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THE EFFECT OF COOLING WATER ON MAGNET VIBRATIONS

S.Redaelli
�
, R.W. Aßmann,W. Coosemans,W. Schnell,CERN,Geneva,Switzerland

Abstract

The quadrupolemagnetsin the CLIC Test Facility II
(CTF2) incorporatea watercooling circuit. In the frame-
work of theCLIC stabilitystudy, themechanicalvibrations
of the magnetsweremeasuredfor differentflows of cool-
ing water. We presentthe resultsandcomparethemwith
simple theoreticalestimates. It is shown that the vibra-
tion requirementsof theCompactLInearCollider (CLIC)
quadrupoleswith coolingwatercanbasicallybemet.

1 INTRODUCTION

Stabilizationissuesareoneof themainconcernsfor the
new generationof Linear Colliders. For instance,toler-
ancesfor uncorrelatedRMS vertical motion above

�
Hz

for the linac quadrupolesof the CompactLInear Col-
lider (CLIC) [1] are ��� � nm [2]. The circulating water
usedto cool the magnetsis a sourceof mechanicalvibra-
tions. In theframework of theCLIC Stability Study, mea-
surementshave beendoneto quantify this effect for the
quadrupolesof theCLIC TestFacility II (CTF2)[3], which
have a similar designto the onesforeseenfor the CLIC
linac. In this paperwe presentthe preliminary resultsof
quadrupolevibrationsversuswaterflow. Thesemeasure-
mentshave beendoneby meansof theactive stabilisation
system����	�
���
�������� , describedin detailsin [4]. This sys-
tem is usedto isolatethe motion of the quadrupolefrom
the groundmotion, but is not capableof dampingvibra-
tionsgeneratedby thequadrupoleitself. It is thussuitable
for studiesof waterinducedvibrations.Otherstudiesabout
the effect of the circulating water on RF structureshave
beendoneat SLAC, asreportedin [5].

2 EXPERIMENTAL SET-UP

A schemeof ourexperimentalsetupandthecrosssection
of theCTF2quadrupole[6], with its transversedimensions,
aregivenin Fig.1. Eachquadrupoleis 80mm long,6.7kg
weight andhasfour coppercoils madeof six rectangular
cables,with a 3mm diameterholefor thecoolingwaterto
circulate. Eachquadrupolehasonefeedingchannel.Two
magnetsforming a doubletsit on a commonsupportplate
andhaveindependentwaterconnections.Thedoubletused
in our measurementswasconnectedto theregularGeneva
tapwatersystem(pressureof about

�
bar). Thewaterwas

first broughtfrom thetapto a 4 channelmanifoldandthen
to the quadrupoleswith tubesof different diameter(see
Fig.1). The watervolumeratewasmeasuredwith a pre-
cisionof � %. Themaximumwatervelocity in quadrupole�
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Figure 1: Crosssectionof the CTF2 quadrupolewith its
transversedimensions. In our measurementswe useda
quadrupoledoubletinstalledasshown in thescheme.

pipeswasof about� ms@BA (thenominalvaluefor theCTF2
quadrupolesis �C� D ms@EA [6]).

The doubletwasfixed directly on top of a honeycomb
table,which wassupportedby actively stabilisedfeet (see
Fig.1) [4]. Threetriaxial geophonesof thetypedescribed
in [4] ( FG� Hz to �H�JI Hz frequency range)werefixed on
topof thedoublet,onthetableandonthefloor. Geophones
provideameasureof themechanicalvibrationvelocityver-
sustime. Thepower spectraldensityof thedisplacements
asafunctionof frequency, KMLONBP , is calculatedfrom thedis-
cretevelocities.TheRMS motionabovea given NRQ is then
obtainedasthe integral of KMLONBP from NRQ to �H�RI Hz. The
measurementsweretaken over night, to have the quietest
backgroundconditions. Data were acquiredwith a sam-
pling time of ST� SUSH� s for about � minutesand the results
wereaveragedoversubsamplesof I s.

3 SIMPLE THEORY

Water inducedvibrationsare thoughtto be inducedby
the onsetof turbulencein the water in the pipes. For a
laminar motion, no vibrationsshouldbe generatedsince
the watervelocity at the internalwall of the pipe is zero.
To estimatethe waterinducedvibration thesimplifiedap-
proachof [7] and the resultsof [8] are referredto. The
Reynold’s numberis definedas VXWZY\[^]J_` , where a is



Table1: Someparameterof thepipesat turbulentonset.

Pipe VXW b [m] Flow [l/h] N�c [Hz]
Tapd Manifold DUSeSUS ST� SH�R� �RfT� � �JS*� I
Manif. d Quad DUSeSUS ST� SUSeg � ST� � DHhC� i
Quadrupole DUSeSUS ST� SUSe� �RIT�j� �RiUg

thewatervelocity, b thepipediameter, k = �JSUl kgm @+l andm =ST� gUin�RS @+l kgm @BA s@EA the water density and dynamic
viscosity. Turbulenceoccursat aroundVoW =DUSUSeS , depend-
ing for instanceon the roughnessof the pipe surface,on
the pipe shapeandon the statusof the waterupstreamof
thepipe. Thewatermotionwill beassumedto be laminar
upstreamanddownstreamthepipeunderconsideration.

Turbulentmotionis characterisedby domainswherethe
waterhasaneddy-like motion. Thesedomainsmove with
velocity a andhave the typical sizeof orderof magnitude
of the pipe radius[8]. The lowest inducedvibration fre-
quency is expectedto beof theorderof N�cpYqasrUb , which
is a frequency associatedto coherencedomainsof length
equal to the tube radius. In Table1 the values N c at the
turbulenceonsetaregivenfor thedifferentpipesof ourex-
perimentalsetup(seeFig.1). Theestimateof theminimal
vibrationfrequency N c givestheorderof magnitudeof the
frequency window whereturbulenceeffectsareexpected.

Here,theresultsfrom [7] areusedto estimateturbulence
inducedquadrupolemotion. The pressuredrop alongthe
pipedependson aut asvxw = _y[�zt ]

{}|
, where

{
is thepipelength

and
|�~ ST� �H�Jf*VXW�@EA��<� =ST� S � is obtainedfrom empiricalfor-

mulae[7]. Perquadrupolecoil the value vxw =ST�j�Jf bar is
found. vxw equalsthe averagefraction of energy density
convertedto irretrievable turbulent kinetic energy, k���ter�D
(� is theinstantaneousvelocity). Assumingisotropy of tur-
bulenceandaddingin quadraturethecontributionsof each
coil andquadrupoles,thefollowing expressionis obtained
for theRMSmotionin thevertical � direction:

� RMS Yq� � c� q
b
D��

�
water�
Tot

|
f��

where� water= �RDT� f g is thepipewatermass,
�

Tot the total
massof theobjectunderinvestigation,� c=

�
and � q=D the

coil andquadrupolenumber. In thepessimisticassumption
thatall theenergy in concentratedaroundthe N�c =�eiU� Hz (at�eS l/h), for oneisolateddoubletthevalue� RMS ~ D��JS nmis
found.As thedoubletis rigidly fixedon thetable,it seems
a betterchoice to define

�
Tot

~ hJSUS kg, which leadsto� RMS ~ D nm.

4 RESULTS OF THE MEASUREMENTS

In Fig.2 and3 typical power spectraldensitiesof ver-
tical displacementsof the doubletare given for different
frequency rangesandwaterflows. Measurementswerere-
peatedondifferentdaysandshowedagoodreproducibility.
The KML(NBP peaksof the doubletwith no circulatingwater
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Figure2: Power spectraldensityof verticaldisplacements
vs.frequency asmeasuredon top of theCTF2doublet.
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Figure3: Power spectraldensityof verticaldisplacements
vs.frequency asmeasuredon top of theCTF2doublet.

are mostly inducedby floor motion, dampedby a factor
between�JS and �JSUS by the stabilisingsupport[4]. In the
verticaldirectiona new peakat aroundi Hz is inducedby
structuralresonancesof thequadrupoles.

The �JD*� I l/h flow KMLONBP of Fig.2 is superimposedon the
zeroflow line. This reflectsthethresholdnatureof thetur-
bulenceonset.Turbulenceis foundfor flowsabovearound�JI l/h only. Thedataof Table1 suggestthatthemainsource
of turbulencein the few tensof Hz frequency rangeis the
pipefrom thetapto themanifold.Thequadrupolepipesare
expectedto affect frequency ��DUSeS Hz. Thepipesfrom the
switchto thequadrupolecanbeimportantfor flows above� S l/h.

Above the turbulencethreshold,two main effects in-
duced by the circulating water are observed. (1) The
releasedenergy increasesthe overall noise level of the
quadrupolevibrations.Theexistingpeaksof KML(NBP getcon-
siderablyamplified. This is for instancethe caseof the
peaksbelow �RS Hz andfor theoneataround�UhRS Hz (Fig.2
and3). (2) A numberof new peaksarise,which arenot



Table2: IntegratedRMS displacementsabove
�

Hz, DUS Hz
and fUS Hz on floor, on doubletrigidly clampedto a hJSeS kg
table,for zeroandoperationalwaterflow.

VerticaldisplacementsN Floor Doublet DoubletS l/h �US l/h�
Hz �*� feD nm ST� iUD nm �C� �eS nmDUS Hz �C� Dei nm ST� DH� nm S*�&h � nmfUS Hz S*� S�h nm ST� SUI nm S*� Sef nm

Horizontaldisplacements�
Hz D*� �e� nm ST� �UI nm �C� �e� nmDUS Hz S*� � � nm ST�j�Jg nm S*� geS nmfUS Hz S*� S � nm ST� S � nm S*�&�eh nm

presentwithout turbulence. This is the casefor a strong
peakat �JI Hz (appearingabove

� I l/h) andfor broadpeaks
in the DUI -

� I Hz frequency range(seeFig.2). In thehigher
frequency rangethesefeaturesareevenmoreremarkable:
amplificationsof thezeroflow vibrationlevel of upto �JSeSUS
andmoreareclearlyshown in Fig.3. Threenew peaksap-
pearat

~ iUS Hz,
~ �RgUS Hz and

~ D�hJS Hz, both in ver-
tical andhorizontaldirections,whoseamplitudeincreases
for increasingwaterflows. However, thevibrationsabovefeS Hz contributelessthanST� D nmto thetotal integratedmo-
tion (seebelow).

In Table,2 someabsolutevaluesof the integratedRMS
motionof thedoubletaregivenfor

�
Hz, DeS Hz and fUS Hz

andcomparedwith themotionof thefloor. For theCTF2
operationalwaterflow of �US l/h, the vertical RMS motion
above

�
Hz is �C� � nm, which meetsthe limit tolerancefor

CLIC [4]. Similar valuesarefoundfor thehorizontaldis-
placement,where the toleranceis lessdemanding. The
pureeffectof thewateris givenby thedifferencein quadra-
ture of the caseswith andwithout flow. Above

�
Hz we

obtainST� i nm,which is comparablewith thetheoreticales-
timateassumingthat the doubletandthe tablemove asa
whole.Thewaterinducedmotionis stronglydependenton
the waterflow. In Fig.4 we show vibrationsversuswater
flow for different minimal frequencies.We find a maxi-
mumvibrationlevel at aroundfUS Hz. Interestingly, thevi-
brationlevelsarelowerat evenhigherwaterflows.

Vibration measurementsof a doublet mountedon its
CTF2-like alignmentsupport,which wasfixedon thesta-
bilised table,have alsobeenperformed. The preliminary
resultsshow that the horizontalRMS motion above

�
Hz

can be amplified by a factor of D and more. A support
internal resonanceat ��h Hz [4] is considerablyamplified
by turbulenceandis themaincontribution to theincreased
motion. Theverticaldirectionis not muchaffectedby the
alignmentsupport,asalsoconfirmedby in-situ measure-
mentsof theCTF2quadrupoles.

5 CONCLUSIONS

Preliminary results of water induced vibrations of a
CTF2 quadrupoledoublethave beendiscussed.Measure-
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Figure4: Vertical RMS motion above
�

Hz, �JS Hz, DUS Hz
and fUS Hz vs. waterflow.

mentshave beendoneat constantpressureandin a wide
rangeof waterflows. Turbulencewasfoundto bea thresh-
old phenomenonthat appearsfor water velocities in the
quadrupolepipesabove ST� f ms@BA andinducesanincrease
of themagnetvibrations.Themainsourceof the low fre-
quency vibrations(up to fUS Hz) seemsto betheturbulence
onsetin thepipesfeedingthequadrupolesratherthanin the
quadrupolesthemselves. They arethe main sourceof the
overall magnetRMS motion. Vibrationsup to fUS Hz are
alsothetypical rangeof magnetandsupportinternalreso-
nances,whichcanbeconsiderablyenhancedby theenergy
releasedin waterturbulentmotion. The simplified theory
of [7] seemsto giveagoodroughestimateof thefrequency
rangeof theturbulenceinducedvibrationsandtheorderof
magnitudeof theRMSmotion.

The effect of waterflow in CLIC type quadrupoleshas
beenquantifiedin detail. Theresultswill feedinto further
designoptimisationof the system(diameterof pipes,wa-
ter velocity, supportdesign,...).However, alreadythe ini-
tial measurementshaveachievedtheCLIC linac tolerances
with nominalcoolingwaterflow.
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