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Abstract

The transient solution is obtained analytically using continued fractions for a state-dependent

birth-death queue in which potential customers are discouraged by the queue length. This

queueing system is then compared with the well-known in�nite server queueing system which

has the same steady state solution as the model under consideration, whereas their transient

solutions are di�erent. A natural measure of speed of convergence of the mean number in the

system to its stationarity is also computed. We also determine the distributions in discrete time

of the number of customers in line and of the busy period in closed form.
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1 Introduction

In the study of queueing systems the emphasis has been on obtaining steady state solution as

it is simple to derive and straightforward techniques can be employed. But in many potential

applications steady state measures of system performance simply do not make sense when the

practitioner needs to know how the system will operate up to some speci�ed time [24]. Time-

dependent analysis helps us to understand the behaviour of a system when the parameters

involved are perturbed and it can contribute to the costs and bene�ts of operating a system.

In addition, such transient analysis is useful in obtaining optimal solutions which lead to the

control of the system. There has been a resurgence of interest in the time-dependent analysis of

birth-death queueing models (see, for example, [14, 20]).

The exact time-dependent analysis of the state-dependent queueing systems is usually diÆ-

cult and often impossible. Even in the simpleM=M=1 queue which is a birth-death process with

constant birth and death rates, analytical solution involves an in�nite series of Bessel functions

and their integrals (see, for example, [19, 21]). In real world problems the underlying birth

and death rates are complex and the diÆculty is compounded in the transient analysis of such

models.

In this work, the transient solution to a state-dependent birth-death queueing model in which

potential customers are discouraged by queue length is obtained using continued fractions, both

in continuous time and in discrete time. In continuous time, the Laplace transforms of the density

function for the length of the busy period and the mean busy period are also deduced. This

solution is then compared with the well-known in�nite server queueing model to illustrate that

these two models having di�erent transient behaviours lead to the same steady state solution.

This is also depicted through graphs. A measure of speed of convergence towards stationarity is

computed in terms of the parameters of the model. In discrete time, we obtain the generating

function of the busy period distribution and the mean busy period.

The model under consideration is the birth-death queueing system with the birth and death

rates as given below:

�n =
�

n+ 1
; n = 0; 1; 2; : : : and �n = �; n = 1; 2; 3; : : : : (1.1)

This discouraged arrivals single server queueing system is useful to model a computing facility

that is solely dedicated to batch-job processing [[18], p.105]. Job submissions are discouraged

when the facility is heavily used and can be modelled as a Poisson process with the state-

dependent arrival rate. The time taken to process each job is exponentially distributed with a

constant service rate regardless of the number of jobs in the system.

The well-known in�nite server queue, denoted as M=M=1 queue, is often used to anal-

yse manufacturing processes and to model phenomena in telecommunication networks. In the

context of broadband integrated services digital networks based upon the asynchronous trans-

fer mode (ATM), this system has been pointed out to be of interest when studying open loop
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statistical multiplexing of data connections on an ATM network [9].

The discouraged arrivals queue has been studied in the past by Natvig [17], van Doorn [8]

and Chihara [6] and here the arrivals are geared (or could be controlled) in accordance with the

availability of service. However, the transient solution has not been obtained sofar explicitly in

closed form. In this work, we have obtained the transient solution analytically in closed form

by employing a new and e�ective continued fraction methodology. In this study the underlying

forward Kolmogorov di�erential-di�erence equations are �rst transformed into a set of linear

algebraic equations by employing Laplace transforms. This transform is then represented as a

continued fraction and the inversion is carried out analytically.

2 Continued Fractions

Continued fraction approximations often provide good representations for transcendental func-

tions, much more generally useful than the classical representation by power series. In addition,

a number of problems have been found for which algorithms involving continued fractions lend

themselves to high-speed computer operations. A systematic study of the theory of continued

fractions with stress on computation can be found in Jones and Thron [11]. Its application

to the study of birth-death processes, a special Markov process, was initiated by Murphy and

O'Donohoe [16]. On account of their algorithmic nature, they are used extensively in applied

areas like numerical analysis, computer science, the theory of automata, electronic communica-

tions. This importance has grown further with the advent of fast computing facilities.

A continued fraction is denoted by

a1

b1 +
a2

b2+
a3

b3 + : : :

or equivalently by

a1
b1+

a2
b2+

a3
b3+

: : :

where the an's and bn's are real or complex numbers. The value obtained by retaining the �rst

n terms and omitting the remaining terms is called the n-th convergent. For any continued

fraction the exact value of the fraction lies between two neighbouring convergents. All even

numbered convergents lie to the left of the exact value, that is they give an approximation to

the exact value by defect. All odd numbered convergents lie to the right of the exact value, that

is they give an approximation to the exact value by excess.

Conolly and Langaris [7], and Parthasarathy and Lenin [20] have applied continued fraction

methodology, which was till then used only to obtain numerical solutions, to obtain the transient

solution of birth and death processes analytically. We now apply this technique to obtain

analytically the transient system size probabilities of our models.

Some of the identities which are used in the following sections will be now presented.

3



The con
uent hypergeometric function, also referred to as Kummer function, is denoted by

1F1(a; c; z) and is de�ned by

1F1(a; c; z) = 1 +
a

c

z

1!
+
a(a+ 1)

c(c+ 1)

z2

2!
+ � � � (2.1)

=

1X
k=0

(a)k
(c)k

zk

k!
(2.2)

for z 2 C , parameters a; c 2 C (c not a negative interger), with (�)n, known as Pochhammer

symbol, de�ned as

(�)n =

(
1; n = 0

�(� + 1)(� + 2) : : : (�+ n� 1); n � 1:
(2.3)

Observe that 1F1(0; c; z) = 1 and 1F1(1; 2;�z) =
1� e�z

z
. Also, this con
uent hypergeometric

function satis�es the following recurrence relation [[1], (13.4.7), p.507]

c(c� 1) 1F1(a� 1; c � 1; z)� az 1F1(a+ 1; c+ 1; z) = c(c� 1� z) 1F1(a; c; z): (2.4)

The following identity is from Lorentzen and Waadeland [[15], (4.1.5), p.573].

1F1(a+ 1; c + 1; z)

1F1(a; c; z)
=

c

c� z+

(a+ 1)z

c� z + 1+

(a+ 2)z

c� z + 2+
� � � :

which can be rewritten as

c
1F1(a; c; z)

1F1(a+ 1; c+ 1; z)
� (c� z) =

(a+ 1)z

c� z + 1+

(a+ 2)z

c� z + 2+
� � � : (2.5)

The following identities are from Andrews [2].

(c� a) 1F1(a; c+ 1; z) + a 1F1(a+ 1; c+ 1; z) = c 1F1(a; c; z); (2.6)

c 1F1(a+ 1; c; z) � c 1F1(a; c; z) = z 1F1(a+ 1; c+ 1; z); (2.7)

(c� a) 1F1(a� 1; c; z) + (2a� c+ z) 1F1(a; c; z) = a 1F1(a+ 1; c; z); (2.8)
1X
k=0

(a)k
(c)k

yk

k!
1F1(a+ k; c+ k;x) = 1F1(a; c;x + y): (2.9)

In the sequel, for any function f(t), let

f̂(s) =

Z
1

0
e�stf(t)dt

denotes its Laplace transform.

In the next section, we derive the transient solution in continuous time for the model under

consideration by employing continued fractions.
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3 Discouraged Arrivals Queue

Let Pn(t); n = 0; 1; 2; : : : be the probability that there are n customers in the system at time t.

Then, the forward Kolmogorov equations for the Model A are

dP0(t)

dt
= �P1(t)� �P0(t);

dPn(t)

dt
= �

n
Pn�1(t) + �Pn+1(t)� ( �

n+1 + �)Pn(t); n � 1:

(3.1)

Assume that initially the system is empty. By taking Laplace transforms, (3.1) is reduced to a

system of simultaneous equations given by

(s+ �)P̂0(s)� 1 = �P̂1(s);�
s+

�

n+ 1
+ �

�
P̂n(s) =

�

n
P̂n�1(s) + �P̂n+1(s); n � 1:

(3.2)

From the �rst equation of (3.2), we obtain

P̂0(s) =
1

s+ �� � P̂1(s)

P̂0(s)

(3.3)

and the second equation of (3.2) can be written as, for n � 1,

P̂n(s)

P̂n�1(s)
=

�
n

s+ �
n+1 + �� � P̂n+1(s)

P̂n(s)

: (3.4)

Iterating this equation, we get

P̂n(s)

P̂n�1(s)
=

�
n

s+ �
n+1 + ��

�
(n+1)�

s+ �
n+2 + ��

: : : : (3.5)

By substituting (3.5) in (3.3) we get a continued fraction expression for P̂0(s) as

P̂0(s) =
1

s+ ��

��

s+ �
2 + ��

�
2�

s+ �
3 + ��

: : : : (3.6)

By making use of (2.5) the above equation simpli�es to

P̂0(s) =

8<
:s+ �+ (s+ �)

2
4� s�

(s+ �)2
+ 1

�
1F1

�
1; s�

(s+�)2 + 1; ���
(s+�)2

�
1F1

�
2; s�

(s+�)2
+ 2; ���

(s+�)2

�

�

�
�

s+ �
+ 1

����1

=

8<
:(s+ �)

�
s�

(s+ �)2
+ 1

�
1F1

�
1; s�

(s+�)2 + 1; ���
(s+�)2

�
1F1

�
2; s�

(s+�)2 + 2; ���
(s+�)2

� � �

9=
;
�1

:

Use of (2.6) yields

P̂0(s) =
1

s

8<
:
�

s�

(s+ �)2
+ 1

�
1F1

�
1; s�

(s+�)2 + 1; ���
(s+�)2

�
1F1

�
2; s�

(s+�)2 + 2; ���
(s+�)2

�

+
��

(s+ �)2

1F1

�
1; s�

(s+�)2
+ 2; ���

(s+�)2

�
1F1

�
2; s�

(s+�)2
+ 2; ���

(s+�)2

�
9=
;
�1

:
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Again, making use of (2.7) and using the fact that 1F1 (0; c;x) = 1, we obtain

P̂0(s) =
1

s
�

s�
(s+�)2 + 1

� 1F1

�
2;

s�

(s+ �)2
+ 2;

���

(s+ �)2

�
: (3.7)

The above expression is equivalent to the one given by Natvig [17]. In a similar way, we will

�nd P̂n(s). Making use of (2.6), (2.7) and (2.8), we can write (3.5) as, for n � 1,

P̂n(s)

P̂n�1(s)
=

1

n

(n+1)�
s+��

s�
(s+�)2 + n+ 1

� 1F1

�
n+ 2; s�

(s+�)2 + n+ 2; ���
(s+�)2

�
1F1

�
n+ 1; s�

(s+�)2 + n+ 1; ���
(s+�)2

� :
Iterating this equation and using (3.7), we get

P̂n(s) = P̂0(s)

nY
i=1

P̂i(s)

P̂i�1(s)

=

n+1
s

�
�

s+�

�n
�

s�
(s+�)2

+ 1
��

s�
(s+�)2

+ 2
�
: : :
�

s�
(s+�)2

+ n+ 1
�

� 1F1

�
n+ 2;

s�

(s+ �)2
+ n+ 2;

���

(s+ �)2

�
: (3.8)

Now, we will invert (3.8) by expanding the function as given below.

P̂n(s) =
(n+ 1)�n+1

(s+ �)n
(s+ �)2(n+1)

s�[s�+ (s+ �)2] � � � [s�+ (n+ 1)(s+ �)2]

�
1X
k=0

(n+ 2)k�
s�

(s+�)2
+ n+ 2

�
k

�
���

(s+�)2

�k
k!

=

1X
k=0

�n+k+1(��)k(n+ k + 1)!

k! n!

�
1

(s+ �)2k+n
(s+ �)2(n+k+1)

n+k+1Y
i=0

[s�+ i(s+ �)2]

=

1X
k=0

�n+k+1(��)k

k! n!

1

(s+ �)2k+n

n+k+1X
i=0

�
n+ k + 1

i

�
(�1)i

1

s�+ i(s+ �)2

=

1X
k=0

�n+k+1(��)k

k! n!

n+k+1X
i=0

�
n+ k + 1

i

�
(�1)i

�
1

(s+ �)2k+n
1

s�+ i(s+ �)2
(3.9)

which on inversion becomes

Pn(t) =

1X
k=0

�n+k+1(��)k

k! n!

n+k+1X
i=0

�
n+ k + 1

i

�
(�1)ihn+2k; i(t); n � 0 (3.10)
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where

h0; 0(t) =
1

�
; (3.11)

h0;1(t) =
1

2
q

�2

4 + ��

(
e
�

�
�
2
+��

q
�2

4
+��

�
t
� e

�

�
�
2
+�+

q
�2

4
+��

�
t

)
; (3.12)

hn+2k; 0(t) =
1

�(n+ 2k � 1)!

Z t

0
e��yyn+2k�1dy; for n+ 2k > 0 (3.13)

and, for n+ 2k; i � 1,

hn+2k; i(t) =
1

(n+ 2k � 1)! 2i
q

�2

4i2
+ ��

i

�

(
e
�

�
�
2i
+��

q
�2

4i2
+��

i

�
t
Z t

0
e

�
�
2i
�

q
�2

4i2
+��

i

�
y
yn+2k�1dy

�e
�

�
�
2i
+�+

q
�2

4i2
+��

i

�
t
Z t

0
e

�
�
2i
+
q

�2

4i2
+��

i

�
y
yn+2k�1dy

)
: (3.14)

Thus (3.10) gives explicit time-dependent system size probabilities for the discouraged arrivals

queueing system.

We observe that hn+2k; i(t)! 0, for i � 1, as t!1 and

lim
t!1

hn+2k; 0(t) =
1

�(n+ 2k � 1)!

Z
1

0
e��yyn+2k�1dy

=
1

�

1

�n+2k

and hence the steady state solutions are given by

pn = lim
t!1

Pn(t)

=
1X
k=0

�n+k+1(��)k

k! n!

1

�

1

�n+2k

= exp

�
��

�

� ��
�

�n
n!

; n = 0; 1; 2; : : : : (3.15)

We have obtained above the transient solution for the system size probabilities with the

assumption that there are zero customers in the system initially. One gets a complicated ex-

pression for Pn(t) with the initial number m in the system by de�ning certain polynomials in s;

incorporating with P̂n(s) and then inverting it [16].

Aliter:

If

gn(s) =

�
s�

(s+�)2 + 1
��

s�
(s+�)2 + 2

�
: : :
�

s�
(s+�)2 + n+ 1

�
n+1
s

�
�

s+�

�n P̂n(s);

7



then the second equation in (3.2) reduces to�
s�

(s+ �)2
+ n+ 2

��
s�

(s+ �)2
+ n+ 1

�
gn�1(s)� (n+ 2)

�
���

(s+ �)2

�
gn+1(s)

=

�
s�

(s+ �)2
+ n+ 2

��
�

s+ �
+ n+ 1

�
gn(s)

We identify this equation with the recurrence relation (2.4) with a = n + 2; c = s�
(s+�)2 + 2;

z = ���
(s+�)2

. It is seen that this also holds for the �rst equation of (3.2). Thus, we will have

gn(s) = 1F1

�
n+ 2;

s�

(s+ �)2
+ n+ 2;

���

(s+ �)2

�

and hence

P̂n(s) =

n+1
s

�
�

s+�

�n
�

s�
(s+�)2

+ 1
�
: : :
�

s�
(s+�)2

+ n+ 1
� 1F1

�
n+ 2;

s�

(s+ �)2
+ n+ 2;

���

(s+ �)2

�

which is the same as (3.8) obtained earlier.

Busy Period:

Let the length of the busy period, a random variable, be denoted by T and bA(t) be its

probability density function. Let the arrival of a customer start the busy period and now the

system is at state `1'. Now, from (3.9), we �nally deduce the Laplace transform b̂A(s) of the

density function bA(t) of the busy period as

b̂A(s) =

2�
s+�

s�
(s+�)2

+ 2

1F1

�
3; s�

(s+�)2
+ 3; ���

(s+�)2

�
1F1

�
2; s�

(s+�)2
+ 2; ���

(s+�)2

� : (3.16)

The mean busy period is given by

E(T ) = lim
s!0

 
1� b̂A(s)

s

!

= lim
s!0

1

s+ �

1F1

�
1; s�

(s+�)2
+ 2; ���

(s+�)2

�
1F1

�
2; s�

(s+�)2
+ 2; ���

(s+�)2

�
=

1

�
e
�
�

1F1

�
1; 2;

��

�

�

=
e
�
� � 1

�

In the next section, we obtain the transient solution for the in�nite server queue by our

methodology and compare it with the model under consideration, i.e., the discouraged arrivals

queue.
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4 In�nite Server Queue

Let Rn(t); n = 0; 1; 2; : : : be the probability that there are n customers in the system at time t.

Then, the forward Kolmogorov equations for this system are

dR0(t)

dt
= �R1(t)� �R0(t);

dRn(t)

dt
= �Rn�1(t) + (n+ 1)�Rn+1(t)� (�+ n�)Rn(t); n � 1:

(4.1)

Assume that initially the system is empty. The above system of equations can easily be solved

using generating functions. However, we give here an alternate approach in tune with the

analysis given in the previous section.

Taking Laplace transforms (4.1) becomes

(s+ �)R̂0(s)� 1 = �R̂1(s);

(s+ �+ n�)R̂n(s) = �R̂n�1(s) + (n+ 1)�R̂n+1(s); n � 1:
(4.2)

By repeated substitution of the second equation into the �rst equation of (4.2) we get a continued

fraction expression for R̂0(s) as

R̂0(s) =
1

s+ ��

��

s+ �+ ��

2��

s+ �+ 2��
� � � : (4.3)

Using the identity (2.5),

R̂0(s) =
1

s
1F1

�
1;
s

�
+ 1;

��

�

�
: (4.4)

By a similar procedure used for the discouraged arrivals queue, we obtain

R̂n(s) =
�n

s(s+ �)(s+ 2�) � � � (s+ n�)
1F1

�
n+ 1;

s

�
+ n+ 1;

��

�

�
:

=
1X
k=0

(�1)k(n+ k)!

k!n!

�
�

�

�n+k �n+k

n+kY
i=0

(s+ i�)

:

Using partial fraction expansion the above equation becomes

R̂n(s) =

1X
k=0

(�1)k(n+ k)!

k!n!

�
�

�

�n+k

�n+k
1X
i=0

(�1)i

�n+ki!(n+ k � i)!

1

s+ i�

which on inversion becomes

Rn(t) =
1X
k=0

(�1)k(n+ k)!

k!n!

�
�

�

�n+k �
1� e��t

�n+k

=

h
�
�

�
1� e��t

�in
n!

exp

�
�
�

�

�
1� e��t

��
; n = 0; 1; 2; : : : :: (4.5)

We also see that the steady state solutions are given by

rn = lim
t!1

Rn(t)

= exp

�
��

�

� ��
�

�n
n!

; n = 0; 1; 2; : : : : (4.6)
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Aliter:

If

gn(s) =
s(s+ �) : : : (s+ n�)

�n
R̂n(s);

then the second equation in (4.2) reduces to�
s

�
+ n+ 1

��
s

�
+ n

�
gn�1(s)� (n+ 1)

�
��

�

�
gn+1(s)

=

�
s+ �

�
+ n

��
s

�
+ n+ 1

�
gn(s)

We identify this equation with the recurrence relation (2.4) with a = n + 1; c = s
�
+ n + 1;

z = ��
�
. It is seen that this also holds for the �rst equation of (4.2). Thus, we will have

gn(s) = 1F1

�
n+ 1;

s

�
+ n+ 1;

��

�

�

and hence

R̂n(s) =
�n

s(s+ �)(s+ 2�) � � � (s+ n�)
1F1

�
n+ 1;

s

�
+ n+ 1;

��

�

�

which is the same as (4.5) obtained earlier.

Busy Period:

Proceeding on similar lines as we have done for the discouraged arrivals queue, we obtain

the Laplace transform b̂B(s) of the density function bB(t) of the busy period as

b̂B(s) =
s+ �

�
�

s

�

1

1F1

�
1; s

�
+ 1; ��

�

�

=
�

s+ �

1F1

�
2; s

�
+ 2; ��

�

�
1F1

�
1; s

�
+ 1; ��

�

� : (4.7)

For di�erent values of � with � = 1, Karlin [12] has given the �rst three zeros of the function

1F1

�
1; s

�
+ 1; ��

�

�
which, for many purposes, are suÆcient to approximate the probability den-

sity function of the duration of the busy period for large values of t. The mean busy period in

this case can be easily deduced to be
e
�
� � 1

�
, same as the one given by Tak�acs [23].

We observe that the transient solutions for the two models under consideration are not the

same (see (3.10) and (4.5)) whereas the steady state solutions are (see (3.15) and (4.6)). This

underlines the importance of the transient analysis of systems under study. It is also observed

that both the models under consideration have the same mean busy period.

For the purpose of illustration of our observations, we plot the graphs of system size prob-

abilities for the two models by assuming certain values for the parameters � and � with the

assumption that initially the system is empty.

10



In Figure 1, some of the system size probabilities, P0(t); P1(t); P2(t); P3(t) and P5(t), are

plotted for the two models with the parameter values � = 4:8; � = 1:3. It can be observed from

the �gure that while the discouraged arrivals queue attains the equilibrium distribution around

15 time units, the in�nite server queue reaches it more rapidly around 5 time units.

5 Convergence to Stationarity of Mean

In the performance evaluation of queueing systems the approximation of the underlying stochas-

tic processes by their stationary versions is of considerable importance. As observed in the

previous section, the two models under consideration have the same steady state solution but

di�erent transient solutions. One would naturally be interested to study the speed of conver-

gence of the underlying process towards its stationarity. Recently, Stadje and Parthasarathy

[22] showed how to compute measures of speed of convergence for the M=M=c queue. For the

models under consideration, we compute a measure of speed of convergence of the mean number

in the system to its stationary value in terms of the model parameters � and �.

Let ĜA(z; s) and ĜB(z; s) be the Laplace transform of the generating functions for Pn(t)

for the discouraged arrivals queue and the in�nite server queue respectively. In the sequel, we

consider only the discouraged arrivals queue and the analysis for the in�nite server queue follows

in similar lines. Now,

ĜA(z; s) =
1X
n=0

P̂n(s)z
n

where P̂n(s) is given by (3.8). By making use of (2.9) we can deduce

ĜA(z; s) =
1

s
�

s�
(s+�)2

+ 1
� 1X

n=0

(2)n�
s�

(s+�)2
+ 2
�
n

�
�z
s+�

�n
n!

� 1F1

�
n+ 2;

s�

(s+ �)2
+ n+ 2;

���

(s+ �)2

�

=
1

s
�

s�
(s+�)2

+ 1
� 1F1

�
2;

s�

(s+ �)2
+ 2;

�z

s+ �
�

��

(s+ �)2

�
: (5.1)

Observe that

lim
s!0

sĜA(z; s) = e
�
�
(z�1)

as expected. By di�erentiating n times ĜA(z; s) and putting z = 1 we can �nd the Laplace

transform of the factorial moments. Now, let Mn(t) be the n
th factorial moment. Then,

M̂n(s) =
@n

@zn
ĜA(z; s)

����
z=1

=
(n+ 1)!

�
�

s+�

�n
s
�

s�
(s+�)2 + 1

�
: : :
�

s�
(s+�)2 + n+ 1

�
� 1F1

�
n+ 2;

s�

(s+ �)2
+ n+ 2;

s�

(s+ �)2

�
: (5.2)
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By expanding and simplifying we get

M̂n(s) =

1X
k=0

�n+k+1

k!

�
s

(s+ �)2

�k

�
n+k+1X
i=0

�
n+ k + 1

i

�
(�1)i

1

(s+ �)n
1

s�+ i(s+ �)2

which on inversion becomes

Mn(t) =

1X
k=0

�n+k+1

k!
g�k(t) �

n+k+1X
i=0

�
n+ k + 1

i

�
(�1)ihn; i(t) (5.3)

where 0�0 denotes the convolution and g�k(t) is the k-fold convolution of the function g(t) given

by

g(t) = e��t(1� �t)

and the functions hn; i(t) are as de�ned in (3.11), (3.12), (3.13) and (3.14).

In particular, the Laplace transform of the mean number M1(t) in the system at time t is

M̂1(s) =
2 �
s+�

s
�

s�
(s+�)2

+ 1
��

s�
(s+�)2

+ 2
� 1F1

�
3;

s�

(s+ �)2
+ 3;

s�

(s+ �)2

�
(5.4)

=

�
s+�

s
�

s�
(s+�)2 + 1

� 1F1

�
1;

s�

(s+ �)2
+ 2;

s�

(s+ �)2

�
: (5.5)

which on inversion yields

M1(t) =

1X
k=0

�k+2

k!
g�k(t) �

k+2X
i=0

�
k + 2
i

�
(�1)ih1;i(t) (5.6)

where g�k(t) and h1;i are as given in (3.13) and (3.14). In a similar way, the variance can also

be obtained.

Let X(t) be the number of customers in the system at time t and suppose that

X(0) = 0. Then it is well-known that X(t) is stochastically increasing to a random variable X

distributed according to the stationary distribution (see [13]). Consequently, E(X(t)) " E(X)

as t " 1. Now we will �nd the measure, say IA, of the speed of convergence to the stationarity

in term of the parameters � and �. Thus,

IA =

Z
1

0
(E(X) �E(X(t))) dt

= lim
s!0

Z
1

0
e�st (E(X) �E(X(t))) dt

= lim
s!0

1

s

�
�

�
� sM̂1(s)

�
:

Using (5.5), we obtain

IA = lim
s!0

1

s

0
@�

�
�

�
s+��

s�
(s+�)2

+ 1
� 1F1

�
1;

s�

(s+ �)2
+ 2;

s�

(s+ �)2

�1A :

12



On simpli�cation, we �nally deduce

IA =
�

�2

�
1 +

�

2�

�
: (5.7)

Observe that IA gives the area between the two graphs, the graphs of time-dependent mean

number in the system and its stationary counterpart. The smaller the number IA the faster the

convergence.

For the in�nite server queue, we have

ĜB(z; s) =
1

s
1F1

�
1;
s

�
+ 1;

�

�
(z � 1)

�

which on inversion reduces to

GB(z; t) = exp

�
�
�

�

�
1� e��t

�
(1� z)

�

with mean �
�

�
1� e��t

�
. Thus, we deduce

IB =
�

�2
(5.8)

which is, as one would expect, less than that of the one for the discouraged arrivals queue and

hence the in�nite server queue attains equilibrium faster than the discouraged arrivals queue.

As an illustration, in Figure 2, the expected system sizes for the two models are drawn for

� = 3:8; � = 1:3. The discouraged arrivals queue reaches the steady state value around 15 time

units whereas the in�nite server queue attains it around 5 time units. It can also be observed

that the area between the graph of mean system size of the discouraged arrivals queue and its

steady state counterpart, i.e., a straight line parallel to the time axis, is more than that of the

in�nite server queue which con�rms our observations.

In the succeeding sections, we analyse the discouraged arrivals queue in discrete time.

6 Discrete Time Solution of the Discouraged Arrivals Queue

With the rapid growth and technological innovation in computer communications, there has

been considerable interest in discrete time queueing models [3, 4, 5, 10]. The primary interest

of analysing a queueing system is the congestion that may develop and the distribution of and

the number of customers in the system at di�erent time points are important measures. We

consider here a single server queue where the customers are discouraged by the queue length and

the arrivals are geared (or could be controlled) in accordance with the availability of service.

In this section, the time-dependent system size probabilities are obtained using the continued

fraction methodology for this discouraged arrivals queueing system in discrete time. Here, when

there are n customers in the system, the arrivals occur according to a Bernoulli process with

probability �
n+1 and service completions occur according to the geometric distribution with

probability � during any time slot. We assume that the probability of more than one arrival

13



(departure) or that arrivals and departures occur simultaneously during a given slot is zero and

that the events in di�erent slots are mutually independent. Therefore, �
n+1 +� < 1 for all n � 1.

This is ensured if we assume that �
2 + � < 1.

Let Xr be the random variable denoting the number of customers in the system at discrete

time epoch r. Then fXr; r = 0; 1; 2; : : : g is a discrete time Markov chain. Let

Pr(n) = P (Xr = njX0 = 0); n = 0; 1; 2; : : : :

The function Pr(n) satis�es the following di�erence equations:

Pr+1(0) = (1� �)Pr(0) + �Pr(1)

Pr+1(n) =
�

n
Pr(n� 1) + (1�

�

n+ 1
� �)Pr(n) + �Pr(n+ 1); n � 1:

If Gz(n) =
1X
r=0

Pr(n)z
r; jzj < 1, then the above system can be written as

�
1

z
� (1� �)

�
Gz(0) � �Gz(1) =

1

z

�
�

n
Gz(n� 1) +

�
1

z
� (1�

�

n+ 1
� �)

�
Gz(n)� �Gz(n+ 1) = 0; n � 1:

For the sake of simplicity we make the transformation s =
1

z
� 1 and denote Gz(n) by Gs(n).

Then the above system reduces to

(s+ �)Gs(0)� �Gs(1) = s+ 1;

��
n
Gs(n� 1) + (s+ �

n+1 + �)Gs(n)� �Gs(n+ 1) = 0; n � 1:
(6.1)

From the �rst equation of (6.1), we obtain

Gs(0) =
s+ 1

s+ �� �Gs(1)
Gs(0)

(6.2)

and the second equation of (6.1) can be written as, for n � 1,

Gs(n)

Gs(n� 1)
=

�
n

s+ �
n+1 + �� �Gs(n+1)

Gs(n)

: (6.3)

Iterating this equation, we get

Gs(n)

Gs(n� 1)
=

�
n

s+ �
n+1 + ��

�
n+1�

s+ �
n+2 + ��

: : : : (6.4)

By substituting (6.4) in (6.2) we get a continued fraction expression for Gs(0):

Gs(0) =
s+ 1

s+ ��

��

s+ �
2 + ��

�
2�

s+ �
3 + ��

: : : : (6.5)

14



By making use of (2.5) the above equation simpli�es to

Gs(0) = (s+ 1)

8<
:s+ �+ (s+ �)

2
4� s�

(s+ �)2
+ 1

�
1F1

�
1; s�

(s+�)2 + 1; ���
(s+�)2

�
1F1

�
2; s�

(s+�)2
+ 2; ���

(s+�)2

�

�

�
�

s+ �
+ 1

����1

= (s+ 1)

8<
:(s+ �)

�
s�

(s+ �)2
+ 1

�
1F1

�
1; s�

(s+�)2 + 1; ���
(s+�)2

�
1F1

�
2; s�

(s+�)2 + 2; ���
(s+�)2

� � �

9=
;
�1

:

Use of (2.6) yields

Gs(0) =
s+ 1

s

8<
:
�

s�

(s+ �)2
+ 1

�
1F1

�
1; s�

(s+�)2
+ 1; ���

(s+�)2

�
1F1

�
2; s�

(s+�)2
+ 2; ���

(s+�)2

�

+
��

(s+ �)2

1F1

�
1; s�

(s+�)2
+ 2; ���

(s+�)2

�
1F1

�
2; s�

(s+�)2 + 2; ���
(s+�)2

�
9=
;
�1

:

Again, making use of (2.7) and using the fact that 1F1 (0; c; z) = 1, we obtain

Gs(0) =
s+ 1

s
�

s�
(s+�)2

+ 1
� 1F1

�
2;

s�

(s+ �)2
+ 2;

���

(s+ �)2

�
: (6.6)

In a similar way, we will �nd Gs(n). Making use of (2.6), (2.7) and (2.8), we can write (6.4) as,

for n � 1,

Gs(n)

Gs(n� 1)
=

1

n

(n+1)�
s+��

s�
(s+�)2

+ n+ 1
� 1F1

�
n+ 2; s�

(s+�)2
+ n+ 2; ���

(s+�)2

�
1F1

�
n+ 1; s�

(s+�)2
+ n+ 1; ���

(s+�)2

� :
Iterating this equation and using (6.6), we get

Gs(n) = Gs(0)
nY
i=1

Gs(i)

Gs(i� 1)

=
(s+ 1)n+1

s

�
�

s+�

�n
�

s�
(s+�)2 + 1

�
: : :
�

s�
(s+�)2 + n+ 1

�
� 1F1

�
n+ 2;

s�

(s+ �)2
+ n+ 2;

���

(s+ �)2

�
: (6.7)

We can extract the coeÆcients of z from (6.7) by �rst expanding Gs(n) and then returning to

the variable z. We then get

Gz(n) =

1X
k=0

�n+k+1(��)k

k! n!

zn+2k

�

1X
m=0

zm
mX
j=0

�
n+ 2k � 1 + j

j

�
(1� �)j

+

1X
k=0

�n+k+1(��)k

k! n!

n+k+1X
i=1

�
n+ k + 1

i

�
(�1)izn+2k

�

1X
m=1

zm
m�1X
j=0

�
n+ 2k � 1 + j

j

� (1� �)j

i(s1 � s2)

�
(s1 + 1)m�j � (s2 + 1)m�j

�
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where s1; s2 are given as �
�
�
2i + �

�
+
q

�2

4i2
+ ��

i
;�
�
�
2i + �

�
�
q

�2

4i2
+ ��

i
respectively. Note that

jsj + 1j � 1; j = 1; 2 under the assumption �
2 + � < 1. Further simpli�cation of Gz(n) yields

Gz(n) = zn
1X

m=0

�(n;m)zm + zn
1X

m=1

�(n;m)zm (6.8)

where

�(n;m) =

[m2 ]X
k=0

�n+k(��)k

k! n!

m�2kX
j=0

�
n+ 2k � 1 + j

j

�
(1� �)j (6.9)

�(n;m) =

[m�12 ]X
k=0

�n+k+1(��)k

k! n!

n+k+1X
i=1

�
n+ k + 1

i

�
(�1)i

m�2k�1X
j=0

�
n+ 2k � 1 + j

j

�

�
(1� �)j

i(s1 � s2)

h
(s1 + 1)m�2k�j � (s2 + 1)m�2k�j

i
(6.10)

with [x] denoting the integral part of x.

Thus, the system size probabilities are given by

Pr(n) =

8>><
>>:
0; r < n
�n

n!
; r = n

�(n; r � n) + �(n; r � n); r > n

(6.11)

where �(n;m) and �(n;m) are as given above.

Since s = 1
z
� 1, using the �nal value theorem of z-transforms, we can obtain the steady

state solutions for n = 0; 1; 2; : : : as

lim
r!1

Pr(n) = lim
s!0

s Gs(n)

= exp

�
��

�

� ��
�

�n
n!

; using (6.7):

7 Busy Period in Discrete Time

Let an arrival to an empty system start a busy period and de�ne T as the time until the server

becomes idle for the �rst time. Thus T is what commonly referred to as the length or duration

of a busy period.

Busy period of a single server queue is the �rst passage time to state zero. In view of this

we modify the actual process by making state 0 the absorbing state, i.e., �0 = 0. Then ~Pr(0)

gives the distribution function of the busy period and hence ~Pr(0) = Pr(T � r). The function

~Pr(n) satis�es the following di�erence equations:

~Pr+1(0) = ~Pr(0) + � ~Pr(1) (7.1)

~Pr+1(1) = (1�
�

2
� �) ~Pr(1) + � ~Pr(2) (7.2)

~Pr+1(n) =
�

n
~Pr(n� 1) + (1�

�

n+ 1
� �) ~Pr(n) + � ~Pr(n+ 1); n � 2: (7.3)
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Considering (7.2) and (7.3) and by an analysis similar to the one in the previous section, the

generating function of ~Pr(1) for the queueing system under consideration is given by

Gz(1) =

2
1�(1��)z�

z(1�z)�
[1�(1��)z]2

+ 2
� 1F1

�
3; z(1�z)�

[1�(1��)z]2
+ 3; ���z2

[1�(1��)z]2

�
1F1

�
2; z(1�z)�

[1�(1��)z]2
+ 2; ���z2

[1�(1��)z]2

� : (7.4)

Let Qr(0) be the probability mass function for the length of the busy period. Then Qr+1(0) =

~Pr+1(0) � ~Pr(0). Now, from (7.1), Qr+1(0) can be written as

Qr+1(0) = � ~Pr(1); r = 0; 1; 2; : : :

where ~Pr(1) is the coeÆcient of zr in (7.4). The mean busy period, say M , is given as

M = 1 + �
dGz(1)

dz

����
z=1

= 1 +
�+ 2�

2�2
� 1 +

�2

6�3
1F1

�
1; 4;

�

�

�

=
1

�
+

�

2�2
1F1

�
1; 3;

�

�

�
; by using (2.7).

By making use of 1F1(1; 3;�z) =
2
z2
(z + e�z � 1), we obtain the mean busy period as

M =
e
�
� � 1

�
: (7.5)
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Figure 1: System size probabilities for the discouraged arrivals queue and the in�nite
server queue
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Figure 2: Expected system sizes for the discouraged arrivals queue and the in�nite server
queue
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