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Power corrections to differential cross sections near a kinematic threshold are analysed by 
Dressed Gluon Exponentiation. Exploiting the factorization property of soft and collinear 
radiation, the dominant radiative corrections in the threshold region are resummed, yielding a 
renormalization-scale-invariant expression for the Sudakov exponent. The interplay between 
Sudakov logs and renormalons is clarified, and the necessity to resum the latter whenever power 
corrections are non-negligible is emphasized. The presence of power-suppressed ambiguities 
in the exponentiation kernel suggests that power corrections exponentiate as well. This leads 
to a non-perturbative factorization formula with non-trivial predictions on the structure of 
power corrections, which can be contrasted with the OPE. Two examples are discussed. The 
first is event-shape distributions in the two-jet region, where a wealth of precise data provides 
a strong motivation for the improved perturbative technique and an ideal situation to study 
hadronization. The second example is deep inelastic structure functions. In contrast to 
event shapes, structure functions have an OPE. However, since the OPE breaks down at 
large x, it does not provide a practical framework for the parametrization of power corrections. 
Performing a detailed analysis of twist 4 it is shown precisely how the twist-2 renormalon 
ambiguity eventually cancels out. This analysis provides a physical picture which substantiates 
the non-perturbative factorization conjecture. 

1 Dressed Gluon Exponentiation 

A classical application of QCD is the evaluation of semi-inclusive differential cross sections of 
hard processes depending on several scales. We shall consider here cross sections that depend 
on a hard scale Q and an intermediate scale W, both in the perturbative regime Q > W » A. 
Here A represents the fundamental QCD scale. In  case of  a large hierarchy, Q » W, there 
are large perturbative corrections containing logarithms, ln Q /W. Typically, non-perturbative 
corrections are suppressed by powers of the lower scale W. If the latter is not so large, such power 
corrections must be taken into account. From a theoretical point of view, power corrections are 
particularly interesting because of their relation to confinement 1 .  
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The first example is provided by event-shape distributions near the two-jet limit. Here the 
hard scale Q is the centre-of-mass energy and the lower one is set by the shape variable, e.g. in 
the case of the thrust (T), it is W2 = Q2(1 -T)2 ,  the sum of the squared invariant masses of the 
two hemispheres. For T --> 1 hadrons are produced in two narrow jets and large perturbative 
and non-perturbative corrections appear due to soft gluon radiation and hadronization. The 
second example is structure functions in deep inelastic scattering (DIS) at x --> 1 ,  where the 
hard scale is the momentum transfer Q = F(]1 and the lower scale is the invariant mass of the 
hadronic system W2 = (p + q)2 = Q2(1 - x)/x, where p and q are the momenta of the proton 
and 1*, respectively. For x --> 1 the recoiling quark a develops into a narrow jet, and large 
corrections appear from the jet fragmentation process. 

From the outset it is clear that resummation must be applied. Two relevant types of radiative 
corrections can be computed to all orders: renormalons and Sudakov logs. Renormalons appear 
from integration over the running coupling. Using the large N1 limit, one calculates the diagrams 
where a single gluon is dressed by radiative corrections 2 .  These contributions dominate at large 
orders and exhibit the strongest sensitivity to infrared physics. Consequently they are useful in 
detecting power corrections 2•3 .  In the absence of an infrared cutoff, infrared renormalons make 
the perturbative expansion non-summable. The summation ambiguity is cancelled by non­
perturbative corrections. Sudakov logs, on the other hand, emerge from multiple emission of 
soft and collinear gluons. These contributions dominate the perturbative coefficients at large x .  
At a fixed logarithmic accuracy, Sudakov logs can be summed to all orders 4•5, and, contrary to 
renormalons, they do not indicate non-perturbative corrections 6 •7 .  As shown schematically in 
fig. 1 ,  these two classes ofradiative corrections correspond to "orthogonal" sets of diagrams. Both 
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Figure 1: Different directions in summing the perturbative expansion in a two-scale problem. 

classes are relevant; however, none of the limits considered (large orders and large x, respectively) 
is appropriate in the threshold region, where both Sudakov logs and power corrections are 
important. 

The gap is closed by 7,s,9 Dressed Gluon Exponentiation (DGE) . This is a resummation 
method that incorporates both types of diagrams by resumming renormalons in the Sudakov 
exponentiation kernel. Thus, contrary to the standard approach to Sudakov resummation 
the result is renormalization-scale-invariant. In the Sudakov exponent, renormalons appear 
through the enhancement of subleading logs. At any given power of the coupling a� , the leading 

"At large x the gluon distribution is small. 
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log b, Ln+l , typically has a coefficient of order 1, whereas the Lk term (where k � n) appears 
with a larger numerical factor ,..., n!/k!. Thus, the factorial growth in the exponent appears upon 
summing all the logs. In practice, subleading logs are not fully known and the state-of-the-art 
computation is restricted to a single dressed gluon (SDG) in the exponentiation kernel. In this 
case DGE reproduces the exact leading and next-to-leading logs (NLL) c , but only generates a 
certain class of subleading logs (next-to-next-to-leading logs and beyond) that can be regarded 
as an approximation to these coefficients. Not much is known about the accuracy of this approx­
imation in general. On the other hand, the factorial growth of subleading logs implies that a 
resummation with a fixed logarithmic accuracy d has a small range of validity. By construction it 
does not hold to power accuracy. If the latter is required, the additional resummation provided 
by DGE is necessary. 

Analysing the large-order behaviour of the Sudakov exponent and the ambiguity associated 
with its resummation, one can access the dominant power corrections and obtain the information 
that is essential for their parametrization. The crucial difference in the way power corrections 
appear in this case, as compared with the standard OPE formulation, is that it is an overall factor 
multiplying 1 1 •12•13•14 the resummed perturbative result in moment (or Laplace) space, rather 
than an additive term. In DGE, such non-perturbative factorization is unavoidable, since the 
perturbative exponent by itself contains power suppressed ambiguities. The non-perturbative 
corrections, which compensate these ambiguities, must therefore exponentiate together with the 
perturbative logs. This exponentiation reflects the effect of multiple soft emission at the non­
perturbative level. From the OPE point of view, the resulting non-perturbative factorization 
is highly non-trivial. It amounts to assuming that the dominant contribution at each twist is 
proportional to the leading-twist matrix element. Moreover, the corresponding log-enhanced 
coefficient functions at higher twist must coincides with that of the leading twist. The matrix 
element information is essentially inaccessible by perturbative methods; however the higher­
twist coefficient function can be computed, allowing one to check some of these far-reaching 
conclusions. A first step in this direction was recently taken 15 in the context of DIS structure 
functions. 

2 Event-shape distributions in the two-jet region 

A strong motivation for the improved resummation technique as well as for a systematic study 
of power corrections is provided by the very precise data on event-shape distributions in e+ e­
annihilation. The goal i s  t o  have a handle o n  the parametrization of hadronization effects and 
to understand how they change depending on the observable considered. This will hopefully 
lead to better understanding of the hadronization process itself. 

The DGE result for the single-jet mass distribution e is given by a Laplace integral, 

(1 )  

where c i s  an integration contour parallel t o  the imaginary axis. Here, terms that are not 
enhanced by logarithms of p were discarded. Eventually, such terms are included by matching 5 
the resummed expression to the fixed-order result, which is currently available 17 numerically to 

b L = ln N, where N is a moment index conjugate to 1 - x, so N is large. 
cNLL require using the "gluon bremsstrahlung" effective charge 10 with a 2-loop renormalization-group equa­

tion. 
dSuch resummation is derived in the N __, oo limit with a,(Q2) __, 0, so that a,(Q2) · In N is small. 
'The single-jet mass distribution is used as an intermediate step in the evaluation of the thrust and the heavy­

jet mass distributions. Note that this observable obtains additional non-global 16 corrections at the NLL level, 
which are absent in the thrust and the heavy-jet mass considered here. 
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next-to-leading order (NLO) .  The Sudakov exponent in ( 1) is 

2 J 1 dO" 2 I CF (°0 ( Q2 ) -u sin 7fU -
In J,, (Q ) = dp -;; dp (p, Q ) sDc (e-"P - 1) = 2/3

0 J
o du B,, (u) A2 �A3(u), (2) 

where AB(u) depends only on the renormalization group equation for the coupling and A cor­
responds to the "gluon bremsstrahlung" effective charge 10 . The Borel function is remarkably 
simple: 

B,, (u) � (v2u - 1) r(-2u) - (� + _l_ + -1-) (vu - 1) r(-u). u u 1 - u  2 - u  (3) 

Using this distribution, and the assumption that the hemisphere masses are independent f , both 
the thrust (we define t == 1 - T) and the heavy-jet mass (PH) distributions are readily obtained, 

� 1 2��v exp {vt + 2 ln J,, (Q2) }  
d [1 dv ] 2 

dpH c 27fiv exp {vpH + In J,, (Q2) }  

(4) 

(5) 

These resummation formulae suggest a specific way in which power corrections should be 
included 7•9 .  First of all, since renormalon ambiguities appear in the exponent, ln J�T ( Q2) ----> 
ln J�T(Q2) + ln J[:P (Q2) , power corrections appear as a factor in Laplace space, implying fac­
torization and exponentiation of these terms, as previously suggested 11 • 12•13•14 . Moreover, the 
particular structure of Borel ambiguities from the renormalon singularities in (3) allows one to 
deduce the. dependence of In J[:P (  Q2) on Q and v. There are two classes of corrections: (a) odd 
powers of Av/ Q from the first term in (3) , which are related to large-angle soft emission; and (b) 
the first two powers of A2v/Q2 from the second term in (3) , which are associated with collinear 
emission. The leading corrections are (a) and they can be resummed into a shape function of 
a single variable 12 . The effect of the leading >..1Av/Q power correction in the exponent is to 
shift the entire distribution 12• 13 ,  whereas higher (odd) power corrections modify the shape of 
the perturbative spectrum. 

Fitting the thrust distribution in a large range of Q and t values with such a shape function 
provides a strong test of the approach. Good fits were obtained to the world data 7•9•20 .  An 
example 9 is shown in fig. 2. An even more stringent test is the comparison of the extracted 
parameters from the thrust and the heavy-jet mass distributions, both defined in the decay 
scheme 21 in order to minimize the effect of hadron masses. Assuming that ( 4) and (5) hold 
non-perturbatively, the power corrections to the two distributions are associated with the same 
exponent and are therefore simply related. The agreement in the description of the two distri­
butions is demonstrated in fig. 1 ,  where the full line in the right frame shows not a fit but rather 
a calculated distribution for heavy-jet mass, where the parameters ( a8 and the shape function) 
are fixed by the fit to the thrust. A comparison of the leading power correction extracted from 
the two distributions is shown in fig. 3. In addition to DGE, the figure shows a fit based on the 
NLL result. Contrary to DGE, in the NLL case there is no agreement between the two. This 
demonstrates the necessity to resum also the factorially enhanced subleading logs, as done by 
DGE, when a quantitative power correction analysis is done. Note also the significant impact 
on the extracted value of a8 • The best fit for the thrust distribution yields °'�s (Mz )  = 0. 1086. 
This value is consistent with that extracted from the average thrust upon performing renormalon 
resummation 22 .  

1In the two-jet region, correlations between the hemispheres are suppressed perturbatively. I t  may play a more 
important role non-perturbatively 18• 19 . We neglect this effect 9 , still finding a good agreement with the data. 
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Figure 2: Left: fit to the thrust distribution data at Q = Mz . The dotted line is the perturbative DGE result 
(principal-value regularization of the Borel sum) , the dashed line shows a fit based on shifting the perturbative 
distribution (a single non-perturbative parameter) and the full line shows a shape-function-based fit. Right: the 
heavy-jet mass data compared with the predicted distribution based on the parameters fixed in the thrust fit. 
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Figure 3 :  The leading non-perturbative correction on the scale Q /v, extracted from the t and PH distributions. 

Results based on DGE and on NLL resummation are shown. In each case a, is fixed by the fit to the thrust. 

3 DIS structure functions at large Bjorken x 

In contrast to event-shape distributions, DIS structure functions have an OPE, by which power­
suppressed contributions can be systematically identified and related to hadronic matrix ele­
ments 23 .  The moments of the structure functions can be written as an expansion in inverse 
powers of the momentum transfer q2 = -Q2 , 

f dx xN-lF2 (x, Q2 ) = cC2l (N, µF ) (OC2l (N))µ,F + d2 L CJ4) (N, µF) (OJ4) (N))µ,F + . . . , (6) 
J 

where ojml are operators of twist m with the appropriate quantum numbers. The OPE can 
be expressed in terms on non-local operators 24·25·26•27 defined on the light cone y2 = 0 (y is 
the Fourier conjugate of the 1* momentum q) , as demonstrated in fig. 4. Calculating the 
hadronic matrix elements of ojml requires a full knowledge of the hadron structure. Thus, in 
practice these are simply parametrized and fixed by fit to experimental data. Moreover, most 
phenomenological analyses of structure functions are still restricted nowadays to the leading 
twist. On the other hand, the very existence of a non-perturbative definition puts the study of 
power corrections to structure functions on a firmer basis, as compared with event shapes. The 
OPE allows one to answer certain questions that are hard to address otherwise. In particular, 
within the OPE one can trace the cancellation of infrared renormalon ambiguities2•28 .  This is not 
only important in principle, but, in fact, essential for any reliable measurement of higher-twist 
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Figure 4: Twist-2 and twist-4 light-cone operators whose hadronic matrix elements are the quark distribution and 
a correlation between quark-gluon and quark states, respectively. At twist 4 there are several other operators. 

matrix elements, since the renormalon ambiguity from the resummation of C(2l (N, µF) in (6) 
is of the same order as the next term in the expansion. It is well known that by studying the 
renormalization properties of these operators one can determine their large Q2 scaling violation. 
We shall also see that by calculating the higher-twist coefficient functions one can gain some 
insight into which partonic configurations may be relevant to certain kinematics. Both the 
anomalous dimension and the information encoded into the coefficient functions of the higher 
twist can be useful in identifying the dominant higher-twist contributions, without making too 
strong assumptions concerning the matrix elements themselves. 

Let us now consider F2 in the large-x limit. In particular, consider the limit where Q2 
gets large but W2 = Q2( 1  - x)/x is held fixed at some low (yet perturbative) scale. At the 
level of the leading twist (m = 2) the analysis of the structure function simplifies, since the 
gluon distribution can be neglected and only valance quarks contribute. The leading-twist 
factorization amounts to g incorporating the effect of gluons softer than some scale µF into the 
hadronic matrix el�ment (0(2l (N))µF ' whereas the effect of gluons of higher virtualities go into 
the coefficient functions C(2) (N, µF ) .  Independence of the structure function of µF is guaranteed 
by an evolution equation stating that the logarithmic dependence of the renormalized operator 
on µp is cancelled by that of the coefficient function. Moreover, radiative corrections can be 
factorized into a hard subprocess, a jet subprocess, and a soft subprocess, which are mutually 
incoherent 4 ,  as shown in fig. 5. Interaction between the remnants of the target and the recoiling 

p 

�, / � 

I :i "I p 

Figure 5: Factorization of DIS structure functions at large Bjorken x. 

jet proceeds, at the level of the leading twist, only through the exchange of soft gluons (harder 
gluons contribute at higher twist) ,  which cannot resolve the jet or the hadron structure. 

9The way factorization is implemented in practice (through dimensional regularization) removes infrared sin­
gularities from the coefficient functions, making them well defined order by order. How<!Ver, it is not equivalent 
to a rigid cu to ff. Infrared effects do penetrate into the coefficient functions at orders as renormalons. 
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Since non-perturbative corrections at large x go effectively in powers of l/W2 , the OPE in (6) 
tends to break gown and needs to be summed up. At first sight this seems an incredibly complex 
task, in particular, since the number of parameters involved increases sharply at large N: at 
each twist (m 2:: 4) the number of local matrix elements h grows as a power of N. 

Not only the need to compensate for the renormalon ambiguity at twist 2 ,  but also the 
complexity of the twist expansion, and the difficulty to use it to parametrize power corrections, 
have led to renormalon-based phenomenology of structure functions. Renormalons resummation 
in the twist-2 coefficient function, at the level of a SDG (the large-Ni limit) , leads to the following 
ambiguity 3•29•30•31 to order 1/Q2 , 

(1 N 2 Gp [ 2 12 ] A2o 
fl lo dx x - F2 = 2130 

41f;(N + l) + 41 + l + N + 2 + N - 8 - N qwQ'F' (7) 

with o = fcdu/(l - u), where the contour C is the difference between different integration 
contours in the Borel plane, which avoid the singularity at u = 1 .  Since F2 is a physical 
quantity the ambiguity must cancel, and thus there must exist at twist 4 a contribution of 
the form (7) , which is proportional to the leading twist matrix element qN. The renormalon­
based model 3•29•30•31 amounts to assuming that this contribution dominates, and thus the entire 
twist 4 can be approximated by (7) , replacing the ambiguous o by a single fit parameter. No 
physical arguments have been given to support this dominance. From the OPE point of view 
it seems a very strong assumption: genuine multiparton correlations are absent here. One 
can also parametrize the twist-6 contribution based on the 1/Q4 renormalon ambiguity in the 
twist-2 coefficient function. At large x this model does not apply: since we know that multiple 
emission is very important perturbatively, it is unlikely that power corrections will be entirely 
associated with a single dressed gluon. Instead, at large x it is more appropriate to parametrize 
power corrections according to DGE, taking multiple gluon emission into account. But also in 
this case strong assumptions are made on the higher-twist contribution. To proceed we need 
to clarify the meaning of the renormalon dominance assumption, but we must also identify 
the dominant higher-twist contribution independently of any prejudice. Both these issues were 
recently addressed 15 at the level of twist 4. 

To clarify the meaning of the renormalon dominance assumption we must trace the cancel­
lation of renormalon ambiguities within the OPE. The infrared renormalon ambiguity cancels 
against another ambiguity in the definition of higher-twist matrix elements, due to the mixing 
of the corresponding operators with the leading-twist operator 32•33•2 . To make use of the OPE, 
one must regularize both sources of ambiguity in (6) : 

(8) 

(9) 

Here o, •• and o�!J in eqs. (8) and (9) represent the effect of changing the regularization prescrip­
tion in defining the sum of the series in the twist-2 coefficient functions and the ultraviolet­
divergent integrals in the renormalized twist-4 operators, respectively. A consistent regular­
ization guarantees the cancellation of all the o terms leading to unambiguous predictions for 
the structure functions to power accuracy. It is clear from (9) that the mixing of twist 4 with 
twist 2 must be associated with quadratic divergence in the renormalization of oj4l (N) . Indeed, 
contracting the gluon in fig. 4 to one of the quark lines, there appears a loop which is quadrati­
cally divergent in the ultraviolet, while the remaining operator is the twist-2 one. An ambiguity 

h As N increases, larger distances along the light cone become relevant. This makes the formulation of the OPE 
in terms of non-local matrix elements attractive. Indeed, using light-cone distributions, the analysis of twist 4 at 
large x becomes tractable. 
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emerges from the regularization of this loop. Summing the ambiguous ultraviolet contributions 
from all the relevant operators, each appearing with its own coefficient function, we recover an 
ambiguous expression, which is identical to (7) but has an opposite overall sign i. This way, 
when the two are summed in (6) , a well-defined expression is obtained. 

Note that while the renormalon ambiguity is associated with infrared scales, the presence 
of ambiguity in the higher twist is an ultraviolet property of the operator, which is not related 
to infrared physics. In conclusion, the renormalon ambiguity merely reflects the arbitrariness 
in separating contributions of different twists. The precise separation (or regularization of the 
renormalon sum) does not have any physical significance, and it should be regarded as comple­
mentary to the standard factorization used to define separately the coefficient functions and the 
operator matrix elements at each twist. 

From this discussion it follows that the renormalon dominance assumption should be inter­
preted, within the OPE, as the assumption that the ultraviolet divergent contribution 32•33•2 , 
the one which mixes under renormalization with the leading twist, dominates the higher twist. 
Independently of this assumption we conclude that any treatment of higher twist which fails 
to deal with renormalon resummation (and the corresponding regularization of higher twist) is 
bound to be ambiguous. 

A priori, it is natural to expect that terms which mix with the leading twist will be of the 
same order of magnitude as other higher-twist effects. Ultraviolet dominance is the assumption 
that the former dominate. One can also imagine a scenario opposite to ultraviolet dominance, 
where the matrix elements are much larger than ·their ambiguous part. This point of view was 
adopted in the framework of QCD sum rules 1 . The success of renormalon-based phenomenology 
in various applications calls for reconsideration of this assumption also in the framework of the 
sum rules. In general, similarly to DIS higher twist, condensates should be extracted when 
performing renormalon resummation; they can be assigned numerical values only within a given 
regularization prescription for the renormalons. 

Let us now return to the large-x limit and study the twist-4 contribution to F2 . Examining 
the coefficient functions of the corresponding light-cone operators at leading order we find 15 
that a significant simplification occurs at large x. This simplification is due to the fact that 
certain partonic configurations dominate the entire twist-4 contribution. In particular, we find 
that the dominating final state is that of a single energetic quark, just as at twist 2. The final 
state in which a quark and a gluon share the momentum is subdominant - it is suppressed 
by a power of 1 - x. Thus the difference between the leading twist and twist 4 at large x is 
restricted to the initial states. However, also here a great simplification occurs. Representing 
the coefficient functions of the twist-4 operator in fig. 4 in terms of the longitudinal momentum 
fractions of the quarks 6 and -6, the dominant contribution arises from the region where the 
gluon momentum fraction is small 6 - 1;1 ---> 0, since the coefficient functions are singular at 
this point. Consequently the Heisenberg uncertainty principle implies that the quark-gluon­
quark correlator (p l0)4) (v , y) IP)!LF is essentially independent of the position of the gluon field 
on the light cone ( v ) ,  and it effectively becomes a function of the light-cone separation between 
the quarks (py) ,  just as the leading-twist matrix element (pl0)2l (y) lp)l'F ' In conclusion, the 
configurations that dominate the twist-4 contribution to F2 at large x, in both the final and 
initial states, make it twist-2-like. It is therefore natural to conjecture that ultraviolet dominance 
indeed holds, namely that the dominant ingredient in twist 4 is the part that mixes with the 
leading twist. 

While justifying ultraviolet dominance at large x, this picture does not apply to moderate 
or small values of x, and therefore it does not support the application of the renormalon model 

'The first example where this cancellation was demonstrated is the longitudinal structure function 2•28 . Re­
cently 15 it was demonstrated in the case of F2. 
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where eq. (7) is assumed to represent the N dependence of twist 4. 
The essence of the simplification we identified at twist 4 at large x is that the dominant 

multiparton correlation measured by F2 in such kinematics is still associated with the leading 
twist. This is most 'naturally realized through ultraviolet dominance. Gluons of momentum 
scale of order W which are exchanged between the jet and the remnants of the target simply 
cannot resolve the full multiparton correlation function. Their interaction can be associated 
with "power-like evolution" , similarly to the way the interaction of soft gluons at the leading 
twist is associated with logarithmic evolution. 

Assuming that ultraviolet dominance holds to all orders in the twist expansion, a non­
perturbative factorization formula (valid up to perturbative and non-perturbative corrections 
that are suppressed by 1/ N) emerges from the leading contributions to each twist: 

H (Q2) J (Q2/N; µ�) qN(µ�) [1 + r.;1 ��2 
+ . .  ·] 

H ( Q2) J ( Q2 /N; µn qN(µ�) JNP (NA2 /Q2) ,  

(10) 

where qN is the twist-2 quark matrix element, H and J are the hard and jet components in the 
twist-2 coefficient function, and r.;i are target-dependent non-perturbative parameters. In the 
second line all the non-perturbative corrections on the scale Q2 / N are resummed into a shape 
function of a single argument, similarly to the parametrization of non-perturbative effects in 
event-shape distributions. 

DGE can now be applied to calculate J. Using the standard MS factorization with µF = Q, 
we obtain 

with 8 

2 { CF f 00 ( Q2 ) -u sin 7ru 
_ } J(Q /N, µF = Q) = exp 

2/30 Jo duBN(u) A2 �AB(u) , 

( 2 1 1 ) u 2 - - + -- + - (N - l) f(-u) - - ln(N) ,  u l - u  2 - u u 

( 1 1 )  

( 12) 

where the first term is similar to the collinear part in the event-shape case (3). Contrary to the 
latter, here the collinear singularity (appearing as a pole at u = 0) requires a subtraction. This 
is the role of the second term in (12) ,  which can be identified as the large-N limit of the leading 
twist anomalous dimension. Having implemented the MS factorization, J is regular at u = 0 
and thus has a well defined perturbative expansion. Still, it has Borel singularities at u = 1 ,  2 .  
These will be cancelled by the non-perturbative jet function JNP (N A 2 / Q2) . Thus, the following 
ansatz suggests itself 8•15 

JNP (NA /Q ) = exp -wi - -- - -w2 - -- , - 2 2 { Cp NA2 1 Cp N2A4 } 
f3o Q2 2 /30 Q4 

where wi are non-perturbative parameters. 

4 Conclusions 

( 13) 

Many interesting hard processes involve kinematic thresholds. Owing to the emission of soft and 
collinear radiation, the corresponding differential cross-sections tend to have large perturbative 
and non-perturbative corrections. As a result, a naive, fixed-order perturbative treatment is 
insufficient. Moreover, the OPE does not apply or tends to break down. Here we shortly reviewed 
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the case of event-shape distributions in e+e- annihilation, where we demonstrated the virtues of 
DGE both as a resummation method and as a way to study power corrections. This was followed 
by a deeper look into the case of DIS structure functions at large x, where the OPE was used 
to get additional insight into the problem. There are many other physical applications where 
DGE and the shape-function approach can be applied, including, for example, fragmentation 
functions of light and heavy quarks and Drell-Yan or heavy-boson production processes. 

DGE is primarily a novel approach to resummation: the Sudakov exponent is calculated in 
a renormalization-scale-invariant manner by means of renormalon resummation. The criterion 
of a fixed-logarithmic accuracy becomes irrelevant when power corrections are being quantified: 
it is the subleading logs that carry the characteristic factorial growth of the coefficients, which 
is associated with the power corrections. Perturbatively, the additional resummation achieved 
by DGE with respect to the standard NLL resummation is significant. For event-shape dis­
tributions, it is � 203 at Mz . In principle, power corrections cannot be quantified without 
renormalon resummation. Our analysis of the thrust and the heavy-jet mass shows that this 
has very practical implications: a consistent description of the two observables is possible only 
if renormalon resummation in the Sudakov exponent is performed (fig. 3) . Another important 
consequence is the significant impact on the extracted value of a8 • 

DGE and the shape-function approach can be applied in the case of DIS structure function at 
large x. However, here it can be contrasted with the OPE. As we have seen, a non-perturbative 
factorization can be consistent with the OPE, and it is supported by the OPE-based analysis. 
In spite of the fact that the OPE tends to break down in the large-x limit, it is very useful: 
a simple picture emerges from the analysis of twist 4 in terms of light-cone distributions. We 
have found that the dominant non-perturbative corrections at large x are associated with the 
formation of a narrow jet in the final state. These corrections are due to the exchange of 
gluons with momentum scale of the order W, which are insensitive to the details of multiparton 
correlations in the target. Instead of the full correlation, they measure a particular ingredient 
which is twist-2 like. It is therefore natural to conjecture that the dominant contributions at 
large x are associated with mixing with the leading twist. To l/N accuracy the hadronization 
process of the jet involves a single target-dependent non-perturbative scale at each order in the 
twist expansion. These dominant corrections can be resummed into a shape function of a single 
argument: N/Q2 , defining a non-perturbative jet function. Thus, at large N the OPE collapses 
(to l/N accuracy) into a factorized formula in which the leading twist is multiplied by a jet 
function j . The application of DGE is then quite natural. 
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