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Abstract

We studied the problem of two satellites attracted by a center of force. Assuming the motion

of the center of mass of the two satellites describes a keplerian circular motion around the

center of force we regularized the collision between them using the Levi-Civita procedure. The

existence of a constant of motion in the extended phase space allowed us to study the stability

of the solution where the two satellites are tied together in their circular motion around the

center of force. We call this solution the critical solution. A theorem of M Kummer is applied

to prove, in speci�c conditions, the existence of two one-parametric families of almost periodic

orbits for the satellites motion that bifurcates from the critical solution.
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1. Introduction

Suppose a natural satellite is in a circular motion around a center of force (a planet or a star

for example) and suddenly it breaks into two pieces. What is the dynamics of the pieces? In this

paper we studied this problem and proved the existence of two (orbitally) stable almost periodic

orbits that bifurcate from the original motion. The approach is the same as used in [CC] and

We describe it succinctly. Consider the planar problem of three bodies of masses m0,m1 and

m2 in the case where m1 and m2 are much smaller than m0. The mutual atraction of the two

small bodies can be usually neglected and the problem reduces in a fair approximation to two

independent two-body problems. However if the distance between the two small bodies is small

their mutual attraction can no longer be ignorated. This is known as Hill's problem [H]. We

take a di�erent approach to Hill's problem. First, instead of taking the limits m1;m2 ! 0 we �x

the body of mass m0 at the origin and assume m0 = 1. We take m1;m2 << 1 but no hierarchy

for the masses m1 and m2 will be assumed. Second, we assume that the center of mass of the

two-satellite system is on a circular orbit around the center of force. This situation is similar

to the circular Hill problem [I]. The collision between the satellites is them regularized using

the canonical form of the Levi-Civita regularization [SS] and it is found that the solution where

the two satelites are tied together in a circular motion around the center of force is a relative

equilibria for the system. We will call this solution the critical solution. In the extended phase

space we found an S1 action that generalizes the usual angular momentum ( if the two satelite

system is in the in�nity with respect to the center of force this constant of motion reduces to

the usual angular momentum). This action is free and proper and we can use the standards

procedures of symplectic reduction in a trivial way to reduce the dimension of the problem. The

reduced phase space has dimension 4 and We apply Normal Form theory results to study the

stability of the critical point that represents the critical solution. In the reduced space we can

prove that (see section (5.3) for the de�nitions) if � > 0 the critical solution is unstable and if

� < 0 the critical solution is Lyapounov stable. Moreover, in the case � < 0 and under mild

conditions on the parameters, a theorem of M. Kummer is them aplied to prove the existence of

two one-parametric families of stable periodic orbits in the reduced space, the parameter being

the energy. Those periodic orbits corresponds to almost periodic orbits in the full phase space.

The organization of the paper is as follows:

In section 2 We review the Levi-Civita transformation from a Hamiltonian point of view. We

also introduce without proofs the theorems used in the construction of our model.

In section 3 We construct the model. The model is regularized and contrary to the usual

study of Hill's problem We do not use a rotating system of coordinates (synodical) and do not

truncate the series expansions.

In section 4 We prove the existence of a constant of motion in the extended phase space and

use it to reduce the dimension of the system. An interesting feature of the the constant of

motion is that it isvalid for the full Hamiltonian and is preserved no matter the order of the
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truncation of the series. This makes the system well suitable for numerical investigations of the

cracking-sattelite problem.

In section 5 we do the stability analysis of the critical point that represents the critical solution

of the satelites and expand the Hamiltonian around this point in Normal Form. Then We apply

Kummer's theorem to obtain our main result (Theorem (5.2)).

Acknowledgments. It is a great pleasure to thank the members of the Celestial Mechanics

Group of Recife, Brazil, for many useful discussions.

2. Hamiltonian Regularization of the Kepler Problem

We review the Levi-Civita regularization under the eyes of Geometric Mechanics (for a general

treatment of Geometric Mechanics see e.g. ([AM],[MR])). The theorems introduced in this

section will be used to build our model. The mathematical theorems will be stated without

proofs. Let M be a symplectic manifold and w its symplectic two-form. In Celestial Mechanics

problems M is usually the cotangent bundle of a con�guration space C, i.e., M = T �C and w

is the standard symplectic two-form. The following theorem states that any transformation of

coordinates in C generates a canonical transformation (symplectomorphism) of T �C.

Theorem 2.1. Let � : C ! C be a di�eomorphism. Then � : T �C ! T �C, � = (d�T )�1 is a

canonical transformation. Here d�T is the adjoint of the derivative of �.

Example: The Levi-Civita Transformation For the planar Kepler problem the con�gura-

tion space is given by C = R
2 � f(0; 0)g and the phase space is given by T �C. Since we will be

considering time reparametrizations it is convenient to work in the extended phase space. This

is nothing more then the usual phase space direct product with R2 . Physically this means that

energy and time are included as canonically conjugated variables, i.e., our con�guration space

will be given by ~C = C � R and parametrized by (q1; q2; t). The phase space will be given by

T � ~C and parametrized by (qu; qv; t; pu; pv; E). The symplectic two form is the canonical one:

w = dqu ^ dpu + dqv ^ dpv + dt ^ dE. The Levi-Civita transformation � : C ! C is given

by �(q1; q2) =
�
u2 � v2; 2u v

�
: Looking C as imbeeded in ~C this induces the transformation

~�(q1; q2; t) =
�
u2 � v2; 2u v; t

�
: Therefore

d~� =

0
@ 2u �2 v 0

2 v 2u
0 0 1

1
A(1)

and

(d~�T )�1 =
1

4 (u2 + v2)

0
@ u �v 0

v u 0
0 0 4 (u2 + v2)

1
A :(2)

The canonical transformation ~� is given by

~�(q1; q2; t; p1; p2; E) = (u2 � v2; 2u v; t;
u pu � v pu

4�2
;
v pu + u pv

4�2
; E)
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where �2 = u2 + v2. The Hamiltonian of the Kepler problem is given by

H =
p21
2
+
p22
2
� �

r

where r =
p
q21 + q22 and � is a constant. Observe that under the transformation ~� we have

�H(u; v; t; pu; pv; E) = H(~�(q1; q2; t; p1; p2; E)) =
p2u + p2v
8 �2

� �

�2
:

The important fact here is that the Hamiltonian becomes homogeneous of degree �2 in j�j. We

will call � = (u; v) and p� = (pu; pv).

Remark We use the term dt^dE istead of the common term dE^dt. This is motivated by the

symmetry of our model (see De�nition (4.1)). The two di�erent choices corresponds to di�erent

parametrizations of the Hamiltonian solutions (doing t ! �t We change the form dt ^ dE in

dE ^ dt). This will become clear in the next example.

Theorem 2.2. Let H;F be two Hamiltonians such that fH = Ehg = fF = Efg as sets, where

Eh; Ef 2 R. Thus the Hamiltonian ow generated by H at the level Eh is equal to the Hamil-

tonian ow of F at the level Ef up to reparametrization.

Example: The Regularized Kepler Problem Consider the Hamiltonians �H and H =

�2
�
�H �E

�
. We have that as sets

�
�H = E

	
= fH = 0g. Observe also, that j�j = 0 is a

removable singularity for H. By the theorem, the induced ows at the respective levels are

equal up to reparametrization. In fact writing Hamilton's equations for H we obtain that8>>>>>>>>><
>>>>>>>>>:

d�
ds

= �2 @ �H
@p�

;

dp�
ds

= �2 � � �H �E
�� �2 @ �H

@�

dt
ds

= ��2

dE
ds

= 0

(3)

At H = 0, i.e., at �H = E it follows that the equations write as8>>>>>>>>><
>>>>>>>>>:

d�
ds

= �2 @ �H
@p�

;

dp�
ds

= ��2 @ �H
@�

dt
ds

= ��2

dE
ds

= 0

(4)

The �fth equations is just a time reparametrization (the Sundman reparametrization). Doing

t! �t (see the remark above) we rewrite those equations as8><
>:

d�
dt

= @ �H
@p�

;

dp�
dt

= �@ �H
@�
;

(5)
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but those are Hamilton's equations for H at the level set E. Observe that equations (4) are not

singular at j�j = 0.

3. The Circular Hill's Problem

The Hamiltonian �H of the planar problem of two bodies of mass m1 and m2 attracted by a

center of force of mass m0 at the origin is

�H =
�p21
2m1

+
�p22
2m2

�G
m0m1

j�q1j �G
m0m2

j�q2j �G
m1m2

j�q1 � �q2j
where �q1 and �q2 are the coordinates of the bodies of masses m1 and m2 respectively, �p1 and �p2

their conjugate momenta and G is the gravitational constant. We choose units such that G = 1

and set m0 = 1. This Hamiltonian represents a Hill problem when m1;m2 << 1. We introduce

a proportionality factor � 2 (0;1) such that m2 = �m1. The Hamiltonian becomes

�H =
�p21
2m1

+
�p22

2�m1
� m1

j�q1j �
�m1

j�q2j �
�m2

1

j�q1 � �q2j :

Let �w = d �q1^d�p1+d �q2^d�p2 denote the standard symplectic 2-form. Let X �H be the Hamiltonian

vector �eld generated by �H. Consider the �ber scaling given by

�(�q1; �q2; �p1; �p2) = (q1; q2;m1p1;m1p2):

Under this scaling we have

�H = m1

�
p21
2
+
p22
2�

� 1

jq1j �
�

jq2j �
�m1

jq1 � q2j
�
;

and

�w = m1 (dq1 ^ dp1 + dq2 ^ dp2) :
Dividing Hamilton's equations iX �H

�w = d �H bym1 we see that it suÆces to study the Hamiltonian

ow given by the Hamiltonian

H =
p21
2
+
p22
2�

� 1

jq1j �
�

jq2j �
�m1

jq1 � q2j(6)

with standard symplectic 2-form w = dq1 ^ dp1 + dq2 ^ dp2:
We introduce Jacobi variables � and r by8<

:
q1 = �� �

1+� r;

q2 = �+ 1
1+� r:

Here � represents the position of the center of mass of the two satellites and r represents their

relative position vector. Assuming jrj
j�j <

1+�
�

we can expand the terms

1

j�� �
1+� rj

and
1

j�+ 1
1+� rj

in power series ([Br]). The Hamiltonian (6) becomes

H =

 
p2�

2 ��
�

��

j�j

!
+

�
p2r
2�

� �m1

jrj
�
� 1

j�j
1X
n=1

Pn(cos�)

� jrj
j�j
�n

�n:(7)
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where � is the positively oriented angle between � and r,

�n = �n (1 + (�1)n �) ;
�� = 1 + � and � = � ���1.

3.1. The Circular Motion Hypothesis: At this point we make the principal assumption of

this work, namely, we assume that � = (�x; �y), the vector representing the position of the center

of mass of the two satellites, describes a circular keplerian orbit of radius j�0j around the center

of force, i.e. � is a circular solution of �� = � 1
j�j3

� yielding

� = j�0j (cos(!t); sin(!t)) ;
where ! = j�0j� 3

2 . By the second law of Kepler the energy of the center of mass is given by

Ecm = � ��
j�0j

, and Hamiltonian (7) becomes

H = �
��

j�0j +
�
p2r
2�

� �m1

jrj
�
� 1

j�0j
1X
n=1

Pn(cos�)

� jrj
j�0j

�n
�n:(8)

We remark that this Hamiltonian is time dependent since the angle � depends explicitely on

time. Since energy of system (8) is not preserved we extend phase space from R
4 to R6 by

including the canonically conjugated pair (E; t). Our new Hamiltonian system is given by(
�H = �E � ��

j�0j
+
�
p2r
2 � � �m1

jrj

�
� ��

j�0j

P1
n=1 Pn(cos�)

�
jrj
j�0j

�n
�n;

w = du ^ dpu + dv ^ dpv + dt ^ dE;
(9)

where we must restrict our attention to the level set �H = 0: Denoting the new time by f it

follows from Hamilton's equation dt
df

= 1. By choice we identify f and t.

3.2. Levi-Civita Regularization: We regularize the collision between the two satellites. Ob-

serve that on the regularized system the collision state r = 0 is an equilibrium point.

Theorem 3.1. The ow of system (9) is up to a reparametrization equal to the ow of system(
H =

p2�
2 � � 1

4

�
�� �+E

� j�j2 � �2
P1

n=1 �
n�1 Pn (cos(�=2))

�
j�j2

4

�n+1
�n:

w = du ^ dpu + dv ^ dpv + dt ^ dE:
(10)

Proof. Writing � = (�x; �y) and r = (rx; ry) we write the Levi-Civita transformation [SS]8>><
>>:

rx = u2 � v2;
ry = 2u v;
�x = w2 � z2;
�y = 2w z:

(11)

By theorem (2.1), transformation (11) lifts to the cotangent bundle as a canonical transforma-

tion. Under this lift Hamiltonian (9) becomes

�H = �E �
��

j0j2 +
1

j�j2 (
p2�
8�

� �m1)� 1

j0j2
1X
n=1

Pn(cos(�=2))

� j�j
j0j

�2n

�n:(12)

Now consider the Hamiltonian

H = j�j2 �H(13)
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in extended phase space with symplectic 2-form given by

w = du ^ dpu + dv ^ dpv + dt ^ dE:(14)

Since the hypersurfaces
�
�H = 0

	
and fH = 0g are equal it follows by theorem (2.2) that the

Hamiltonian ow of (12) at the level set �H = 0 is a reparametrization of the Hamiltonian ow

of (13) at the level set H = 0. (12) and (13) yields

H = ��m1 +
p2�
8�

�
� ��

j0j2 +E

�
j�j2 � j�j2

j0j2
1X
n=1

Pn (cos(�=2))

� j�j2n
j0j2n

�
�n:

We are interested on the ow of H at the level 0. We can eliminate the constant ��m1 of the

Hamiltonian by considering the level �m1 instead. Writing � = 1
j0j2

and doing the symplectic

scaling p� ! 2 p� , � ! �=2 we have

H =
p2�
2�

� 1

4

�
�� �+E

� j�j2 � �2
1X
n=1

�n�1 Pn (cos(�=2))

� j�j2
4

�n+1

�n;(15)

proving the theorem.

4. Symmetry and Reduction

The increase in the dimension of the phase space is the price to be paid in doing the reg-

ularization. For time dependent systems this is quite natural since extending the phase space

is the way to recover the aparently lost Hamiltonian formalism. For Hamiltonian system (10)

We discovered an action of S1 in the extended con�guration space of the system for which the

Hamiltonian is invariant. Geometrically this action is quite simple to describe:

Let ~r = (u; v; t) 2 R3 and ~p = (pu; pv; E) 2 R3 �.

De�nition 4.1. For � 2 S1 de�ne the action S1 � R3 ! R
3 by

� � ~r =
�
cos(�)u� sin(�) v ; sin(�)u+ cos(�) v ; t+

4

w
�

�
:

The S1-action just de�ned is a rotation when restricted to the plane (u; v) and a translation

when restricted to the u axis. The rotation factor � and the translation factor 4
w
� are such that

the action acts as a rigid rotation on the triangle made up of the two-satelites and the center of

force.

Lemma 4.2. The momentum map J (r; p) : T � �TR3�! s�(1) of the action (4.1) is given by

J (r; p) = �u pv + v pu +
4

w
E:

Proof. This action lifts to the cotangent bundle T �R3 as

� � (~r; ~p) = (� � ~r; � � ~p)(16)

where

� � ~p = (cos(�) pu � sin(�)pv; sin(�)pu + cos(�)pv; E) :
7



We identify the Lie algebra of S1 with R. Let � 2 s(1). Denote by � : T �R3 ! T (T �R3 ) the

in�nitesimal generator of the action. Then

� (~r; ~p) =

�
�� v; � u; � 4

w
;�� pv; � pu; 0

�
:

The in�nitesimal generator is an Hamiltonian vector �eld. In fact w(�; :) = dJ� where

J� = �� u pv + � v pu + �
4

w
E:

But J�(r; p) =< �;J (r; p) > where J (r; p) : T �(TR3 ) ! s(1)� is the momentum map for the

action and<;> represents the pairing between the algebra and its dual what gives the result.

Lemma 4.3. Hamiltonian (15) is invariant under the action (4.1).

Proof. It suÆces to prove that

cos(�=2) =

�
u2 � v2

�
cos(wt=2) + 2u v sin(wt=2)

j�j2 ;

is invariant. In fact, we only need to prove that the numerator is invariant. Denoting by

(�u; �v; �t) = � � (u; v; t) we have that �u = cos(�)u� sin(�)v, �v = sin(�)u+ cos �(v), �t = t+ 4
w
�. A

straightforward computation gives the result.

Remark 1 Since w = ��
3
2 it follows that in the limit � = 0, i.e., when the distance between the

center of mass of the satelites and of the center of force is in�nite, the momentum map reduces

analytically to the usual angular momentum of the two-satelite system. In this paper � will not

be treated as pertubation parameter and will be a small constant.

Remark 2 The invariance of cos(�=2) implies that the momentum map is preserved for any

truncation of the Hamiltonian (15) regardles the order of the truncation.

Since the momentum map is conserved along the ow we can reduce the dimensionality of

the system. Fixing a level set of J (r; p) = c, for c 2 R and writing

E =
c+ u pv � v pu

4 �
3
2

;

(10) becomes

H =
p2�
2�

� 1

4

�
�� �+

c+ u pv � v pu

4 �
3
2

�
j�j2 � �2

1X
n=1

�n�1 Pn (cos(�=2))

� j�j2
4

�n+1

�n;

that we write as

H =
1

2�

�
p2u + p2v

�� �

2

�
u2 + v2

�
+H4 +H6 + :::(17)

where

� =
1

2

�
���+

c

4 �
3
2

�
;

and Hn is a homogeneous polynomial of degree n.

Since E is now a ciclic variable (what implies that dt
ds

= 0) the Hamiltonian (15) is an

Hamiltonian in the reduced 4-dimensional phase space (u; v; pu; pv) parametrized by c and t(0).
8



Observe that if � < 0 the degree 2 term of the hamiltonian represents a ressonant harmonic

oscillator.

5. Normal Form and Stability

The origin in the reduced phase space is a critical point for the Hamiltonian equations of

(17). Physically, in the non-reduced space, this critical point represents the solution in which

the two-satellites are 'glued' together and revolving in a circular orbit around the center of force.

5.1. Critical Point Analysis:

Theorem 5.1. For the reduced Hamiltonian (17) we have that the origin is an unstable critical

point if � > 0 and it is a Lyapounov stable critical point if � < 0.

Proof. Let ~x = (u; v; pu; pv). Then the linearized system given by (17) at the critical point ~x0

is given by _~x = JD2H(~x0) ~x where J is the canonical symplectic matrix and D2 denotes the

Hessian. At the origin ~0 = (0; 0; 0; 0) we have that

JD2H(~0) =

0
BB@

0 0 1
� 0

0 0 0 1
���

2 0 0 0
0 ��

2 0 0

1
CCA :

The eigenvalues of JD2H(~0) are given by

e1 =

p
��

2
and e2 = �

p
��

2
;

each with multiplicity two. Therefore, if � > 0 the critical point is unstable. If � < 0 then the

quadratic part of (17) is positive de�nite and the critical point is Lyapounov stable.

In the case � < 0 we can prove the existence of two one-parameter families of stable periodic

orbits parametrized by the energy.

Theorem 5.2. If �4 �1

16 �3�
6= 1 then the Hamiltonian ow induced by (17) has two stable one-

parametric families of periodic solutions, the family parameter being the energy.

We prepare the notation to write a Normal Form expansion for the Hamiltonian (17). First

we do the symplectic scaling

u! u

(j�j�) 14
and pu ! (j�j�) 14 pu

for the u; pu pair and then do the same scaling for the v; pv pair. Dividing the Hamiltonian by
j�j
�

1
2 (what amounts to change the energy level) we obtain

H =
p2u
2
+
u2

2
+
p2v
2
+
v2

2
+H4 +H6 + :::;(18)

where

H4 = (u2 + v2)
�
�1 (u

2 � v2) cos(w t0) + 2�2 u v sin(w t0) + � (u pv � v pu)
	
;

9



�1 = � �2 �1

4 j�j 32 � 1
2

cos(w t0);

�2 = � �2 �1

4 j�j 32 � 1
2

sin(w t0);

and

� =
1

16 �j�j :
This is a hamiltonian where the quadratic part is in 1 : 1 ressonance. We de�ne the vector Æ =

(1; 1) that represents the ressonance. The symplectic transformations that leave the quadratic

term of (18) invariant constitute the group U(2), and correspondingly the Gustavson normal

form of our Hamiltonian is a function over the Lie Algebra u(2). We write

z1 =
1p
2
(u+ ipu); �z1 =

1p
2
(u� ipu);

z2 =
1p
2
(v + ipv); �z2 =

1p
2
(v � ipv):

We also de�ne

zj = Nj

1
2 i e�j for j=1,2:

In those coordinates the symplectic 2-form write as

w = i
2X

j=1

dzj ^ d �zj = dNj ^ d�j ;

and the Poisson bracket write as

ff; gg = i

2X
j=1

�
@f

@zj

@g

@ �zj
� @g

@zj

@f

@ �zj

�
:

Let �z = (�z1; �z2) and z = (z1; z2). We de�ne the following quadratic forms

Mi =
1

2
�zt siz(19)

for i = 0; 1; 2; 3 and where

s0 =

�
1 0
0 1

�
, s1 =

�
0 i
�i 0

�
, s2 =

�
0 1
1 0

�
, s3 =

� �1 0
0 1

�

are the Pauli matrices. Denote J =M0 =
1
2 (z1 �z1 + z2 �z2). From the de�nitions it follows that

J2 =M2
1 +M2

2 +M2
3 :(20)

Lemma 5.3. (Normal Form Theorem) There exists a formal change of coordinates zk ! ẑk

such that in the new variables ẑk the Hamiltonian (18) has the form 2J +K where

K =

1X
m=2

Km(J;M1;M2;M3)

is a formal sum of homogeneous polinomials of degre m and fKm; Jg = 0 far all m.

Proof. See ([Mos]).
10



We will put the Hamiltonian (18) in normal form up to the fourth order. Denote by N the

hamiltonian in normal form. Let (�; p�) ! ( ; �) be the formal change of coordinates that

will bring H to N . We write this change of coordinates with the help of a generating function

W = W (2) +W (3) +W (4) + ::: . Since the quadratic part of H is already in normal form and

observing that the Hamiltonian has no term of order 3 we write

W (�; �) = u �1 + v �2 +W (4) + ::::

This gives 8><
>:

 = � + @W (4)

@�
+ ::: ;

p� = � + @W (4)

@�
+ ::: :

(21)

Therefore we can write

H(�;
@W

@�
) = N(

@W

@�
; �):(22)

We de�ne two integer vectors ~k = (k1; k2) and ~l = (l1; l2) where ki; li 2 Z for i = 1; 2. We also

de�ne the variables

�1 = u+ i�1 , ��1 = u� i�1;

and

�2 = v + i�2 , ��2 = v � i�2:

We also write

�k � l =

nY
�=1

�k��
���
l� :

N will be in normal form if its expansion in the variables �i and ��i contains only terms �k � l

with

(k � l; Æ) = 0:(23)

Expanding (22) and choosing W (4) such that (22) is satis�ed order by order we obtain after

some algebra that

N = �1 ��1 + �2 ��2 +
3�1
8

n
�21

��21 � �22
��2
2
o

+
3�2
8

n
�21

��1 ��2 + ��1
2
�1 �2 + �1 �2 ��2

2
+ ��1 ��2 �

2
2

o
+O(6);

that can be factored as

N = �1 ��1 + �2 ��2 +
3�1
2

�
�1 ��1 + �2 ��2

2

� �
�1 ��1 � �2 ��2

2

�

+
3�2
2

�
�1 ��1 + �2 ��2

2

� �
�1 ��2 + ��1 �2

2

�
+O(6)

Doing a relabeling of the variables and using (19) We �nally have

N = 2J +
3

2
J (�1M3 + �2M2) +O(6)
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At this point we de�ne the unit vector (see (20))

~s = (s1; s2; s3) =
1

J
(M1;M2;M3)

and write

N = 2J +
3

2
J2 (�1 s3 + �2 s2) +O(6):

We call ~N the fourth-order truncation of N , i.e.

~N = 2 J +
3

2
J2 (�1 s3 + �2 s2)

For future use we call

K =
3

2
(�1 s3 + �2 s2) :

The Hamiltonian ~N induces a ow on the unit sphere

S2 =
�
(s1; s2; s3) 2 R3 j s21 + s22 + s23 = 1

	
in the three-dimensional space. It turns out that this induced ow determines the ow of the

hamiltonian ~N in R4 :

Theorem 5.4. (Kummer, M **) The ow induced by ~N on S2 determines the ow induced by

~N in R4 and moreover, to each critical point of ~N on S2 corresponds a periodic orbit of ~N on

R
4 .

Proof. We sketch Kummer's result. To relate the induced ow on S2 with the ow of R4

introduce the variables (J;AJ ;M3; Am) where

AJ = �1 + �2 and Am = �1 � �2:

The canonical 2-form has the representation

w = dJ ^ dAJ + dM3 ^ dAm:

Now we can compute that

M1 =
q
J2 �M2

3 sin(Am);

M2 =
q
J2 �M2

3 cos(Am):

Over S2 We have that

s1 =
p
1� s32 sin(Am);

s2 =
p
1� s32 cos(Am):

Introducing Az by s3 = cos(Az) we have that Am; Az are polar coordinates on S
2. In terms of

coordinates J;Am; Az ; AJ the symplectic form writes as

w = dJ ^ dAJ + (cos(Az)dJ � J sin(Az)dAz) ^ dAm:
12



Hamilton's equations for the Hamiltonian ~N with respect to those variables will write as8>>>>>>>>>><
>>>>>>>>>>:

_J = 0;

_AJ = 2 + J
n
2F + cotg(Az)

@F
@Az

(s)
o
;

_Am = � J
sin(Az)

@F
@Az

(s);

_Az =
J

sin(Az)
@F
@Am

(s)

(24)

Therefore the induced ow in S2 determines the ow in R
4 . Also, the critical points of the

function ~N in S2 are the critical points of the ow it induces on S2. From the equations we

have that to each critical point s0 of ~N in S2 corresponds a periodic orbit in R4 , in fact at s0

we will have that @F
@Az

(s0) =
@F
@Am

(s0) = 0.

The next result of M. Kummer shows that the periodic orbits of ~N predicted by the last theorem

persist when we consider the full Hamiltonian. We state the theorem: Let s0 be a critical point

of ~N over S2. Without lost of generality we can assume that s0 = (0; 0;�1) = ez. De�ne

A11 =

�
@2K

@x2

�
; A22 =

�
@2K

@y2

�
; A12 =

�
@2K

@x@y

�
;

A33 =

�
@2K

@z2

�
; A23 =

�
@2K

@y@z

�
; A13 =

�
@2K

@x@z

�
;

all of them computed at ez. Let

� = �
�
@K

@z

�
also computed at ez. Also let

A = ��A11; B = ��A22; C = ��A33;

and

D =

������
A 0 �A13

0 B �A23

�A13 �A23 C

������
Theorem 5.5. (i) To each unstable critical point of the ow that ~N induces on S2 there corre-

sponds an unstable one-parametric family of periodic solutions of the equations associated with

N , the family parameter being the energy.

(ii) An analogous statement holds if the critical point is stable provided the following expression

is non-zero:

12(A3 A2
23 +B3A2

13) + 4 (AB)2 (A+B + C)� 3D(A+B)2;(25)

where AB = �(�) > 0:

Proof. See ref (**)

The proof of theorem (5.2) is a direct consequence Kummer's result.
13



Proof. The critical points of ~N on S2 are the critical points of K on S2. Using Lagrange

multipliers we have that s0 is a critical point of K on S2 if and only if there is a real number �

such that

rKs0 = � s0:

But

rKs0 = (0; �2; �1)

therefore we can take the solutions to be

� = �
q
�21 + �22 and s0 = � (0;

�2
�
;
�1
�
):

Whithout loss of generality we assume only the 'plus' solution. Making the rotation0
@ s1

s2
s3

1
A =

0
@ 1 0 0

0 ��1
�

�2
�

0 ��2
�

��1
�

1
A
0
@ x

y
z

1
A

we have that s0 gets mapped into ez and that K in the new system of coordinates writes as

K = �3

2

p
�12 + �22 z

The critical point is clearly stable. We also compute trivially that

Aij = 0 for i; j = 1; 2; 3:

Therefore the expression (25) reduces to

12(�3 � �5):

This is zero only if j�j = 1, but this possibility is eliminated by the hypothesis that

�4 �1

16�3 �
6= 1

Remark This theorem is valid no matter the order of the truncation of N .
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