let K = k1 + k2 + k3 be the total quasimomentum of the three particles system and FK =

f(k1; k2; k3) 2 (T 3)3 : K = k1 + k2 + k3g be a six-dimensional manifold. We denote by L(K)

the Hilbert space of all square integrable functions de�ned on FK and satisfy the conditions

f(k1; k2) = f(k2; k1) = f(k1; k3); k3 = K � k1 � k2:

The operator H�;� commutes with the group fUs; s 2 Z3g: Therefore H�;� is represented

as a direct operator integral (see [11]) of the family fH�;�(K);K 2 T 3g; acting on the Hilbert

space of L(K) as follows

H�;�(K)f(p; q) = H0(K)f(p; q)� �
3X

�=1

(V�f)(p; q)� �
3X

�=1

( ~V�V�f)(p; q): (1)

Here

H0(K)f(p; q) = "K(p; q)f(p; q); "K(p; q) = "(p) + "(q) + "(K � p� q)
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and

(V�f)(k�; k�) =

Z
f(k�; s)ds; ( ~V�f)(k�; k�) =

Z
[3� "(k� � t)]f(t; k�)dt:

Theorem 1. For all K 2 T 3; � > 0; � > 0 the operator H�;�(K) has no eigenvalue lying to the

right of the essential spectrum.

Let h�(k) be a two-particle DSO acting on the space ~L(k) having the form

(h�(k)f)(p) = "k(p)f(p)� �

Z
f(s)ds; (2)

where "k(p) = "(k�p)+"(p); ~L(k) is the Hilbert space of the functions f 2 L2(T 3); satisfying

for each k 2 T 3 the following condition f(p) = f(k � p):

We recall some known facts (see [10]). Let m(k) and M(k) be the minimal and maximal

values of the function "k(p) respectively. For any z 2 C n [m(k);M(k)] de�ne

�(�; k; z) = 1� �D(k; z); D(k; z) =

Z
("k(q)� z)�1dq:

For each � > 0 denote by G� � T 3 the set fk 2 T 3 : D(k;m(k)) > 1=�g: Then for any k 2 G�

the operator h�(k) has a unique simple eigenvalue z�(k) < m(k) and for the spectrum �(h�(k))

of the operator h�(k) the equality

�(h�(k)) = fz�(k)g [ [m(k);M(k)] (3)

holds. Let �0 = max(D(k;m(k)))�1 then for any � 2 (0; �0] the function z�(k) is de�ned on

G� (and G� = T 3 for � > �0): The eigenvalue z�(k) � z(�; k) is a solution of the equation

D(k; z) = 1=� and continuously depends on parameters � > 0 and k 2 G� and strictly decreases

on � 2 (0;1):

Let
Q

be a set of points K 2 T 3 n f0g; at which minimums E�K = z�(p) + "(K � p) are

nondegenerate. The set
Q

is not empty and contains punctured neighborhood of zero, since

E�0(p) has a unique nondegenerate minimum at the point p = 0:

Theorem 2. For any K 2 Q; � > 0 and � > 0 the operator H�;�(K) has only a �nite

discrete spectrum.

3. Structure of the essential spectrum of the DSO

Let L� � L2((T
3)2) be the subspace consisting of functions f 2 L2((T 3)2) satisfying the condi-

tion f(k�; k�) = f(k�; k
); where k�; k� ; k
 are connected with relation k� + k� + k
 = K:

Let h��(K) = H0(K) � �V� (� = 1; 2; 3) be the "channel operator" acting on the space L�

according to

h��(K)f(k�; k�) = "K(k�; k�)f(k�; k�)� �

Z
f(k�; s)ds:

Since the system consists of three identical particles then the spectra of channel operators

h��(K); � = 1; 2; 3; coincide, that is �(h��(K)) = �(h��(K)):
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It is easy to check, that the channel operator h��(K) commutes with the group of operators

fus; s 2 Z3g of the form (usf)(k�; k�) = exp(i(k�; s))f(k�; k�); therefore h��(K) decomposes

into the direct operator integrals

h��(K) =

Z
T 3

�[h�(k) + "(k�)I]dk;

where h�(k) is the two-particle DSO de�ned by formula (2).

Let

"min(K) = min
p;q2T 3

"K(p; q); "max(K) = max
p;q2T 3

"K(p; q):

From the Theorem of the spectrum of decomposable operators and the representation (3) it

follows that the spectrum �(h��(K)) of the channel operator h��(K) coincides with the set

Im"K [ ImE�K ; i.e.

�(h��(K)) = Im"K [ ImE�K ;

and the discrete spectrum is absent.

The operator V� commutes with ~V�; i.e ~V�V� = V� ~V� and denote by W� = ~V�V�: The

operator H�;�(K) acting on the Hilbert space L(K) by formula (1) is represented as a sum of

operators

H�;�(K) = H�(K)� �W;

where

H�(K) = H0(K)� �V; V = V1 + V2 + V3 W =W1 +W2 +W3:

Note, that �W = H�(K) � H�;�(K) is the integral operator. Consequently it is compact.

Therefore according to the Weyl's Theorem the essential spectrum of these operators coincides,

i.e.

�ess(H�;�(K)) = �ess(H�(K)):

Lemma 1. The essential spectrum of H�(K) coincides with the spectrum of the channel

operator h��(K); i.e. (see [10])

�ess(H�;�(K)) = �ess(H�(K)) = �(h�;�(K)) = Im"K [ ImE�K :

The �rst part Im"K = ["min(K); "max(K)] of the spectrum of h��(K) does not depend

on � and coincides with the spectrum of the unperturbed three-particle operator H0(K) and

it is called the three-particle branch of the essential spectrum of H�(K): We denote it by

�three(H�(K)): The set ImE�K coincides with the range of values of the function E�K(p) =

z�(K� p)+ "(p): It is called the two-particle branch of the essential spectrum of H�(K) and we

denote it by �two(H�(K)) (see [10]).

According to the de�nition, the three-particle branch ["min(K); "max(K)] of the essential

spectrum of the operator H�(K) does not depend on � > 0 and the two-particle branch

[kfE�K(k)g displaces to the left with increasing � > 0: That is Emin(�;K) = mink E�K(k)
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monotonically decreases with increasing �: Therefore at some threshold value � = �(K) the

left edge Emin(�;K) of the two-particle branch and the left edge "min(K) of the three-particle

branch of the essential spectrum ofH�(K) coincide. The value of �(K) is de�ned by the following

equality:

�(K) = min
p2T 3

�
D(k � p; "min(K)� "(p)

��1
; ~�(K) = max

p2T 3

�
D(K � p; "min(K)� "(p)

��1
:

Lemma 2. a) If � � �(K); then �ess(H�(K)) = ["min(K); "max(K)];

b) if � 2 (�(K); ~�(K)]; then �ess(H�(K)) = [Emin(�;K); "max(K)]; where Emin(�;K) is lower

bound of the set �two(H�(K)) and Emin(�;K) < "min(K);

c) if � > ~�(K); �ess(H�(K)) = [Emin(�;K); Emax(�;K)][["min(K); "max(K)]; where Emax(�;K)

is an upper bound of the set �two(H�(K)) and Emax(�;K) < "min(K).

Remark. In the case K = 0 we have

1

�(0)
=

Z
dq

2"(q)
; ~�(0) = 12;

�three(H�(0)) = [0;
27

2
]; �two(H�(0)) = [z�(0); 12 � �]:

If � = �(0); then the two-particle branch �two(H�(0)) coincides with the segment [0; 12 � �(0)]

in this case the left edges of two-particle and three-particle branches coincide. For the case

� = 12 the right edge of two-particle branch and the left edge of three-particle branch coincide.

If � > 12 then these branches are mutually disjoint.

The operator V = V1+V2+V3 is positive (see [10]). Similarly we can show that the operator

~V�; � = 1; 2; 3 is positive. The operators V� and ~V� commute, therefore W� = ~V�V� � 0:

Consequently W =W1 +W2 +W3 is positive.

We denote by R0(z) the resolvent of H0(K): For any z 2 C n �ess(H�(K)) we de�ne the

operator T̂�;�(K; z); acting on the space L2(T
3) by the form

T̂�;�(K; z) = (I � �V�R0(z))
�1V�R0(z)[2�I + �

3X
�=1

~V�]: (4)

The following lemma establishes a connection between the eigenvalues of operators H�;�(K)

and T̂�;�(K; z):

Lemma 3. The number z 2 C n �ess(H�(K)) is an eigenvalue of H�;�(K) i� the number 1 is

an eigenvalue of T̂�;�(K; z):

Proof. Necessity. Let z 2 C n �ess(H�(K)) be an eigenvalue of the operator H�;�(K); i.e.

let the equation

(H0(K)� zI)f = �
3X

�=1

V�f + �
3X

�=1

~V�V�f (5)

have a nonzero solution f 2 L(K): On introducing the notation

g� = g(k�) = (V�f)(k�) =

Z
f(k�; t)dt; (6)
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we derive the following relation from (5)

f = �R0(z)
3X

i=1

g� + �R0(z)
3X

�=1

~V�g�: (7)

Substitution of (7) for f in (6) leads to the conclusion that the equation

(I � �V�R0(z))g� = �V�R0(z)
3X

� 6=�

g� + �V�R0(z)
3X

�=1

~V�g� (8)

has a nonzero solution. For each z 2 C n �ess(H�(K)) the operator I � �V�R0(z) is invertible,

therefore if we multiply (8) from the left by the operator (I � �V�R0(z))
�1 we get

g� = (I � �V�R0(z))
�1V�R0(z)[�

3X
� 6=�

g� + �
3X

�=1

~V�g� ]: (9)

Because of the identity of particles the functions g�; � = 1; 2; 3; represent the same function

g 2 L2(T 3); and the operator on the right-hand side of (9) does not depend on �: Therefore we

do not get a system of equations, but we get the equation g = T̂�;�(K; z)g: Here T̂�;�(K; z) is

de�ned by (4). It follows from, that g 2 L2(T 3) is an eigenfunction of T̂�;�(K; z) corresponding

to the eigenvalue 1. The operator T̂�;�(K; z) is called the Faddeev type operator. This proves

the necessity of the Lemma.

SuÆciency. Let the number 1; for some z 2 C n �ess(H�(K)) be an eigenvalue of the

operator T̂�;�(K; z) and let g 2 L2(T
3) be the corresponding eigenfunction. Then gi = g(ki)

satis�es equation (9) and the function f is de�ned by relation (7), belongs to L(K); satis�es

H�;�(K)f = zf and f 6 �0: It follows from the inclusion gi 2 L2(T
3) and boundedness of

("K(k1; k2)� z)�1 that f 2 L(K): Summing the equality (9) all over indices � for the function

f de�ned by equality (7) we obtain the relation H�;�(K)f = zf: To prove that f 6 �0; we will
check that it is possible to restore 'i by f according to the formula gi = Vif 6 =0: This proves
suÆciency and hence Lemma 3 is proved completely.

4. Finiteness of the discrete spectrum of the DSO

Lemma 4. For any K = (K1;K2;K3); Ki 6 =�; i = 1; 2; 3 the function "K(p; q) has a unique

nondegenerate minimum at the point (K=3;K=3): If at some i 2 f1; 2; 3g; Ki = �; then the

function "K has several coincident nondegenerate minimums.

Proof of Lemma 4. Since the function "K consists of three identical terms "Ki
(pi; qi) =

3� cos(Ki � pi � qi)� cos pi � cos qi; i = 1; 2; 3; each of which depends only on two real-valued

arguments pi; qi 2 [��; �]; i = 1; 2; 3; then it is enough to study minimums of functions "Ki
:

The function "Ki
is real-valued analytic with period 2� with respect to each argument pi and

qi; therefore it is enough to �nd all critical points of "Ki
and compare the values of the function

"Ki
at these points. Calculating partial derivatives of the function "Ki

and solving a system of

7



trigonometric equations with respect to unknowns pi; qi; we �nd all critical points of the function

"Ki
: They have the forms

(
Ki

3
;
Ki

3
); (

Ki + 2�

3
;
Ki + 2�

3
); (

Ki � 2�

3
;
Ki � 2�

3
);

(Ki + �;Ki + �); (Ki + �;�Ki); (�Ki;Ki + �):

For any Ki 2 (��; �) the minimum of "Ki
is reached at a unique point (Ki=3;Ki=3) which is

nondegenerate. Only in the case Ki = �; the minimum of "Ki
is reached at two points (�=3; �=3)

and (��=3;��=3) and both points are nondegenerate. Nondegeneracy is checked directly and

"min(K) = 3"(K=3); for all K 2 T 3:

Lemma 5. Let K 6 =0; then

max
q
D(K � q; "min(K)� "(q)) > D(K � q; "min(K)� "(q))jq=K=3:

Moreover for any q 2 T 3 the operator h��(K; q) has no virtual level at the left edge of the

essential spectrum of the operator H�(K):

Proof of Lemma 5. We can show that the maximal value of the functionD(K�q; z0�"(q))
does not reach at the point q = K=3; that is at the point q = K=3 the necessary condition of

extremum is not ful�lled

@D(K � q; "min(K)� "(q))

@qi
jq=K=3 = sin(Ki=3)

Z
(1� cospi)dp

("K(p;K=3) � "min(K))2
6 =0:

The unique operator which can have a virtual level is the operator h��(K;K=3); since the

left bounds of the essential spectrums of h��(K; q) and H�(K) coincide at the unique value

q = K=3: For q 6 =K=3 these bounds do not coincide. Therefore the left edge "min(K) of the

spectrum of H�(K) does not have a virtual level for the operators h��(K; q) at q 6 =K=3:
Let � = �(K); z0 = "min(K); �(p; z) = 1 � �(K)D(K � p; z � "(p)): It follows from

Lemma 5 that minp�(p; z0) = �(Q(K); z0) = 0 and Q(K) 6 =K=3: For any K 2 T 3 there exist

Æ > 0; C1; C2 such that the following inequalities are ful�lled (see [10])

a)C1(j p�K=3 j2 + j q �K=3 j2) � "K(p; q)� z0 �

� C2(j p�K=3 j2 + j q �K=3 j2) for (p; q) 2 (UÆ(K=3))
2: (10)

b)"K(p; q)� z � "K(p; q)� z0 � C1 for (p; q) 6 2(UÆ(K=3))
2:

Lemma 6. The conjugate operator T̂ ��(K);�(K; z) � T̂ �� (z) is compact for any z � z0 in the

Banach space C(T 3): There exist C > 0 and Æ > 0 such that the following inequality

kT̂ �� (z0)� T̂ �� (z)k � C
p
z0 � z for z 2 (z0 � Æ; z0)

is valid.

8



Proof of Lemma 6. The kernel T̂ �� (z) has a form:

T̂ �� (p; q; z) = 2�(K)
("K(p; q)� z)�1

�(q; z)
+ �

Z
[9� "K�3p(q � p; s� p)]ds

("K(q; s)� z)�(q; z)
:

For any z < z0 the compactness of T̂ �� (z) follows from the continuity of the kernel of T̂ �� (p; q; z):

We will prove the estimate kT̂ �� (z0) � T̂ �� (z)k � C
p
z0 � z: For any g 2 C(T 3); kgk1 = maxp j

g(p) j� 1 we have

kT̂ �� (z0)g � T̂ �� (z)gk1 �

� kgk1max
p

[2�(K)

Z
j�(q; z)("K(p; q)� z)��(q; z0)("K(p; q)� z0)

�(q; z)("K(p; q)� z)�(q; z0)("K(p; q)� z0)
jdq+

+9�

Z
j�(q; z)("K (q; s)� z)��(q; z0)("K(q; s)� z0)

�(q; z)("K(q; s)� z)�(q; z0)("K(q; s)� z0)
jdqds]:

Using (10) and the estimate

j �(q; z)("K(p; q)� z)��(q; z0)("K(p; q)� z0) j� C(z0 � z);

C1[(p�Q(K))2 + z0 � z] � �(p; z) � C2[(p�Q(K))2 + z0 � z];

we have:

kT̂ �� (z0)g � T̂ �� (z)gk1 � Ckgk1(z0 � z)

max
p2T 3

[

Z
[(p� K

3 )
2 + (q � K

3 )
2 + z0 � z]�1dq

(q �Q(K))2((q �Q(K))2 + z0 � z)[(p� K
3 )

2 + (q � K
3 )

2]
+

+

Z
[(q � K

3 )
2 + (s� K

3 )
2 + z0 � z]�1dqds

(q �Q(K))2((q �Q(K))2 + z0 � z)[(q � K
3 )

2 + (s� K
3 )

2]
]: (11)

Consider the �rst term in the square brackets on the right-hand side of the inequality (11). The

integral over the set T 3 n (UÆ(
K
3 )[UÆ(Q(K))) is uniformly bounded in p 2 T 3: We estimate the

integral over the domain UÆ(
K
3 ) [ UÆ(Q(K)): Passing on to the spherical coordinate system in

the integrals over the sets UÆ(
K
3 ); UÆ(Q(K)) and substituting p = K

3 we have:

(C1 + C2

Z Æ

0

r2dr

r2(r2 + z0 � z)
) � C1 +

C2p
z0 � z

:

By analogous reasonings we can show that the second term in the square bracket on the right-side

of (18) is bounded by the same value, therefore

kT̂ �� (z0)g � T �� (z)gk1 � (z0 � z)(C1 +
C2p
z0 � z

)kgk1:

It follows from here that

kT̂ �� (z0)� T �� (z)k � C
p
z0 � z: (12)

Compactness of the limit operator T̂ �� (z0) follows from the compactness of T̂ �� (z); z < z0; and

the inequality (12). Thus Lemma 6 is proved.
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Along with the Faddeev type operator T̂�;�(K; z) we will consider the operator T�;�(K; z) =

(I � �V�R0(z))
1=2T̂�;�(K; z)(I � �V�R0(z))

�1=2; i.e.

T�;�(K; z) = (I � �V�R0(z))
�1=2V�R0(z)[2� + �

3X
�=1

~V�](I � �V�R0(z))
�1=2: (13)

Note, that �rst term on the right side of (13) is a self-adjoint operator and the equations

T�;�(K; z)g = g and T̂�;�(K; z)' = ' are equivalent.

Lemma 7. Let K 2 Q then the operator T�(K);�(K; z) � T�(z) is a Hilbert-Schmidt operator

for any z � z0 and uniformly continuous in z = z0:

Proof of Lemma 7 immediately follows, if we use the nondegeneracy minimums of "K and

�:

Proof of Theorem 1. It follows from the above, that the right edge of the essential spectrum

of H�;�(K) is equal to "max(K): Since the operators V = V1 + V2+ V3 and W =W1+W2 +W3

are positive the following inequality

sup
kfk=1

(H�;�(K)f; f) = sup
kfk=1

[(H0(K)f; f)� �(V f; f)� �(Wf; f)] �

� sup
kfk=1

(H0(K)f; f) = "max(K)

holds. It means, that �(H�;�(K)) \ ("max(K);1) = ;; i.e. the operator H�;�(K) does not have

any points of spectrum on the semi-axes ("max(K);1):

Proof of Theorem 2. We will assume the contrary, that is the operator H�;�(K) has

in�nitely many eigenvalues zi such that limi!1 zi = z0 = "min(K): Let fi 2 L(K) be the

normed eigenfunction ofH�;�(K); corresponding to the eigenvalue zi: From the self-adjointness of

H�;�(K) it follows that the system ffig is orthogonal, that is (fi; fj) = Æij : Since any orthogonal

system weakly converges to zero, an orthogonal system of eigenfunctions ffig weakly converges

to zero too.

It follows from Lemmas 6-7.

Lemma 8. Let K 2 Q and ffig be the orthonormal system of eigenfunctions of the operator

H�;�(K) and gi(p) =
R
fi(p; q)dq: Then:

a) the sequence fgig strongly converges to zero.

b) there exists a constant C > 0 not depending on i and Æ > 0 such that

j gi(p) j� C for p 2 UÆ(K=3): (14)

Continuation of the proof of Theorem 2. The function gi(p) =
R
fi(p; q)dq satis�es

the Faddeev equation at z = zi: It follows from Lemma 8 that the sequence fgig strongly

converges to zero and is uniformly bounded in the neighborhood of the point p = K=3: Using

the representation (see (7))

fi(p; q) = �
gi(p) + gi(q) + gi(K � p� q)

"K(p; q)� zi
+ �

Z
[3� "K�3t(p� t; q � t)]gi(t)dt

"K(p; q)� zi

10



we will show that the sequence ffig strongly converges to zero. This convergence contradicts the
condition of the normalization of fi and completes the proof of Theorem 2. In fact, according

to the properties of the norm we have

kfik � 3�(

Z
j gi(p)

"K(p; q)� zi
j2dpdq)1=2 + 9�(

Z
jgi(p)j2dp

Z
dpdq

("K(p; q)� zi)2
)1=2: (15)

Since "K(p; q)�zi � C > 0 for (p; q) 6 2U2
Æ (K=3); then the �rst integral on the right-hand side of

(15) over the set (T 3)2 n U2
Æ (K=3) converges to zero because of the convergence of the sequence

fgig: Estimate the integral over the domain U2
Æ (K=3): According to (14) we have

j gi(p)

"K(p; q)� zi
j� C

"K(p; q)� z0
; for (p; q) 2 U2

Æ (K=3):

Since the minimum of "K is nondegenerate it follows from here that the majorizing function

belongs to L2((T
3)2): By virtue of absolute continuation of the Lebesgue integral, the integral

over the set U2
Æ (K=3) can be estimated by a small quantity. Because of the strong convergence

of the sequence fgig; it follows that the second term on the right-hand side of inequality (15)

converges to zero at i!1. It means that kfik ! 0 as i!1:

Proof of the Theorem in the case � 6 =�(K) is similar to that of the Theorem in [10] .

Theorem 2 is proved.
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