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Perturbative saturation and the soft Pomeron
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We show that perturbation theory provides two distinct mechanisms for the powerlike growth of hadronic
cross sections at high energy. One, the leading Balitski�-Fadin-Kuraev-Lipatov~BFKL! effect, is due to the
growth of the parton density, and is characterized by the leading BFKL exponentv. The other mechanism is
due to the infrared diffusion, or the long range nature of the Coulomb field of perturbatively massless gluons.
When perturbative saturation effects are taken into account, the first mechanism is rendered ineffective but the
second one persists. We suggest that these two distinct mechanisms are responsible for the appearance of two
Pomerons. The density growth effects are responsible for the hard Pomeron and manifest themselves in small
systems~e.g. g* or small size fluctuations in the proton wave function! where saturation effects are not
important. The soft Pomeron is the manifestation of the exponential growth of the black saturated regions
which appear in typical hadronic systems. We point out that the nonlinear generalization of the BFKL equation
which takes into account wave function saturation effects~‘‘Pomeron loops’’! provides a well defined pertur-
bative framework for the calculation of the soft Pomeron intercept. The conjecture of a perturbative soft
Pomeron is consistent with picturing the proton as a loosely bound system of several small black regions
corresponding e.g. to constituent quarks of size about 0.3 fm. Phenomenological implications of this picture are
compatible with the main qualitative features of data onp-p scattering.
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I. INTRODUCTION

It has been long recognized that at asymptotically h
energies hadronic cross sections are dominated by soft
perturbative physics. In particular the validity of the Froiss
bound for the total cross section requires a mass gap in
spectrum. The corresponding generation of the pion mas
QCD, or the generation of the glueball mass in pure gluo
namics, is a bona fide nonperturbative effect. However, e
though the asymptotics is expected to be nonperturba
perturbative dynamics may well play an important role in t
preasymptotic regime.

Indeed, cross sections for small objects, like highly virtu
photong* , or heavy quarkonium~‘‘onium’’ ! are perturbative
up to very high energies, as long as the size of the sys
remains small. The main perturbative mechanism that dr
the growth of cross sections with energy is the Balitsk�-
Fadin-Kuraev-Lipatov~BFKL! evolution@1#. It predicts that
cross sections grow exponentially,s}sv, where v
54 ln 2Nc(as/p) to leading order inas . This behavior is
nonunitary, as it violates the Froissart bounds<(p/m2)t2.
Heret is the rapidity,t5 ln(s/m2), andm denotes the mass o
the lightest particle in the theory. The main reason for t
lack of unitarity is the growth of the partonic density in th
hadronic system. As the partonic density reaches a crit
value of order 1/as , the BFKL approach ceases to be val
and one must take into account finite density effects.

This has been recognized and forcefully advocated in
pioneering works@2# and later in@3#. A more complete ap-
proach to QCD evolution at finite density has been dev
oped more recently in@4#. These papers treat the QCD ev
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lution to the leading logarithmic approximation, but to a
orders in the gluon density. The resulting system of evolut
equations is a set of functional equations, and its study so
has not been feasible beyond the double logarithmic appr
mation.

There exists however a regime in which the general n
linear evolution simplifies. This happens when a small obj
~such as a highly virtual photon! scatters on a large targe
~such as a large nucleus!. In this case the leading nonlinea
corrections are due to the fact that the projectile wave fu
tion at high energy has a large multigluon component.
soon as thenumberof gluons in these multigluon states b
comes large, one has to account for the possibility that m
than one gluon scatters, even if the gluonicdensitymay still
be small. When the target is large, so that the scatte
probability of a gluon is parametrically larger thanas @for a
large nucleus of atomic numberA, it is O(A1/3as)#, these
corrections become important earlier than those due to h
density effects.

The system of evolution equations which takes into
count these multiple scattering effects has been derived
in @5#. In @6# its largeNc limit was derived independently in
the dipole picture of@7#. The advantage of the largeNc limit
is that the~otherwise infinite! hierarchy of evolution equa
tions closes and becomes a single equation for the gl
density ~or dipole scattering probability!. We will refer to
this nonlinear equation as the Balitsky-Kovchegov~BK!
equation. The relation between the equations of@4# and @5#
has been discussed in@8#, where it was shown that the latte
is the limit of the former when the induced field densi
©2002 The American Physical Society31-1
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is small. This result was later rederived by similar metho
in @9#.1

The range of validity of the BK equation is wider tha
that of the BFKL evolution in the sense that it can be appl
to scattering on large targets. If the target is large so that
scattering probability of a given probe on it is of order uni
the BFKL evolution violates unitarity very quickly, at rapid
ties of ordertBFKL}1/asNc . This violation of unitarity stems
from the scattering probability rising above one locally
impact parameter space. In contrast with BFKL, the BK e
lution ensures that the scattering probability at a given
pact parameter is always below unity. Nevertheless, as
will discuss in the following, for scattering of a~small! pro-
jectile of transverse sizex0 on a~large! target of sizeR0, the
BK evolution violates unitarity for rapiditiest.tBK

}1/asNcln(R0 /x0). The reason for this violation is that th
value of the maximal impact parameter that contributes
scattering grows exponentially with rapidity. Thus ev
though the scattering probabilities remain unitary, the to
cross section grows exponentially,s} exp$et%, and violates
the Froissart bound. This is the main result of@10#. We can
give a crude estimate of the exponente, but we are not able
to perform a reliable analytical calculation at this poin
However the numerical results of@11# give e50.75v, which
is indeed compatible with our rough estimate. Thus the
exponent is smaller than the BFKL one, but not very sign
cantly.

The reason why at high enough energy the BK evolut
ceases to be valid is that the projectile wave function
comes dense, and further evolution is affected by the h
density effects in the projectile wave function. The onset
these corrections is att}1/asNcln(1/as). As discussed be
low, the gluon density in the center of the projectile is lar
at energies at which large values of the impact param
become dominant. Thus, finite density corrections in the c
tral region are important. Their main direct effect is to slo
down the growth of density in the central region, but th
must also have a large effect on the growth of the scatte
probability at large impact parameters. As we will discu
below, this growth at large impact parameter is due to
long range Coulomb~or Weizsäcker-Williams! fields origi-
nating from the fluctuation of the color charge in the cent
‘‘black’’ region. The finite density effects inevitably reduc
the magnitude of these fluctuations and therefore also
Coulomb fields which feed the periphery. We expect the
fore that these corrections are likely to reduce the expon
tial e significantly. The proper calculation of the exponent
e must involve the analysis of the full nonlinear equatio
including the wave function saturation effects@4#.

1We note that although it is claimed verbally in@9# that the equa-
tions of @4# should be equivalent to those of@5# not only for small
induced fields, but also in general, the actual mathematical ana
of @9# does not justify this claim. The mathematical analysis of@9#
~up to notational differences! is equivalent to that of@8#, where the
origin of the differences between the results of@5# and@4# has been
discussed.
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One aim of the present paper is to furnish more details
the derivations of@10#. This is done in Secs. III and IV, afte
the short recourse to the BFKL evolution in Sec. II. T
other aim is to reflect on possible implications of these t
distinct perturbative mechanisms for the powerlike growth
the total cross section. The first mechanism—the growth
partonic density—is naturally associated with small syste
As long as the size of the system is small and also the n
ber of partons not very large, one expects that the growth
density is indeed the leading mechanism. This suggests
the BFKL exponent~possibly modified by higher order cor
rections! dominates the scattering cross section of small s
tems. However, if a typical hadron is a dense partonic sys
rather than a dilute one, then the density growth mechan
is rendered irrelevant by saturation effects. It is only t
powerlike growth due to the perturbative expansion in
transverse plane which remains effective in this case. On
thus led naturally to conjecture, that it is this latter mech
nism that is responsible for the experimentally found ‘‘so
Pomeron’’ behavior of hadronic cross sections.

Associating the soft Pomeron with a perturbative ph
nomenon is certainly unconventional. All models of the s
Pomeron that we are aware of, try to explain the pow
growth of cross sections by a nonperturbative mechan
@12,13#. On the other hand, this power growth of the cro
section implies by the extension of Heisenberg’s argum
@14# the powerlike distribution of ‘‘matter’’ in impact param
eter space. Perturbation theory naturally provides suc
mechanism, since it operates with massless gluons and
long range Coulomb fields. Thus it could well be that the ro
of nonperturbative physics is limited to taming the powerli
perturbative growth in asymptotia, rather than to provide
additional mechanism for a powerlike growth in the pr
asymptotic regime.2

For this scenario to be viable, the basic satura
~‘‘black’’ ! building blocks of hadrons must be themselv
small in size, so that the perturbative Coulomblike struct
of the gluon fields is still relevant at these distances. It h
been pointed out repeatedly in the literature that the dista
scale associated with the constituent quarks is much sm
than the scale of confining physics. Indeed, the mod
@12,13# deal with scales of order .3 fermi. The picture w
suggest therefore, is that of a proton containing three sm
‘‘black’’ constituent quarks with the size about .3 fermi in th
proton rest frame. As the proton is boosted, the radius
constituent quarks grows with half the soft Pomeron pow
r}s.04. The mechanism of this growth isperturbativeand
the power itself should be calculable from the full nonline
QCD evolution equation@4#. Section V of the present pape
is devoted to a more detailed discussion of this scenario

sis

2We note that the models of@12,13#, when translated into our
language try to provide an alternative nonperturbative mechan
for the growth of the density rather than for the growth in impa
parameter space. Since the exponent governing this growth is
posed to be much smaller than the perturbative one, it is hard to
how this sort of mechanism can survive as the leading one w
juxtaposed with BFKL.
1-2
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II. THE TWO EXPONENTS OF THE BFKL EQUATION

To illustrate the perturbative features of high energy re
tions, we choose the example of deeply inelastic scatte
~DIS!. The subprocess relevant to strong interaction phy
is the scattering of the photon of virtualityQ2 on a proton. In
the parton model, the photon counts the number of char
partons in the proton. The scattering cross section is the

sDIS~Q,x!5
aem

Q2 (
i

ei
2Ni~Q,x!, ~1!

where the first factor is the parton level cross section wh
Ni is the number of partons of a given species in the prot
The number of partons depends on both the resolution s
Q2 and the energy at which the proton wave function
probed,x5@Q2/(Q21W2)#. Here W denotes the center o
mass energy of theg* p system. One can define the pha
space density of partons,f(k), in terms of which

N~Q2,x!5E
S
d2bE

k2<Q2
d2kf~b,k,x!, ~2!

wherek is the intrinsic transverse momentum of the parto
andb is the impact parameter at which the parton is found
the transverse plane.

Although the photon directly counts the number
charged partons, i.e. quarks, at lowx the proton wave func-
tion is dominated by gluons. The number of quarks is th
directly determined by the gluon content of the wave fun
tion. In the following we will therefore concentrate on th
gluons only.

At low x, in the leading logarithmic approximation, th
gluon densityf is determined by the asymptotic solution
the BFKL equation@1#. According to this solution, the dis
tribution of gluons is

f~b,k,x,k0!} expH vt2
ln2b2kk0

a2t
J . ~3!

Here t5 ln 1/x is the rapidity, v54 ln 2Ncas/p and a2

514z(3)Ncas /p with z(n) being the Riemann zeta
function, z(3)51.202 . . . . This distribution depends als
onk0 which characterizes the initial transverse momentum
the gluon which gave rise tof through the evolution to high
t. Formula~3! is valid for impact parameters which are n
too large, namely

0< ln b2kk0!ast. ~4!

The striking feature of Eq.~3! is that even if at low rapid-
ity t0 one starts with a single gluon, after evolution to hi
enought, the density of gluons at small impact paramet
becomes exponentially large. Within the diffusion radi
ln b}at1/2, the overall scale of density is determined by t
exponential factor exp$vt%. Thus using Eq.~3! in the gluonic
analog of Eq.~1! gives the total cross section which grow
exponentially with rapidity.
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The high density at central impact parameters is not
only source of growth in Eq.~3!. The gluon density does
decrease towards the peripheral impact parameters, b
does so rather slowly. For a given transverse momentumk,
the density stays finite up to impact parameters of or
ln(b2kk0)}ast. One cannot establish the exact proportional
coefficient from Eq.~3!, since the validity of this equation
does not extend to such large impact parameters. How
impact parameters of order ln(b2kk0)5nast with very smalln
are still covered by Eq.~3!. For such impact parameters th
density is still exponentially large, although parametrica
smaller than inside the ‘‘diffusion radius.’’ These peripher
impact parameters do not contribute to the leading BF
exponential. When the density is integrated over the imp
parameter plane to calculate the total number of gluons,
obtains the leading BFKL resultN(t)5*d2bf(b,t)
5a expvt which is dominated by the impact paramete
within the diffusion radius. However the contribution of th
peripheral region is by itself also exponentially increasin
Were we to exclude the central impact parameters from
integration region, we would still get an exponentially lar
contribution of the form exp$east%. The exponent here is
smaller than the leading BFKL one, and thus gives a ne
gible contribution to the total cross section within the BFK
framework. However, this exponent is nevertheless pres
and its physical origin is quite distinct from the exponent
growth of partonic density.

The exponential growth of the cross section violates
Froissart bound which requires the total cross section
grow not faster than the second power of the logarithm
energy

s total<
p

mp
2 ln2

s

mp
2 . ~5!

The leading exponential growth of the BFKL cross se
tion is of course unphysical at high enough energies. Ta
at its face value Eq.~1! in conjunction with Eq.~3! would
mean that the probability for scattering of a strongly inte
acting probe at fixed impact parameter grows without bou
at large energy. This is inconsistent with the fact that
probability cannot exceed 1, and violates unitarity of t
scattering probability at fixed impact parameter. The rea
is that a strongly interacting probe has finite probability
interact with more than one gluon at fixedb when the gluon
density at fixed impact parameter and fixed resolutionQ2

exceeds 1/as . Thus the cross section is not proportional
the number of gluons anymore. Multiple scattering effe
must be properly taken into account in order to relate
gluon density with the scattering probability.

A nonlinear QCD evolution equation that takes into a
count these multiple scattering effects has been derived
Balitsky @5#. Its largeNc version was obtained by Kovche
gov @6# using Mueller’s dipole model approach. In the ne
two sections we will discuss how far this perturbative resu
mation goes beyond the simple BFKL framework towar
restoring the unitarity of the hadronic cross sections.

We start our discussion with considering the evolution
the target rest frame.
1-3
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III. THE BK EVOLUTION IN THE TARGET REST FRAME

The essence of the BK evolution is the following. Su
pose at some initial rapidityt0 we are interested in the sca
tering of a probe consisting of aq̄q dipole on a large had
ronic target, for example a heavy nucleus. The scatte
probability of a dipole with legs at transverse coordinatex
andy on a hadronic target isN(x,y). Increasing the center o
mass energy~or rapidity! amounts to boosting the dipole t
rapidity t5t01dt. Under boost, the longitudinal Coulom
field associated with the dipole acquires a transverse p
i.e., the dipole of transverse sizex2y generates an extr
gluonic component whose density is given by the equiva
gluon content of the Weizsa¨cker-Williams field of the dipole,
see Fig. 1:

uq~x!q̄~y!&→Auq~x!q̄~y!g~z!& ~6!

with

A25
asNc

2p2 dt
~x2y!2

~x2z!2~x2y!2 . ~7!

In the largeNc limit, the gluon is equivalent to a quark
antiquark pair. This and the global color conservation of
QCD evolution implies that the singletq̄qg state is equiva-
lent to two dipoles with coordinatesx,z andy,z respectively,
see Fig. 1. In the leading largeNc approximation, the dipoles
scatter independently of each other. Thus the probability
the scattering of the pair of dipoles is

N~x,z;y,z!5N~x,z!1N~y,z!2N~x,z!N~y,z!. ~8!

The last negative term,N(x,z)N(y,z), is the probability
that both dipoles scatter in the same collision. Such dou
scattering events should be counted once and not twice in
total cross section, and the last term in Eq.~8! corrects the
overcounting ofN(x,z)1N(y,z).

This leads to the following nonlinear evolution equati
for the dipole scattering probability:

d

dt
N~x,y!5

asNc

2p2 E d2z
~x2y!2

~x2z!2~y2z!2@N~x,z!1N~y,z!

2N~x,z!N~z,y!2N~x,y!#. ~9!

FIG. 1. Boosting theqq̄-dipole (x,y) generates the higher Foc

componentuq(x)q̄(y)g(z)& with a gluon at transverse positionz. In
the largeNc-limit, this corresponds to the generation of dipol
(x,z) and (y,z).
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The first three terms in Eq.~9! are just the ones discusse
above, while the last term is the ‘‘virtual’’ correction whic
ensures that the dipole wave function stays normali
throughout the evolution.

The following two properties of the BK equation Eq.~9!
are important for our discussion. First, as stressed abov
takes into account multiple scattering corrections. Seco
within this approach the projectile wave function evolv
according to the linear evolution of the dipole model. Inte
actions between the dipoles in the projectile wave funct
are not taken into account. This is seen explicitly e.g. fro
the original derivation of@6# where the density of dipoles in
the projectile wave functionn1(x,y) satisfies the linear
BFKL evolution equation,

d

dt
n1~x,y!5

asNc

2p2 E d2zS 1

~y2z!2 n1~x,z!

1
1

~x2z!2 n1~y,z!

2
~x2y!2

~x2z!2~y2z!2 n1~x,y! D . ~10!

The nonlinearity in the BK evolution equation come
not from the nonlinearities in the evolution of the project
wave function, but from the nonlinearity in the relation b
tween the dipole density and the scattering probability. T
is again given explicitly in@6#. A single dipole (x0 ,y0)
at initial rapidity t0 develops at a greater rapidityt into
a wave function characterized by them-dipole densities,
nm(x0 ,y0 ,t0ux1 ,y1 ; . . . ;xm ,ym ,t). If the single dipole scat-
tering probability att0 is g(x,y), the total scattering prob
ability is given by@6#

N~x0 ,y0 ,t !5(
m

S )
i 51

m

g~xi ,yi !D
3nm~x0 ,y0 ,t0ux1 ,y1 ; . . . ;xm ,ym!. ~11!

The scattering probabilityg depends on the target, but not o
the rapidity.

The account of multiple scatterings in the BK resumm
tion eliminates the leading mechanism that renders the BF
evolution nonunitary. Since the scattering probability in t
BK evolution is no longer proportional to the gluon densi
the scattering probability at any impact parameter does
exceed unity. This is obvious from Eq.~9!. When the scat-
tering probabilityN(x,y) reaches unity at all impact param
eters, the right hand side of the evolution equation vanish
and the probability stops growing.

A number of numerical@15–17# as well as analytical
@18,19# studies of Eq.~9! have been performed, and they a
lead to the following consistent picture: Suppose one st
the evolution from the initial condition of small target field
@or N(x,y)!1 for all x,y#. Then initially the evolution fol-
lows the BFKL equation, since the nonlinear term in Eq.~9!
is negligible. As the scattering probability approaches un
the nonlinear term kicks in and eventually the growth sto
1-4
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as the right-hand side~RHS! of Eq. ~9! vanishes for
N(x,y)51. The larger dipoles@large (x2y)2# saturate ear-
lier, with the smaller dipoles following at later ‘‘time’’t. The
following simple parametrization@20# of the scattering prob-
ability gives an adequate description of the evolution:

N~x,y!512exp$2~x2y!2Qs
2~ t !% ~12!

with the saturation momentumQs(t) a growing function of
rapidity. Thus at any given value of rapidity, all pairs of si
greater thanQs

21(t) are saturated.
The exact dependence ofQs on rapidity is not known, but

both the numerical results@15,17# and simple theoretical es
timates@21,19# are consistent with the exponential growth
the form

Qs~ t !5L exp$aslt% ~13!

with l of order unity. This physical picture was anticipate
several years ago in@21#.

Does saturation of the scattering probabilitylocally in im-
pact parameter plane necessarily imply that the total c
section unitarizes and satisfies the Froissart bound? The
swer clearly is negative. The Froissart bound states that
inelastic cross section for the scattering of a hadron~dipole!
on a hadronic target cannot grow faster than the squar
rapidity

s,
p

m2 t2, ~14!

wherem is the mass of the lightest hadronic excitation.
calculate the inelastic cross section one has to integrate
scattering probability over the impact parameter. Thus, in
saturation regime

s5pR2~ t !, ~15!

whereR(t) is the size of the region in the transverse plane
which the scattering probability for hadronic size ‘‘dipole
is unity. This radius itself depends ont. To satisfy the Frois-
sart bound the radiusR(t) should grow at most linearly with
t. The question of unitarity is therefore the question about
rate of growth of the ‘‘black’’ region, and thus is complete
separate from the question of saturation of the scatte
probability at fixed impact parameter.

As an aside we note that for the deeply inelastic scatte
the unitarity bound is somewhat different@22#. In this case
the projectile is a virtual photon. It does not have a fix
hadronic size, but rather is characterized by a distribution
dipole sizes. The perturbative wave function of the virtu
photon is well known. An interesting property of this wav
function is that for a transverse photon it has a long tail
the small dipole side (r 2!Q22)

F2~r !}aem

1

r 2 . ~16!

In such a projectile not all dipoles saturate at the same
ergy. The scattering probability thus is given by the integ
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over the dipole sizes. At every rapidity the main contributi
comes from the dipoles which are saturated, that is th
with sizes aboveQs

21(t). The scattering probability for a
virtual photon at high energy~by high we mean here suc
that Qs@Q), is given by

N~g* !5E
r 2,Qs

22
d2rF2~r !}aemln Qs /Q. ~17!

With the exponential dependence ofQs on rapidity this
translates into

N~g* !}aemasln s/s0 , ~18!

and therefore

sDIS}aemaspR2~ t !t. ~19!

Thus the DIS cross section has an extra power oft relative to
the cross section of a purely hadronic process.3

This extra power oft is consistent with the numerica
results of@17#. The basic question of unitarization howev
remains the same: what is the dependence ofR on rapidity ?

While there is no doubt that QCD is a unitary theory, a
therefore indeedR(t)}t, there is no guarantee that the no
linear BK Eqs.~32!,~9! preserve this property. In fact simpl
considerations indicate the opposite. This is especially c
from Kovchegov’s derivation@6# ~see also@23#! where the
density of dipoles in the projectile wave function is explicit
determined by the BFKL equation. Saturation is the resul
the multiple scattering of the dense dipole system, rat
than the slowdown in the growth of the dipole density. Sin
the transverse size of a system in BFKL evolution gro
exponentially with rapidity, there is little doubt that the B
evolution violates unitarity of the total cross section.

We now present a simple calculation that establishes
point: Consider the BK evolution as the evolution of th
projectile@6,23# ~see Fig. 2!. Suppose at the initial energy th
projectile is a color dipole of sizex0. It scatters on a had
ronic target of sizeR0. As the energy is increased, the pr
jectile wave function evolves according to the BFKL equ
tion. At rapidity t the density of dipoles of sizex at transverse
distancer from the original dipole is given by the BFKL
expression~see for example@24#!:

3The situation is very different for a vector particle which direct
strongly couples to quarks. The ultraviolet structure of such a p
ticle is affected by the running of the strong coupling constant. T
extraas(r

21) which replacesaem in Eq. ~17! introduces a logarith-
mically decreasing factor which suppresses the contribution of v
small pairs to the total cross section. For such a particle there
the cross section satisfies the standard Froissart bound. Altho
this is entirely academic, we note that our expression for the D
cross section is valid only at energies belowsc such that
aemasln sc /s0,1. Above this energy higher order electromagne
corrections must become important so thatN(g* ) also saturates.
1-5
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n~x0 ,x,b,t !5
32

x2

ln
16b2

x0x

~pa2t !3/2
expH vt2 ln

16b2

x0x
2

ln2
16b2

x0x

a2t
J

~20!

with v54 ln 2Ncas/p anda2514z(3)Ncas /p andz(n) be-
ing the Riemann zeta-function.

Once the density of dipoles at some impact parameteb
becomes larger than some fixed critical number, the sca
ing probability at this impact parameter saturates. The ex
value of this number depends on the target, but important
does not depend on rapidity. Thus the total cross sectio
given by the square of the largest impact parameter at w
the dipole density in the projectile wave function is of ord
unity. In order to estimate this directly from Eq.~20!, we
choose the dipole sizex in Eq. ~20! as x5Qs

21(t0). Recall
that according to Eq.~12!, the dipole of this size scatters wit
probability 1, if it hits inside the radius of the targetR0 ~in
this view of the evolution only the projectile wave functio
depends on energy, while the properties of the target att are
the same as att0). Thus if at some impact parameterR(t) the
density of dipoles of sizeQs

21(t0) is unity, the scattering
probability at this impact parameter is unity as well; see F
3. Requiring the exponential in Eq.~20! to vanish we obtain4

4More accurately one should require that the number of dipole
sizeQs

21(t0) in the area of the overlap with the target (pR0
2) is at

least one. This refinement however only modifies the preexpon
tial factor in Eq. ~21!, the calculation of which is in any cas
beyond the scope of this paper. To determine this preexpone
factor one would have to treat more carefully the preexponen
factors in Eq.~20!. Equation~21! is thus valid only with exponen-
tial accuracy.

FIG. 2. The BK evolution in the target rest frame. Under boo
the initial dipole (x0 ,y0) evolves into a wave function containin
m-dipole configurations with density determined by the BFKL e
pression~20!. The spread of these configurations in impact para
eter space leads to a finite interaction probability even if the ini
dipole (x0 ,y0) was at very large impact parameter.
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R2~ t !5
1

16

x0

Qs~ t0!
expH asNc

2p
etJ ~21!

with

asNc

2p
e5

a2

2 F211A114
v

a2G . ~22!

Numerically we find

asNc

2p
e5.87v. ~23!

Thus, as claimed we arrive at the exponential growth of
total cross section.

The exact value ofe given in Eqs.~22!,~23! should not be
taken too seriously. The point is that the explicit form of t
dipole density Eq.~20! was derived by a saddle point inte
gration, and as such is valid only for ln(16b2/x0x),ast.
Since this condition is not satisfied by Eq.~21!, we cannot
strictly speaking use the saddle point expression Eq.~20!.
This ambiguity however affects only the numerical value
e and not the parametric dependence in Eq.~21!. The reason
is that even beyond the saddle point approximation the d
sity has the form

n~x0 ,x,b,t !}
1

x2 expH astF
S ln

16b2

x0x

ast
D J . ~24!

The relevant condition isF50, and thus the solution para
metrically must be the same as Eq.~21!.

It is important to realize, that although we use the BFK
dipole density of Eq.~20!, our argumentdoes notassume
that the scattering probability atR(t) is dominated by one
Pomeron exchange. The only assumption is that param
cally the total unitarized probability is the same as the o
Pomeron one. We use the criterion of dipole density only
an indicator for the magnitude of the total probability. Th
total scattering probability is given by

of

n-

ial
al

,

-
l

FIG. 3. Under boost, the dipole density of the BK equati
evolves according to Eq.~20!. If the density of dipoles of critical
sizeQs

21(t0) is unity at some impact parameterb, then the scatter-
ing probabilityN(b) is unity as well.
1-6
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PERTURBATIVE SATURATION AND THE SOFT POMERON PHYSICAL REVIEW D66, 034031 ~2002!
P~b!5 (
m51

`

gm~x,r !Pm~x0 ,x,b,t !, ~25!

wherePm(x0 ,x,b,t) is the probability to find in the projec
tile wave functionm dipoles of sizex at transverse coordi
nateb within the area of the target radiusR0 andgm is the
probability of the scattering of anm-dipole state. In fact one
should also sum over all dipole sizes smaller thanR0. We
have neglected this summation in Eq.~25! thus somewhat
underestimating the total probability. Sincegm>g, the prob-
ability is bounded from below as

P~b!>g (
m51

`

Pm~x0 ,x,b,t !. ~26!

For dipoles of sizeQs
21 , the scattering probabilityg is of

order unity. Thus the only condition that we use is

(
m51

`

Pm~x0 ,x,b,t !5O~1! ~27!

whenever

n~x0 ,x,b,t !5 (
m51

`

mPm~x0 ,x,b,t !5O~1!. ~28!

The only way this condition can be violated, is if the wa
function is dominated~with exponential accuracy! by the
trivial configuration with no dipoles, even when the avera
dipole number is one. Although the dipole model wave fun
tion is known to have relatively large fluctuations, there
nothing in its known properties@7,11# to suggest such an
extreme behavior. In fact for the explicit exponential mod
used in@7,11# our condition clearly holds.

To summarize, in the target rest frame, the violation
unitarity by the BK evolution can be understood as follow
Start with a single dipole scattering on the hadronic targe
transverse sizeR0. With increasing energy the projectile d
pole emits additional dipoles strictly according to the BFK
evolution. The density as well as the transverse size of
projectile state thus grows. The increase in density lead
increasing importance of multiple scatterings which a
properly accounted for in the BK derivation. This ensur
that the scattering probability saturates locally. In the satu
tion regime, as long as the size of the projectile stateR(t) is
smaller than the target sizeR0, the cross section grows es
sentially only due to surface effects,

s5pR0
212pR0x0expFasNc

2p
et G . ~29!

As long as (asNc /2p)et, ln(R0 /x0), the cross section is
practically geometrical. However once the energy is h
enough, so that the projectile size is larger than that of
target, the total cross section is determined by the former
grows exponentially with rapidity according to Eq.~21!.
Thus at rapidities
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asNc
ln

R0

x0
, ~30!

the BK evolution is nonunitary and cannot be applied.
This also illustrates that the applicability of the BK ev

lution crucially depends on the nature of the target. If t
target is thick enough, so that the multiple scatterings
come important before the growth of the projectile rad
does, and if the target is wide enough, so that satura
occurs before the projectile radius swells beyond that of
target, then there is an intermediate regime in which the
elastic cross section remains practically constant and equ
pR0

2. Then BK applies in this intermediate regime. Howev
if the target is a nucleon, neither one of these condition
satisfied. Thus the tainted infrared behavior of the BF
evolution of the projectile will show up right away and wi
invalidate the application of the BK equation.

IV. THE TARGET EVOLUTION PICTURE

The BK equation~9! is valid only in the leading approxi-
mation in 1/Nc. Beyond the leading order the evolution for
dipole cross section does not close, but rather is the firs
the infinite hierarchy of equations. This hierarchy was d
rived in @5#. It is useful to consider its interpretation in th
frame where all the energy resides in the target. In this fra
further increase in energy leads to growth of the target glu
fields. The evolution equation governs the change in the
tribution of the gluon fieldsAm in the wave function of the
target. In the particular gauge used in@5#, the largest compo-
nent of the vector potential isA1. In this gauge the S-matrix
for scattering of a fast fundamental projectile on the tar
fields is given by the unitary eikonal factorU(x)

U~x!5P expH i E dx2TaAa
1~x!J , ~31!

whereTa are the generators of theSU(N) group in the fun-
damental representation. The first in the hierarchy of evo
tion equations derived in@5# is

d

dt
Tr^12U†~x!U~y!&5

as

2p2E d2z
~x2y!2

~x2z!2~y2z!2

3^NcTr@U†~x!U~y!#

2Tr@U†~x!U~z!#Tr@U†~z!U~y!#&.

~32!

FIG. 4. The BK evolution in the target evolution picture. A
long as the dipole legy is in the white region, only the evolution o
the scattering amplitudeU(x) in Eq. ~33! is nontrivial.
1-7
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A. KOVNER AND U.A. WIEDEMANN PHYSICAL REVIEW D 66, 034031 ~2002!
The averaging in Eq.~32! is taken over the ensemble of fie
strengths characterizing the target, i.e., over the target w
function. In the largeNc limit the averages in Eq.~32! fac-
torize and one recovers Eq.~9! with the identification~see
Fig. 4!

N~x,y!5
1

Nc
Tr^12U†~x!U~y!&. ~33!

A physically appealing reformulation of Balitsky’s hierarch
of equations was given by Weigert@25# in terms of a nonlin-
ear stochastic process. The unitary scattering amplitudU
evolves under the action of a stochastic source

dU~x!

dt
5gU~x!iTaE d2z

A4p3

~x2z! i

~x2z!2 @1

2Ũ†~x!Ũ~z!#ab j i
b~z!

1
ias

2p2
U~x!TaE d2z

1

~x2z!2Tr@TaŨ†~x!Ũ~z!#,

~34!

whereU(x) and Ũ(x) are the unitary matrices~31! in the
fundamental and adjoint representations, respectively.
white noisej is characterized by Gaussian local correlatio

^j i
a~ t8,z8!j j

b~ t9,z9!&5dabd i j d~ t82t9!d~z82z9!. ~35!

This Langevin equation gives rise to an infinite number
equations for correlators ofU which coincide with those de
rived in @5#.

Consider then the Langevin equation formulation, E
~34!. Assume that at the initial rapidityt0 the target is black
within radius R0. This means that foruzu,R0 the matrix
U(z) fluctuates very strongly so that it covers the who
group space. Let us concentrate on the pointx which is ini-
tially outside of this black region. The matrixU(x) then is
close to unity. Thus there is no correlation betweenU(x) and
U(z), and the second and third terms on the right hand s
of Eq. ~34! can be set to zero. This is the random pha
approximation introduced in@25# and used later in@19#. Note
that this approximation does not linearize the evolutio
Rather it corresponds to equating the nonlinear term in
~9! to unity for z in the black region.

As the target field ensemble evolves in rapidity, the rad
of the black region grows. As long as the pointx stays out-
side the black region, we can approximate the Lange
equation by

d

dt
U~x!52AasNc

2p2 E
uzu,R

d2z
~x2z! i

~x2z!2 j i~z!. ~36!

Here we did not indicate explicitly color indices, since th
are inessential to the argument. We have also neglected
contribution to the derivative ofU that comes from gluons
originating from the sources outside the black region. Th
contributions speed up the growth ofU, and so by omitting
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them we can only underestimate the rate of growth of
radius of the black region. The formal solution of Eq.~36! is

12U~x,t !5AasNc

2p2 E
t0

t

dtE
uzu,R(t)

d2z
~x2z! i

~x2z!2 j i~z!.

~37!

Squaring it and averaging over the noise term gives

^@12U~x,t !#2&5
asNc

2p2 E
t0

t

dtE
uzu,R(t)

d2z
1

~x2z!2 .

~38!

As long asx is outside the black region anduxu.R, we can
approximate the integral on the right hand side by

E
uzu,R(t)

d2z
1

~x2z!2 5p
R2~t!

x2 , ~39!

and Eq.~38! becomes

^@12U~x,t !#2&5
asNc

2p

1

x2E
t0

t

dtR2~t!. ~40!

As the black region grows, eventually it will reach the poi
x. At this rapidity the matrixU(x) starts fluctuating with an
amplitude of order 1. Thus, whenR(t)5uxu, the left hand
side of Eq.~40! becomes a number of order 1, which we c
1/e. We thus have an approximate equation forR(t),

1

e
R2~ t !5

asNc

2p E
t0

t

dtR2~t!, ~41!

or in the differential form

d

dt
R~ t !5

asNc

4p
eR~ t !. ~42!

At large rapidities therefore the radius of the black region
exponentially large

R~ t !5R~ t0!expH asNc

4p
e~ t2t0!J . ~43!

We thus recover the result of the previous section.
The approximations leading to Eq.~42! are not strictly

speaking valid when the pointx is on the boundary of the
black region. First, Eq.~39! is an underestimate of the inte
gral, since the inequalityuxu@R no longer holds. However
this approximation can lead only to an underestimate of
rate of growth ofR. Second, not for all pointsz in the black
region the termU(x)U†(z) in Eq. ~34! can be dropped. This
however is also unimportant, since whenx is on the bound-
ary of the black region, although the factor@1
2U(x)U†(z)# is not strictly unity, it is still of order 1 for all
pointsz. It is in fact different from unity only for pointsz in
the vicinity of x. Thus, although we cannot determine t
exact numerical value ofe, the functional form of the solu-
tion as well as its parametric dependence is given corre
by Eq. ~43!.

From the point of view of the evolution of target fields th
violation of the unitarity can be interpreted as follows. T
1-8
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PERTURBATIVE SATURATION AND THE SOFT POMERON PHYSICAL REVIEW D66, 034031 ~2002!
RHS of Eq. ~34! is nothing but the total Coulomb
~Weizsäcker-Williams! field at pointx due to the color charge
sources at pointsz. The stochastic noise tells us that the
color sources are uncorrelated both in the transverse p
and in rapidity. For such random sources the square of
total color charge is proportional to the area, and this is p
cisely the factorR2 in Eq. ~40!. The incoming dipole thus
scatters on the Coulomb field created by a large incohe
color charge. Because the Coulomb field is long range,
whole bulk of the region populated by the sources cont
utes to the evolution and leads to rapid growth ofR. If the
field created by the sources was screened by some mas
evolution would be perfectly unitary. To illustrate this poin
let us substitute the Coulomb field (x2z) i /(x2z)2 in Eq.
~34! by an exponentially decaying fieldmexp$2mux2zu%. It is
straightforward to perform now the same analysis as bef
Equation~39! is now replaced by

E
uzu,R(t)

d2zm2exp$2mux2zu%5exp$2mux2Ru%.

~44!

This leads to the substitutionR2→exp$mR% in all subsequent
equations with the end result that

R~ t !5as

e

m
t, ~45!

which in fact saturates the Froissart bound.
Thus the reason for the violation of unitarity is that t

evolution is driven by the emission of the long range Co
lomb field from a large number ofincoherentcolor sources
in the target.

To conclude this section we would like to discuss t
relation of our results with numerical studies of the nonline
QCD evolution. Studies within the framework of the dipo
model were reported in@11#. Reference@11# does not deal
directly with the nonlinear BK equations, but rather with t
onium-onium scattering in the framework of the dipo
model. However as is clear from our discussion at asym
totically high energies this distinction is irrelevant. Th
growth of the transverse size of the projectile eventually
termines the behavior of the cross section irrespective of
nature of the target. Indeed our results are in agreement
those of@11#. The numerical results of@11# clearly indicate
that even though the scattering probability is unitarized
cally in the impact parameter space, the total cross sec
keeps on growing exponentially witht ~Figs. 9 and 10 of
@11#!. From Fig. 10 of@11# we conclude that the power of th
exponential is about .75v, where v is the leading BFKL
exponential. Interestingly, our rough estimate~23! is in rea-
sonable qualitative agreement with this numerical result.

Our results Eqs.~21!,~42! are in apparent contradictio
with the conclusions of numerical work@15,16#. The origin
of this discrepancy is that these references solve Eq.~9!
within the local approximation, assuming that important co
tributions come only from the dipole sizes which are sma
than the impact parameter. Within this approximation the
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pendence on the impact parameter in Eq.~9! becomes para-
metric, and the growth of the total cross section is de
mined entirely by the shape of the initial condition. Th
Froissart bound is then saturated for the exponential in
profile of N(b). The physics here is simple. In the loc
approximation of@15,16# the gluon density of the target~and
the scattering probabilityN) evolves at all impact parameter
b according to the same exact translationally invariant eq
tion. The density locally grows at all impact parameters
the same rate. This rate is the same as the growth of
saturation momentum and is powerlike with rapidity, E
~13!. Thus if one starts from an initial configuration with th
exponential density profileg(b)5exp$2b/R0%, after the evo-
lution to rapidity t it becomes

g~b,t !5exp$2b/R01aslt%. ~46!

The scattering probability on such a system is unity at imp
parameters for whichg(b)>1. Thus the highest impact pa
rameter that contributes to the total cross section at rapidt
is bmax5(asl/R0)t, and the cross section5 is s5pbmax

2

}t2 . For initial Gaussian distribution on the other hand, t
same argument leads to the linear growth of the cross sec
with t.

This feature, namely that the asymptotic form ofs is
determined by the initial distribution, is clearly an artifact
the local approximation. The reason the local approximat
leads to this behavior is that it neglects the effects of
away black regions~whereN51) on the scattering probabil
ity in the gray areas~whereN,1). As is apparent from our
analysis in Eqs.~36!–~40!, it is precisely the effect of the fa
away black regions that drives the growth of the total cro
section. This is due to the long range Coulomb fields ori
nating in the central black region. In fact, the only contrib
tions we kept on the RHS of Eq.~36! are due to dipoles with
sizes of the order of the impact parameter. In this respect
discussion is orthogonal to that of@15,16#. It is clear from the
comparison of our results to those of@15,16# that the effect
of these long range fields on the total cross section is
greater than that of the local translationally invariant part
the evolution. Even if one starts from an exponential dens
profile, the full BK evolution generatespowerlike and not
exponential tails in the density at larget. These powerlike
tails dominate the total cross section and lead to the unive
exponential growth ofs with rapidity. The local approxima-
tion is adequate for studying the behavior ofQs(t) in the
dense central region, as this is determined by local effect
is however not a good approximation for the total cross s
tion, which is dominated by the evolution of long range Co
lomb fields.

5In this discussion we neglect the dependence ofN on the size of
the dipole. Strictly speaking such dependence is of course pre
and it determines the rapidity at which the asymptotic behavior os
sets in. The asymptotic form ofs however is independent of th
dipole size.
1-9
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A. KOVNER AND U.A. WIEDEMANN PHYSICAL REVIEW D 66, 034031 ~2002!
V. ONE POMERON, TWO POMERON; HARD POMERON,
SOFT POMERON

The linear evolution of the projectile wave function inhe
ent in the BK evolution is a direct consequence of the la
Nc limit. In this limit one can neglect the interactions b
tween the dipoles in the projectile wave function. Individu
Feynman diagrams which contain dipole-dipole interactio
are suppressed by powers of 1/Nc . Thus, the dipoles in the
projectile wave function do not interact during the evoluti
and they scatter independently of each other. However,
number of interacting diagrams grows very fast with t
number of interacting dipoles. As the number of dipoles
the wave function which can interact with each other b
comesO(N), the number of the suppressed diagrams
comes O(N2) and the suppression disappears. At hi
enough rapidity, where the dipole-dipole interactions are
portant, the evolution equation~9! breaks down and wave
function saturation effects start to play an essential role.
though Eq.~32! contains some 1/Nc corrections, those are
only ‘‘group theoretical’’ corrections reflecting the fact th
at finite Nc a gluon is not strictly equivalent to aq̄q pair. It
does not contain the corrections due to the interactions
gluons~or dipoles! in the projectile wave function.

The interaction probability of a dipole of sizer with an-
other dipole of similar size in the projectile wave function
of the orderasr

2n(r ), while the probability of the direct
interaction with the target isg(r ). The multiple scattering
corrections are thus more important as long asasr

2n(r )
!g(r ). The projectile wave function corrections becom
important as the density grows so that

r 2n~r !5exp$vt%5
g

as
. ~47!

Assuming that for a large targetg is of order 1, this happen
for rapidities

t}
1

v
ln 1/as;

1

~Ncas!
ln 1/as . ~48!

The ‘‘subleading’’ largeNc nature of these corrections
clear if one traces back the explicitNc dependence of Eq
~48!. In fact, the coupling constantas occurs inn(r ) only in
the combinationasNc , since the BFKL evolution neglect
dipole-dipole interactions. Thus theas in the numerator of
Eq. ~47! is explicitly subleading inNc and indeed account
for dipole-dipole interactions.

The above illustrates that the BK resummation improv
on the BFKL evolution when the target is dense, that is
scattering probabilityg is larger than orderas . On a large
nucleus of atomic numberA one expectsg}asA

1/3, and thus
in this case BK resums all corrections in powers ofasA

1/3

@6#. However even in this case the validity of the BK equ
tion remains limited. The scattering probabilityg is only
large at central impact parameters. At peripheral impact
rameters the density in the target drops to zero, and so fo
peripheral scattering events the applicability of BK is
better than that of BFKL. In particular, the diffusion contr
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butions play the same role, since they are not associated
high partonic densities. Since at very high energies the t
cross section is dominated by peripheral events, one doe
expect the BK evolution to be a valid approximation in ca
culating the total cross section. Comparing Eqs.~30! and
~48! we conclude that for large targets, at rapidities at wh
the total cross section is dominated by peripheral impact
rameters, the wave function saturation effects are impor
even for small projectiles. Thus even within perturbati
theory, the wave function saturation effects are bound to
the ones that determine the growth of the total cross sec
with energy.

Could wave function saturation effects lead to a pertur
tive unitarization of the total cross section? As seen abo
the violation of the Froissart bound in the BK approximati
is due to large and incoherent color charge fluctuations in
black region. If there was a mechanism to ensure strong
relations such that the total color charge in a region of fix
sizeL is zero, then the incoming dipole would feel the Co
lomb field only within the fixed distanceL from the black
region. Thus the new charges produced by the evolu
would only ‘‘split off’’ the edges of the black region rathe
than from its bulk. This scenario is equivalent to exponen
decay of the field, and would lead to a unitary evolution,
expected for a confining theory like QCD. However, it do
not seem plausible that this type of correlation can be
forced on the system by a perturbative mechanism, nor
perturbation theory can generate any kind of ‘‘mass’’ for t
gluons which would lead to exponential decay of gluon fie
generated by sources in the black region. We thus expect
any perturbative corrections will generate powerlike tails
gluon density at large distances from the black region. T
growth of these power tails with rapidity will inevitably lea
to an exponential growth of the cross section.

We expect, however, that wave function saturation effe
diminish the exponente significantly relative to the BK
value (asNc /2p)e5.75v. The evolution equations derive
in @4# go beyond the BK equation by including wave fun
tion saturation effects. They provide a well-defined pertur
tive framework for calculating this effect.

We have seen in the previous sections that QCD per
bation theory predicts the existence of two distinct physi
mechanisms for the power growth of hadronic cross secti
with energy. One is due to the fast growth of the parto
densities, while the other is due to expansion of hadro
states in the transverse plane. The first mechanism is
leading one for systems containing a small number of p
tons. When the partonic density reaches the critical value
order 1/as , further growth of the density is cut off by th
perturbative saturation effects. The transverse expan
mechanism is however likely to survive in this situation, a
thus it should become the leading driving force for the p
turbative growth of cross sections in dense systems.

The first mechanism with the perturbative BFKL exp
nent of around .32.4 fits very nicely with the so called har
Pomeron utilized to fit the hadronic cross sections of sm
systems@26#. The exponent due to the transverse expans
has not been calculated yet, although the equations w
determine it have been derived in@4#. Although we do not
1-10
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know yet the value of this exponent, we know for certa
that it is smaller than the BFKL one. One is naturally led
ask whether this perturbative growth of the transverse siz
saturated systems underlies the experimentally obse
power growth of the cross sections in purely hadronic p

cesses, likepp and p̄p. This type of expansion, and with
the powerlike growth of the cross section, should ceas
asymptotically high energies, where the perturbation the
must become invalid.

This picture suggests that nonperturbative effects
called for only in order to unitarize the cross section
asymptotically high energies, but not in order to furnish t
mechanism for its fast growth in the pre-asymptotic regim
This is also natural from the following perspective. T
Froissart-like behavior is associated with the existence o
gap in the spectrum, as can be illustrated by a simple
intuitive argument due to Heisenberg@14#. In a theory with a
mass gap, the profile of the distribution of matter density
any target must decay exponentially at the periphery,r(b)
} exp$2mb%. As this target is struck by a projectile, in ord
to produce an inelastic scattering event at least one par
must be produced. Assuming that the scattering is local in
impact parameter plane, the region of the overlap of
probe and the target must therefore contain energy at l
equal to the mass of the lightest particle,m. For scattering at
energyE5s/m in the frame where all the energy resides
the target, the target energy density isEr(b). Thus the scat-
tering can only take place for impact parameters smaller t
those that satisfy E exp$2mb%5m. Thus bmax

5(1/m)ln$s/m2%, which is equivalent to the Froissart boun
Conversely, if the cross section grows as a power of ene
then the density distribution in the target is not exponen
but powerlike. With r(b)}b2l one obtainsbmax}s1/l.
Since the power growth of hadronic cross sections persis
a large interval of energies, one expects that for a rang
impact parameters the density distribution in hadronic sta
is powerlike. Perturbation theory provides a natural expla
tion of such a powerlike distribution. The tails of perturb
tive distribution are due to massless gluon fields emit
from the color charges in the target. Even though the targ
neutral, it always possesses a multipole moment of so
order, and thus perturbatively is always accompanied b
long range powerlike tail of a massless gluon field. The p
condition for the applicability of this perturbative mechanis
in hadronic systems is that hadrons themselves are built f
small ‘‘black’’ building blocks. As explained earlier, th
gluon fields at the periphery are emitted from the bulk of
black disk, and not from its boundary. Thus, in order to e
plain the preasymptotic powerlike rise of hadronic cross s
tions by perturbative Coulomb-like gluon fields, the radius
these black region must be smaller than the confining s
of QCD. It is in fact widely believed that QCD does nat
rally contain the scale of the right order—the scale ass
ated with chiral symmetry breaking. In particular the rad
of a constituent quark is believed to be at most .3 fm a
perhaps even smaller@27#. This supports the phenomenolog
cal picture of the proton as a loosely bound system of th
03403
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small constituent quarks. The nonperturbative confin
force keeps these quarks confined within the spatial regio
radius .82.9 fm.

A quantitative analysis of the nonlinear evolution equ
tions @4# which could substantiate our proposal of the pert
bative soft Pomeron, is not available yet. There are howe
some qualitative consequences of the above picture that
be compared to experimental data. Let us check first whe
the value of the cross section in our model is in rough agr
ment with experiment. The total cross section ofpp scatter-
ing at the lowest energy where the Reggeon contributions
not important,As}50 GeV, is 45 mb. The total cross se
tion for the scattering of two black disks of diameterd is
2pd2. Thus in the simplest model in which the proton
composed of three completely ‘‘black’’ constituent quarks
diameterd, the totalpp cross section is 33332pd2. Equat-
ing this to 45 mb we findd5.28 fm. This should be consid
ered as a lower bound on the value ofd. It is more likely that
the constituent quarks are only black in the center and h
gray peripheral regions, see Fig. 5. For peripheralqq events
the scattering occurs with probabilityf ,1. Incorporating
this roughly as an average ‘‘grayness’’ factor in the formu
for the cross section givesd5.28f 21/2 fm. For f 5.5 we
haved5.4 fm. We may thus think of the proton as a colle
tion of three loosely bound constituent quarks each descr
by a disk ofd5.32.4 fm which is essentially black in its
center but gray at its boundary, see Fig. 5.

This picture is quite remarkable, since the ‘‘active’’ are
inside the proton in our model is much smaller than t
proton radius and thus one may have worried that the mo
will underestimate the total cross section. This however d
not happen. Further support for this picture comes from
ratio spp /spp which is very close to 2/3. The Pomero
contributions to the total hadronic cross sections are par
etrized asspp521.70s0.808 and spp513.63s0.808 @28#. This
is consistent withp having two constituent quarks.

Another feature of the model is that although the qua
are black, the proton itself is not. Thus we expect the ratio
the elastic to total cross section to be well below the bla
disk value of 1/2. The experimental value of this ratio
As550 GeV is indeed just below 1/5@28#.

Another global characteristic of the scattering is the rad
of the proton as measured via the shrinkage of the ela
peak, dsel /dt} exp$(R2/4)t%. For the elasticpp scattering
this gives the value ofR consistent with the proton radiu
R5.8 fm @28#. Again at first sight this sounds like trouble

FIG. 5. Schematic picture of the proton as a loosely bound s
tem of three constituent quarks which provide ‘‘black’’ buildin
blocks at initial rapidityt0. Under boost, the blackness of the
regions does not change since the gluon density is saturated, bu
transverse size of the black region grows.
1-11
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since it is much larger than the radius of a constituent qu
However one should realize that the radius of the individ
quark is not relevant for this particular quantity. The proce
is elastic if the proton as a whole emerges from the inter
tion intact. Thus indeed it is the radius of the proton and
of a quark that should determine thet-dependence of the
elastic cross section in our model. The radius of the qu
may emerge in a similar way in the processes ‘‘elastic’’ w
respect to individual constituent quark scattering. Whet
one can define a subset of final states that correspond to
a process is an interesting question, but at present it is
clear to us how to do it.

The picture of the proton as built from three small co
stituent quarks was invoked in the nonperturbative model
the high energy scattering in@12#. The physics of@12# is
however quite different from that of our proposal. Th
quarks themselves in@12# are not thought of as being black
and the growth of the quark-quark cross section is due to
increase of the density of the gluon cloud surrounding
individual quark, rather than to the increase in its transve
size. Reference@13# also appeals to the scale of .3 ferm
although not explicitly in connection with the size of co
stituent quarks. Again, however the mechanism of
growth of the cross section in@13# appears to be the same
the leading BFKL mechanism, that is the growth of gluon
density. The role of instanton effects in@13# is to limit the
gluon emissions only to within the transverse sizes sma
than .3 Fermi, and thus to cut off the expansion in the tra
verse plane. In contrast our picture assumes that nonpe
bative effects~perhaps instantons! are responsible for the
buildup of a black gluon cloud around each quark at l
energy. The subsequent evolution in energy is dominated
perturbative swelling of these black regions. Eventua
when the size of the quarks reaches confining scale, o
nonperturbative effects kick in and cut off further powerli
growth of the cross section. The physics of these nonpe
bative effects is presumably the physics of confinement.

We note also that the two distinct physical mechanis
for two Pomerons have a consequence that they will app
with different probability in different processes. For examp
TP

t,
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in pp scattering there are rare proton configurations wh
do not have the typical hadronic structure, but contain qua
closely bunched together in coordinate space. Those are
configurations responsible for the color transparency effe
in the hadronic scattering@29#. These configurations are rar
and short lived. Thus they do not have time to develop
gluon clouds around the quarks that could make th
‘‘black.’’ These configurations will predominantly evolve to
wards the increase in density, and thus will have the ene
dependence of the hard Pomeron. This is consistent with
findings of @26# that a hard Pomeron is present already
purely hadronic processes.

On the other hand one does not necessarily expect the
Pomeron to appear in DIS even at lowQ2. The reason is tha
even though at lowQ2 the ~DIS! cross section has larg
contributions from the photon fluctuations into the states
hadronic size, these states do not live long enough on
hadronic time scale, and thus do not have time to deve
dense gluon clouds around the quarks. The energy de
dence of such large but dilute states would then be of
hard Pomeron nature. This appears to be consistent with
recent results which do not require the soft Pomeron to
DIS data even at very smallQ2 @30#.

Perhaps the most appealing feature of this scenario is
it gives hope to understand the soft Pomeron within the w
defined, bona fideperturbative framework. The equation
that resum the wave function saturation effects have b
derived in@4#. Even though their numerical study is probab
much more involved than that of Eqs.~9!,~32!, we think the
question is interesting enough to motivate such an under
ing.
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