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1 Introduction

In the seventies Moreau [14] introduced and studied the evolution problem

�u0(t) 2 NC(t)(u(t)) a:e: in [0; T ]; u(0) = u0 2 C(0) (1.1)

which describes the motion of a ball inside a ring. Here u(t) is the position of the ball at time t

and C(t) is the ring at time t. NC(t)(u(t)) denotes the outward normal cone to the set C(t) at

the position u(t). Thus (1:1) tells us that the velocity u0(t) of the ball has to point inwards to

the ring at almost every time t 2 [0; T ]. The initial condition u(0) 2 C(0) states that the ball is

initially contained in the ring. (1:1) is known as the Moreau's sweeping process. This includes

evolution variational inequality as a special case.

Find u(t) 2 K a.e. such that

hu0(t); v � ui � hf; v � ui (1.2)

for all v 2 K, K is a subset of a Hilbert space H, u : [0; T ]! H; f 2 L2(0; T ;H
�).

Several extensions and applications of the Moreau sweeping process in diverse �elds [7]-[15],

[20]-[22] have been studied. For a lucid introduction of this process along with numerical aspects

and applications we, particularly, refer to Moreau [15]. While studying the heat control problem

one encounters the following evolution variational inequality.

Find u = u(x; t) such that u0(t) = @u(�; t)=@t 2 H1(
) and

hu0(t); v � u0(t)i+ a(u(t); v � u0(t)) + j(v) � j(u0(t)) � hf(t); v � u0(t)i (1.3)

where j(�) is convex and lower semicontinuous with values in (�1;+1) but not identically +1

(for details see [4, 80-94] and [5, 454-476]). In particular we may consider variational inequality

[1-6, 16-19] of the type

Find u = u(x; t) such that u0(t) 2 H1(
)

hu0(t); v � u0(t)i � 0 (1.4)

and look for existence and uniqueness of solution of a variant of Moreau process, namely

Find u = u(x; t) 2 C(t) such that u0(t) 2 C(t) and

�u0(t) 2 NC(t)(u
0(t)) (1.5)

which includes (1:4) as a special case.

The variational inequality of the type (1:6) is the formulation of the dynamic analogue of

the Signorini problem (see [4, 154-162] and [5, 476-487]).

Find u0(t) 2 C(t) for all t such that

hu00(t); v � u0(t)i + a(u(t); v � u0(t)) + j(v) � j(u0(t))
� hf(t); v � u0(t)i

�
(1.6)
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for all v 2 C(t) and with the initial conditions u(0) = u0; u
0(0) = u1. A natural question is

whether the following sweeping process has a unique solution:

Find u(t) 2 C(t) such that u0(t) 2 C(t) a.e. t and

�u00(t) 2 NC(t)(u
0(t)); u(0) = u0; u

0(0) = u1 : (1.7)

The main goal of this paper is to study existence and uniqueness of sweeping processes described

by (1:5) and (1:7).

2 Notation and Preliminaries

Let H be a Hilbert space with an inner product h�; �i. For a closed convex subset C of H the set

NC(x) = fy 2 H j hy; v � xi � 0;8v 2 Cg; x 2 C;

denotes the normal cone to C at x. Let dH(A;B) denote the Hausdor� distance between two

subsets A and B of H and it is de�ned as follows

dH(A;B) = maxfsup
x2B

d(x;A); sup
x2A

d(x;B)g (2.1)

where d(x;A) = inffkx� yk j y 2 Ag.

For any Banach space X, we denote by Cm([0; T ];X) the space of continuous functions u :

[0; T ]! X that have continuous derivatives up to and including those of order m on [0; T ] with

the norm

kukCm([0;T ];X) =

mX
i=0

max
0�t�T

ku(i)(t)kX (2.2)

and by Lp(0; T ;X) for 1 � p <1 the space of all measurable functions u : (0; T )! X for which

kukLp(0;T ;X) =

�Z T

0
ku(t)kpX

�1=p

<1 : (2.3)

The space of measurable functions u : (0; T )! X which is essentially bounded and denoted by

L1(0; T ;X) and this space is endowed with norm

kuk = ess sup
0�t�T

ku(t)kX (2.4)

Some properties of those spaces are listed in Theorem 2:1 [23].

Theorem 2.1 Let m be a nonnegative integer and 1 � p � 1. Let X be a Banach space.

a) Cm([0; T ];X) with the norm (2:2) is a Banach space.

b) Lp(0; T ;X) is a Banach space if we identify functions that are equal almost everywhere in

(0; T ).
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c) If X is a Hilbert space with inner product h�; �iX then L2(0; T ;X) is also a Hilbert space

with the inner product

hu; viL2(0;T ;X) =

Z T

0
hu(t); v(t)iXdt : (2.5)

The topological dual of a Banach space X is de�ned by X� and the operation of an element u� 2

H� on an element u 2 X is represented by (u�; u). If X is separable the L1(0; T ;X
�) is separable

and (L1(0; T ;X))� = L1(0; T;X
�). If X is a Hilbert space then (L2(0; T ;X))� = L2(0; T;X

�).

For a Hilbert space H, we de�ne by W 1;2(0; T ;H) the space of functions u 2 L2(0; T ;H) such

that u0 2 L2(0; T ;H), equipped with the norm

kuk2W 1;2(0;T ;H) = kuk2L2(0;T ;H) + ku0k2L2(0;T ;H) (2.6)

where u0 denotes the generalized derivative of f on (0; T ). A function w = u(n) is the generalized

derivative of the function u on (0; T ) if and only if

Z T

0
�(n)(t)u(t) dt = (�1)n

Z T

0
�(t)w(t) dt (2.7)

for all � 2 C10 (0; T ) - the space of in�nitely di�erentiable functions having compact support.

The integrals in (2:7) exist if u;w 2 L1(0; T ;H). The generalized derivative is unique, if the

function u : [0; T ]! H is continuous and the derivative

u0(t) = lim
h!0

u(t+ h)� u(t)

h
(2.8)

exist for all t 2 [0; T ] as a limiting value in H; and u0 : [0; T ] ! H is also continuous then u0 is

the generalized derivative of u on (0; T ). Moreover, if u 2 L2(0; T ;H) then u0 2 L2(0; T ;H
�).

The following results [23] are needed in our subsequent discussion.

Theorem 2.2 ([23], p.421) Let H be a Hilbert space and let u : [0; T ] ! H be Lipschitz

continuous, that is

ku(t) � u(s)k � Ljt� sj for all t; s 2 [0; T ] (2.9)

and �xed L � 0. Then

a) For almost all t 2 [0; T ], the function u has a derivative,

u0(t) = lim
h!0

u(t+ h)� u(t)

h

and

u(t) = u(0) +

Z t

0
u0(s) ds for all t 2 [0; T ]

b) For almost all t 2 [0; T ]

ku0(t)k � L

and u0 is the generalized derivative of u on (0; T ).
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An operator A : H ! H� is called monotone if

hAu�Av; u� vi � 0 for all u; v 2 H (2.10)

A is called strongly monotone if there is a constant � > 0 such that

hAu�Av; u� vi � �ku� vk for all u; v 2 H (2.11)

A is maximal monotone if and only if

R(A+ I) = H :

For this characterization which was also proposed by Minty and other related results see [23,

chapter 32].

It may be observed that if X = R then u0 for u : X = R! X� = R is strongly monotone if u is

C2 and u00(t) > c for all t 2 R and �xed c > 0. u0 is strongly monotone if u is C1 and satis�es

u0(t)� u0(s) � c(t� s) for all t � s 2 R and c > 0.

Let

D1(u) = u0 ; dom(D1) = fu 2W 1;2(0; T ;H) j u(0) = 0g � H

D2(u) = u0 ; dom(D2) = fu 2W 1;2(0; T ;H) j u(0) = u(T )g � H

Then D1 : dom(D1)! H� and D2 : dom(D2)! H� are maximal monotone operators.

A moving set valued map t! C(t) is called Lipschitz continuous if

dH(C(t); C(s)) � Ljt� sj; t; s 2 [0; T ] (2.12)

for some constant L > 0. Our aim is to prove that for a Lipschitz continuous moving set C(t)

there exists a unique solution to (1:5). By a solution of (1:5) we mean a function u : [0; T ]! H

such that

a) u(0) = u0

b) u(t) 2 C(t) for almost every t 2 [0; T ]

c) u0(t) 2 C(t) for almost every t 2 (0; T )

d) �u0(t) 2 NC(t)(u
0(t)) for almost every t 2 [0; T ]

The following discretization process is needed for the proof of the solution of the sweeping

process. We �x n 2 N and choose a time discretization

0 = tn0 < tn1 < : : : < tnm�1 < tnm = T (2.13)
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with tni+1 � tni �
1
n ; 0 � i � m� 1 : We may set tni = i

n , but we need not �x the discretization

explicitly. The value of m will depend on n and m ! 1 for n ! 1. We de�ne the step

approximation un : [0; T ]! H as follows. Let

un0 = u0; u
n
i+1 = uni + proj(0; C(tni+1)) 2 C(tni+1); (2.14)

0 � i � m� 1. The un are de�ned via linear interpolation

un(t) = uni +
t� tni

tni+1 � tni
(uni+1 � uni ); t 2 [tni ; t

n
i+1] : (2.15)

For x 2 H an element y of C is called the projection of x on C � H (C is closed and convex)

written as

y = proj(x;C) if kx� yk = d(x;C) = inf
z2C

kx� zk: (2.16)

Equivalently y = proj(x;C) if

hy � x; y � zi � 0 for all z 2 C : (2.17)

For our discussion we assume that 0 2 C(t) and C(t) is a cone and u0(t) 2 C(t) whenever u0(t)

exists and u(t) 2 C(t).

3 Existence Results and related Lemmas

Theorem 3.1 Let t ! C(t) be Lipschitz continuous, that is, satisfy (2:12) and C(t) � H be

nonempty, closed and convex for every t 2 [0; T ]. Let u0 = u(0); u10 = u0(0) belong to C(0).

Then there exists a unique solution u : [0; T ] ! H of (1:5) which is Lipschitz continuous. In

particular, u 2 L1(0; T ;H) and u0 2 L1(0; T ;H).

Theorem 3.2 Let t ! C(t) be Lipschitz continuous, that is, satisfy (2:12) and C(t) � H be

nonempty, closed and convex for every t 2 [0; T ]. Let u10 = u(0); u20 = u00(0) belong to C(0).

Then there exists a unique solution u : [0; T ] ! H of (1:7) which is Lipschitz continuous. In

particular, u 2 L1(0; T ;H), u0 2 L1(0; T ;H) and u00 2 L2(0; T ;H).

Lemma 3.1 ([13], p.10) Let H be a Hilbert space and fung be a sequence of functions un :

[0:T ]! H that is bounded uniformly in norm and variation, that is,

kun(t)k �M1; n 2 N; t 2 [0; T ] and

var(un) �M2; n 2 N (3.1)

for some constants M1;M2 > 0 independently of n 2 N and t 2 [0; T ]. Then there exists a

subsequence funkg and a function u : [0; T ] ! H such that var(u) � M2 and unk(t) ! u(t)

weakly in H for all t 2 [0; T ], that is,

hunk(t); zi ! hu(t); zi for all z 2 H (3.2)

as k !1.
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Lemma 3.2 ([10] or [23], p.258) a) Let un ! u weakly in H. The

kuk � lim inf
n!1

kunk (3.3)

holds.

b) If un 2 C+ �B�n(0) for some closed convex C � H and some sequence �n ! 0, then u 2 C.

Lemma 3.3 (Rockafellar, R.T. see [10]) Let fvng be a sequence of functions vn : [0; T ]! H

such that vn ! v� in the weak* topology of L1([0; T ];H), that is,

Z T

0
hvn(t); �(t)i dt !

Z T

0
hv�(t); �(t)i dt as n!1 (3.4)

for all � 2 L1([0; T ];H). Suppose that for each t 2 [0; T ] the set C(t) � H is nonempty, closed

and convex such that (2:12) is satis�ed. Let

�(v) =

Z T

0
Æ�(v(t); c(t)) dt (3.5)

for v 2 L1(0; T ;H), where Æ�(x;C) = supfhx; ci j c 2 Cg for x 2 H. Then � is lower semi-

continuous, that is,

�(v�) � lim
n!1

inf �(vn) :

Lemma 3.4 ([10]) Let u : [0; T ] ! H be a continuous function that is di�erentiable at almost

every point t 2 (0; T ). Then

a)
TR
0

hu0(t); u(t)i dt = 1
2 ju(T )j

2 � 1
2 ju(0)j

2

b) 1
2(

d
dt ju

0(t)j2) = hu0(t); u0(t)i = ku0(t)k2 :

4 Proof of Theorem 3.1

Step 1. First of all we show that if u is a weak limit of un given by (2:15) then u 2 L1(0; T ;H),

that is, ju(t)j �M for almost every t 2 [0; T ]. It can be seen that

kuni+1 � uni k � dH(C(t
n
i ); C(t

n
i+1)) � Ljtni � tni+1j (4.1)

where we have used discretization in Section 2, (2:14) and (2:12). If un is de�ned by (2:15) then

var(un) =
m�1X
i=1

kun(t
n
i+1)� un(t

n
i )k =

m�1X
i=1

kuni+1 � uni k

� L
m�1X
i=1

(tni+1 � tni ) = LT =M2 ;

kuni+1k � kuni k+ L(tni+1 � tni )

7



and

kun(t)k � kuni k+ Lkuni+1 � uni k

� ku0k+ L(tni+1 � tni )

� ju0j+ LT =M1 (4.2)

for t 2 [tni ; t
n
i+1]. Consequently the desired result kun(t)k �M1 holds for t 2 [0; T ] as the above

relation is true for all n 2 N and t 2 [0; T ]. Since fun(t)g is a bounded sequence in Hilbert

space H we can extract a subsequence still denoted by un(t) which converges weakly in H say

un(t)! u(t) weakly for all t 2 [0; T ] (Lemma 3:1).

Step 2. t! u(t) is Lipschitz continuous.

Let un(0) = u0 then weak limit of un(0) = u(0) = u0. For t 2 [tnj ; t
n
j+1] and s 2 [tni ; t

n
i+1] for

some 0 � j; i � m � 1 (without loss of generality we can assume i � j, that is, tni � tnj ) from

(2:12) and (4:1) we obtain

kun(t)� un(s)k � kun(t)� un(t
n
j )k+

j�1X
k=i+1

kun(t
n
k+1)� un(t

n
k)k

+ kun(t
n
i+1)� un(s)k

�
t� tnj

tnj+1 � tnj
kunj+1 � unj k+

j�1X
k=i+1

kunk+1 � unkk

+
tni+1 � s

tni+1 � tni
kuni+1 � uni k

�

jX
k=i

kunk+1 � unkk � L

jX
k=i

ktnk+1 � tnkk = L(tnj+1 � tni )

or

kun(t)� un(s)k � Ljt� sj+ js� tni j+ jtnj+1 � tj � L

�
jt� sj+

2

n

�
: (4.3)

By (4:3) and Lemma 3:2(a) we get

ku(t)� u(s)k � lim
n!1

inf kun(t)� un(s)k � Ljt� sj

as weak limit of (un(t) � un(s)) = u(t) � u(s). Therefore u is Lipschitz continuous and by

Theorem 2:2(a), u0(t) exists for almost every t and ku0(t)k � L by Theorem 2:2(b). Hence

u0 2 L1(0; T ;H). Clearly u0(0) = u00.

Step 3. To show that u(t) 2 C(t).

By (2:13) and (2:15) we have

t� tni
tni+1 � tnj

kunj+1 � unj k � Lkt� tni k � L(tni+1 � tni ) �
L

n
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for t 2 [tni ; t
n
i+1]. Hence by (2:15), (2:16) and (2:12), for t 2 [tni ; t

n
i+1],

un(t) 2 C(tni ) +
�BL=n(0)

� C(t) + �BL(t�tni )
(0) + �BL=n(0)

� C(t) + �B2L=n(0) : (4.4)

(2:13) has been used in the last step. It is clear that (4:4) holds for all n 2 N and t 2 [0; T ],

and so Lemma 3:2 yields u(t) 2 C(t) for all t 2 [0; T ].

Step 4. To show that u is a solution of (1:5).

By (2:14) and (2:17) we have

huni+1 � uni ; u
n
i+1 � uni � vi � 0; v 2 C(tni+1) : (4.5)

From (2:15), (4:1) and (2:13) we obtain

kun(t)� uni+1k =
tni+1 � t

tni+1 � tni
kuni+1 � uni k � L(tni+1 � t) �

L

n
; (4.6)

t 2 [tni ; t
n
i+1]. Since by (2:12),

C(t) � C(tni+1) +
�BL(tni+1�t)

(0)

� C(tni+1) + �BL=n(0)

for t 2 [tni ; t
n
i+1], we �nd from (4:5) and (4:1) that

huni+1 � uni ; u
0
n(t)� vi = huni+1 � uni ; u

n
i+1 � wi+

huni+1 � uni ; [u
0
n(t)� (uni+1 � uni )] + [w � v]i

� kuni+1 � uni k

�
L

n
+
L

n

�
�

2L

n
(tni+1 � tni ) (4.7)

for t 2 [tni ; t
n
i+1] and c 2 C(t). In the interior (tni ; t

n
i+1), un is di�erentiable with derivative

u0n(t) = (tni+1 � tni )
�1(uni+1 � uni ) and hence by (4:7) we get

hu0n(t); u
0
n(t)� vi �

M

n
; t 2 (tni ; t

n
i+1) (4.8)

v 2 C(t). The estimate (4:1) also shows that

ku0n(t)k � L ; t 6= tni ;

hence

ku0n(t)kL1(0;T ;H) � L ; n 2 N :

Since L1(0; T ;H) is the dual space of L1(0; T ;H), it is a consequence of the Banach-Alaoglu

theorem that we may extract a further subsequence, again indexed by n (see for example [10] or
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[23], p. 260), such that u0n ! v� for some v� 2 L1(0; T ;H) the consequence being in the weak

star topology on L1(0; T ;H). This means that for all � 2 L1(0; T ;H)

Z T

0
hu0n(t); �(t)i dt!

Z T

0
hv�(t); �(t)i dt as n!1 :

According to the di�erentiability of un,

un(t) = u0 +

Z t

0
u0n(s) ds ; t 2 [0; T ] :

It can be seen that

un(t) = u0 +

Z t

0
v�(s) ds ; t 2 [0; T ] :

This again shows u : [0; T ]! H is di�erentiable for almost every point t 2 (0; T ), and moreover

u0(t) = v�(t) for almost every t 2 (0; T ). In particular �u0n ! �u0 in the weak star topology on

L1(0; T ;H). By lemma 3:3 this gives

Z T

0
Æ�(�u0(t); C(t)) dt � lim

n!1
inf

Z T

0
Æ�(�u0n(t); C(t)) dt (4.9)

(for a de�nition of Æ�(�; �) see Lemma 3:3). It is clear that

Z T

0
hu0(t); u0(t)i dt � lim

n!1
inf

Z T

0
hu0n(t); u

0
n(t)i dt (4.10)

Taking supremum w.r.t. v in (4:8) and integrating over [0; T ] we �nd that

Z T

0

�
Æ�(�u0n(t); C(t)) + hu0n(t); u

0
n(t)i

�
dt �

MT

n
(4.11)

for n 2 N . Using a well known property of the limit inferior of a sequence (4:9), (4:10) and

(4:11) we get

Z T

0

�
Æ�(�u0(t); C(t)) + hu0(t); u0(t)i

�
dt � 0 : (4.12)

We have shown in Step 3 that u(t) 2 C(t); t 2 [0; T ], and so u0(t) 2 C(t). By the de�nition of

Æ�(�; �) we get

Æ�(�u0(t); C(t)) + hu0(t); u0(t)i = 0

for almost every t 2 (0; T ). Thus for any v 2 C(t)

h�u0(t); u(t)i = Æ�(�u0(t); C(t))

� h�u0(t); vi

or

h�u0(t); v � u0(t)i � 0 :
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Hence u(t) is a solution of (1:5)

Step 5. Uniqueness of solution.

Let u1 and u2 be two solutions of (1:5) then

h�u01(t); v � u01(t)i � 0 (4.13)

and

h�u02(t); v � u02(t)i � 0 : (4.14)

Put v = u02(t) and v = u01(t) respectively in (4:13) and (4:14) then we get

h�u01(t); u
0
2(t)� u01(t)i � 0 (4.15)

h�u02(t); u
0
1(t)� u02(t)i � 0 : (4.16)

From (4:15) and (4:16) we get

hu01(t)� u02(t); u
0
1(t)� u02(t)i � 0

or

kw0(t)k2 = 0 (4.17)

where w(t) = u01(t)� u02(t). From (4:17) we get

Z t

0
jw0(�)j2 d� = 0 as w(0) = 0 :

Be Lemma 3:4 Z t

0

1

2

d

d�
(ju0(�)j2) = 0

or u(�) = 0;8� 2 (0; T ) or u1(�) = u2(�);8� 2 (0; T ).

5 Proof of Theorem 3:2

Let u0(t) = �(t) and u00(t) = �0(t). Then �0(t) 2 NC(t)(�(t)) for almost every t 2 (0; T ) holds

by Theorem 2 [10] (Theorem 2.1 [13, p. 141] or Moreau [14]) provided �(t) 2 C(t). t ! �(t)

is Lipschitz continuous with constant L. In particular j�0(t)j = ju00(t)j � L for almost every

t 2 (0; T ) and so u00(t) 2 L1(0; T ;H). Let �1(t) and �1(t) be two solutions of (1:7) then

h��01(t); v � �1(t)i � 0 (5.1)

h��02(t); v � �2(t)i � 0 : (5.2)
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By (5:1) and (5:2) we get

h�01(t)� �02(t); �1(t)� �2(t)i � 0 : (5.3)

By Lemma 3:4 we have

1

2

d

dt
(j�1(t)� �2(t)j

2) = jh�01(t)� �02(t); �1(t)� �2(t)ij � 0

almost everywhere in (0; T ). Integration yields

k�1(t)� �2(t)k
2 � k�1(0) � �2(0)k

2 = k�01 � �02k

t 2 [0; T ]. In particular, if �01 = �02 then the solution is unique.

6 Relationship with Degenerate Sweeping Processes

Kunze and Monteiro Marques [8] have proved the following theorems.

Theorem 6.1 Let A : dom(A) ! 2H be a maximal and strongly monotone operator and for

any t 2 [0; T ], C(t) 6= � � H be closed and convex set and t! C(t) be Lipschitz continuous. If

in addition the following conditions are satis�ed

a) C(0) is bounded or there exists a function M : [0;1) ! [0;1) which maps bounded sets

such that

kAxk = supfjyj : y 2 Axg �M(jxj) for x 2 dom(A) ;

b) dom(A) \ �Br(0) is relatively compact for every r > 0 or C(t)\ �Br(0) is compact for every

t 2 [0; T ] and r > 0.

Then there exists a Lipschitz continuous function u : [0; T ]! H, u(t) 2 dom(A) a.e., such that

for every u0 2 dom(A) with Au0 \ C(0) 6= �

v(t) 2 Au(t) \ C(t) a.e.

and

�u0(t) 2 NC(t)(v(t)) a.e. in [0; T ] (6.1)

Theorem 6.2 Let A : H ! H be linear, bounded and self adjoint such that hAx; xi � �kxk2

for x 2 H. If t! C(t) is Lipschitz continuous where t 2 [0; T ]. C(t) � H is closed and convex

and Au0 2 C(0), then (6:1) has a unique solution which is Lipschitz continuous.

It may be observed that in some special cases Theorem 3:1 and Theorem 3:2 can be derived

from Theorem 6:1 and Theorem 6:2. For example, if A is as D1 or D2 de�ned in Section 2,

H = R and u is of C2 class with u00(t) > c for all t 2 R and �xed c then Theorem 6:1 reduces

to Theorem 3:1 provided C(0) is bounded.

If we choose A = u0 in Theorem 6:2 then u0 satis�es the condition hu0; ui � �kuk2, is linear

and self adjoint. However u0 is bounded only almost everywhere and so Theorem 3:1 cannot be

obtained as a special case of Theorem 6:2.
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