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Abstract

Using the AdS/CFT correspondence we study vacua of N = 4 SYM for which part of the

gauge symmetry is broken by expectation values of scalar fields. A specific subclass of

such vacua can be analyzed with gauged supergravity and the corresponding domain wall

solutions lift to continuous distributions of D3-branes in type IIB string theory. Due to

the non-trivial expectation value of the scalars, the SO(6) R-symmetry is spontaneously

broken and field theory predicts the existence of Goldstone bosons. We explicitly show

that, in the dual supergravity description, these emerge as massless poles in the current

two-point functions, while the bulk gauge fields which are dual to the broken currents

become massive via the Higgs mechanism. We find agreement with field theory expec-

tations and, hence, provide a non-trivial test of the AdS/CFT correspondence far away

from the conformal point.
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1 Introduction

Up to this day the AdS/CFT correspondence [1, 2, 3] is the most concrete proposal for

a realization of holography. Although this duality allows to perform numerous explicit

calculations in the supergravity limit an honest proof of this conjecture directly from

string theory is still elusive. Therefore, the best we can do, is to take the results obtained

from supergravity as predictions and make qualitative and, more desirably, quantitative

comparisons with field theory. Indeed, it is an interesting task in itself to study known

phenomena of quantum field theories and try to understand how they are realized on

the dual string/gravity side. Most of the comparisons have been performed for the

N = 4 SYM theory at the conformal point. Naturally, one may wonder whether the

AdS/CFT correspondence can be checked away from conformality as well. This question

has been answered positively in [4] where we computed 2-point functions of currents in

the Coulomb branch of the N = 4 SYM theory and provided a non-trivial test of the

AdS/CFT correspondence in the deep infrared of the theory. It is the purpose of this

paper to review this work for the proceedings of the “Corfu summer school on elementary

particle Physics”. Relevant literature on the Coulomb branch of N = 4 as well as other

works on current correlators within the AdS/CFT correspondence can be found in the

reference list of our original paper [4] (particularly, in [5, 6]).

In order to study theories with less supersymmetry and/or broken conformal sym-

metry, which are closer to the theories realized in Nature, deformations of the original

conjecture [1] have been studied extensively over the past years. In this paper we are

concerned with the simplest modification of N = 4 SYM by turning on vacuum expecta-

tion values (vevs) of scalar fields. The N = 4 vector multiplet contains, beside the vector

potential and four adjoint Weyl fermions, six scalars in the adjoint representation of the

gauge group U(N). These scalars transform in the 6 of the SO(6) R-symmetry group

and maybe represented by the N × N matrices Φi, i = 1, 2, . . . , 6. The quartic scalar

potential of the theory
∑

i<j tr[Φi,Φj ]2 has flat directions that are parametrized by six

diagonal N ×N matrices

X i
vev = 〈Φi〉 = diag(X i

1, X
i
2, . . . , X

i
N) ,

N∑
p=1

X i
p = 0 . (1)

The corresponding Coulomb branch is (R6)N/SN and on points away from the origin

the conformal symmetry is broken. The action of N = 4 SYM contains the term∑
i tr(DµΦ

i)2 which couples the gauge fields to the scalars. When the latter acquire

vevs the gauge bosons become massive. It is convenient to choose the standard real basis

for the SU(N) generators Jpq = epq − 1/NδpqIN×N , where the matrix elements of the

matrices epq are: (epq)rs = δprδqs. Hence, according to (1), we give vevs to the scalars

represented by the six-dimensional vector ~Φ, as ~Φ = hp
~Xp, where hp = Jpp are the gener-

ators of the Cartan subalgebra of SU(N). The masses of the gauge fields arise from the

term
∑

i tr[Φ
i, Aµ]

2. After some computation we find the (mass)2 matrix with elements
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[7, 4]

(M2)pq = | ~Xp − ~Xq|2, p, q = 1, 2, . . . , N , (2)

up to a numerical factor of order 1. Hence, the masses have the geometrical interpretation

as the distances between the various vev positions distributed in the scalar space R
6.

Equivalently, they are given by the masses of the strings stretched between the D3-

branes located at these points. It is clear, that some of these masses may be degenerate,

depending on the specific distribution of vevs.

Let us illustrate some of the features with the toy example of a discrete distribution

of vevs in an polygon with N vertices located on a circle of radius r0 in the 1-2 plane [8]

~Xp = (r0 cosφp, r0 sinφp, 0, 0, 0, 0) , φp = 2πp/N , p = 1, 2, . . . , N . (3)

In this case we find from (2), that [7]

Mn = 2r0 sin(πn/N) , n = 1, 2, . . . , N , (4)

which is an exact result for any N . The degeneracy for the zero mode is dN = N − 1

and for the rest dn = 2(N − n). It is easily seen that
∑N

n=1 dn = N2 − 1. Hence, for

large N there are W-bosons with masses of order r0 and W-bosons with light masses of

order r0/N . For more general distributions the same result holds with r0 being replaced

by the average value for the distribution of vevs.

2 Correlators from gauge theory

Since the scalars carry non-trivial R-charge, the R-symmetry is in general broken on

the Coulomb branch. This is the well known phenomenon of spontaneous breaking of

a global symmetry in field theory, and, therefore, we expect massless poles in the R-

symmetry current correlators for every broken symmetry generator, which correspond

to the massless Goldstone bosons.1 In order to investigate this issue we start with the

case of unbroken R-symmetry where the vev’s corresponding to the six scalars of the

theory are turned off. The R-symmetry currents Ja
µ are bilinear in the scalar fields X i,

i = 1, 2, . . . , 6 and transform in the adjoint of SO(6)

Jkl
µ =

1

g2
YM

T kl
ij Tr(X i∂µX

j) + fermions , (5)

where T kl
ij = δkiδlj − δkjδki are the components of the 6 × 6 matrices T kl of SO(6). The

scalars X i, being free fields, have the following two-point function (in our conventions

the field theory action has an overall factor of 1/g2
Y M)

〈X i
pq(x)X

j
rs(0)〉 = g2

YMδ
ij(δqrδps − 1

N
δpqδrs)

1

r2
, p, q, r, s = 1, 2, . . . , N . (6)

1See also the pedagogical lectures on spontaneous symmetry breaking [9] during this school.
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After performing the Wick contractions we find the two-point function of the currents

〈J ij
µ (x)Jkl

ν (0)〉 ∼ N2(δikδjl − δilδjk)(�δµν − ∂µ∂ν)
1

r4
, (7)

where we have kept only the leading term in the 1/N -expansion.2 This is indeed the

correct result for the two point function which also agrees with the AdS/CFT result [5].

In the case that the symmetry is broken by turning on non-zero scalar vev’s, we

replace the X i by X i
vev + δX i, where X i

vev is defined in (1) and the δX i have the same

free field two-point function as in (6). Besides the bilinear term (5) the current contains

now a term linear in fluctuating fields

δJkl
µ =

1

g2
YM

T kl
ij Tr(X i

vev∂µδX
j) , (8)

and the leading order correction to the conformal result (7) is

〈δJ ij
µ (x)δJkl

ν (0)〉 ∼ 1

g2
YM

H ij,kl∂µ∂ν
1

r2
, (9)

where the group theoretical factor Hij,kl takes the form

H ij,kl = δikAjl − δjkAil − δilAjk + δjlAik , Aij =
N∑

p=1

X i
pX

j
p . (10)

It is clear that, in the ultraviolet where the vev’s can be neglected, the conformal result

(7) dominates, whereas in the infrared the dominant term is (9). The symmetric tensor

Aij is given in terms of the scalar vevs only and depends on their distribution. In the

following we think of the vevs X i
vev as defining N points in R

6. In the large N limit

such a discrete distribution can often be approximated by a continuous one, as long as

we work with energies not too close to the vev values. Furthermore, we will consider

situations where the distribution spans only a lower dimensional submanifold embedded

in R
6. From (9) we see that the tensor H ij,kl contains all the important information

about the zero mass poles. It is antisymmetric in the indices ij and kl separately and

symmetric under pairwise exchange. Note that Aij is non-zero only if both indices i, j

are along the vev-distribution. That implies that H ij,kl = 0 if all indices correspond to

directions which are perpendicular to the distribution.

For the comparison with the dual supergravity that we will perform later, it is conve-

nient to write down the general two point function of the currents in a particular form.

In x-space it is given in terms of a function Gij,kl(x) as

〈J ij
µ (x)Jkl

ν (0)〉 =
N2

32π4
(�δµν − ∂µ∂ν)�Gij,kl(x) , (11)

2For finite N , the N2 factor in (7) is replaced by N2−1 corresponding to the dimension of the
SU(N) group. We also note that the contribution of the fermions only affects the result by an overall
N -independent numerical constant which is not important for our purposes.
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where the projector ensures transversality of the correlator. In turn, the function Gij,kl(x)

can be used to define a function H ij,kl(k) in momentum space as

Gij,kl(x) =
1

4π2

∫
d4keik·xH

ij,kl(k)

k2
=

1

r

∫ ∞

0

dkH ij,kl(k)J1(kr) , (12)

where the Bessel function J1(kr) is a result of the integration over angular coordinates.

We cannot use H ij,kl(k) directly because the correlator in x-space is too singular to be

Fourier transformed to momentum space. However, by using differential regularization

one can make sense of such expressions by writing singular functions as derivatives of

less singular ones and then defining the Fourier transform by formal partial integrations

[10].

We also note that the momentum space version of (9) can be expressed in terms of a

function H ij,kl(k) as

H ij,kl(k) ∼ − 1

g2
YMN

2

H ij,kl

k2
, (13)

where H ij,kl on the r.h.s. is defined in (10). We emphasize that this is the interesting

piece of the current correlator that potentially gives rise to massless poles, i.e. Goldstone

bosons, depending on the details of H ij,kl.

Some examples

The polygon: In this toy example we consider a discrete distribution of vevs in an N -

polygon whose vertices lie on a circle of radius r0 in the 1-2 plane (3). Computing the

matrix elements Aij using the definition (10) is straightforward, and we find that the

only non-zero components are A11 = A22 = Nr2
0/2. We note that in this case we obtain

the same result even if we approximate the discrete distribution by a continuous uniform

distribution of vevs on the circumference of the circle.

We now turn to the examples with vev distributions on a disc and on a three-sphere,

which will be considered in section 3 (within a more general class of examples) from the

supergravity side using the AdS/CFT correspondence. In these cases a direct comparison

with the free field calculation can be performed and we will find precise agreement.

The three-sphere: For a uniform distribution on a three sphere of radius r0 embedded

in the 1-2-3-4 hyperplane it is obvious that Aii = Nr2
0/4, for i = 1, 2, 3, 4 and zero

otherwise. These results are most easily derived in the continuous approximation of the

distributions. Hence, using (10), (13) and the identities g2
YM = gs and R4 = 4πgsN , we

obtain

Hλ
sphere(k) ∼ −

r2
0

R4

λ

k2
, (14)

where the parameter λ = 0, 1
2

and 1 corresponds to currents in the transverse directions

(unbroken SO(2)), broken currents in the coset and directions along the distribution

(unbroken SO(4)), respectively.
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The disc: For a uniform distribution on a disc in the 1-2 plane we have similarly that

Aii = Nr2
0/4, for i = 1, 2 and zero otherwise. Using (10) and (13) we compute

Hλ
disc(k) ∼

r2
0

R4

λ− 1

k2
, (15)

where the parameter λ = 0, 1
2

and 1 corresponds to currents along the distribution (un-

broken SO(2)), broken currents in the coset and directions orthogonal to the distribution

(unbroken SO(4)), respectively.

3 The supergravity side

On the dual supergravity side it is straightforward to write down the relevant supergravity

background for arbitrary points on the Coulomb branch. The reason is that the vevs of

the scalars are simply the positions of the D3-branes in the transverse six-dimensional

space [11]. Furthermore, this is a BPS configuration and the full solution is simply a

superposition of single D3-branes given by

ds2 =
1√
H
dx2

|| +
√
H

6∑
i=1

dx2
i , H = 4πgsl

4
s

N∑
p=1

1

|~x− ~Xp|4
, (16)

where x|| denotes flat worlvolume directions of the D3-brane. While it is nice to have

the most general solution, for practical purposes of calculating e.g. current correlators,

it is not very useful and we will study a subspace of the Coulomb branch that (i) can

be studied using gauged supergravity, (ii) corresponds to continuous distributions of D3-

branes [12, 8] which means that the sum in (16) over localized D3-branes has to be

replaced by an integral over a specific D3-brane density. This will allow us to make exact

calculations in several cases, which can be compared with the results discussed at the

end of section 2. In that respect, we mention the case of the two center solution, where

N D3-branes are distributed evenly in two stacks of branes. This case has been studied

in [13] and although it might look simpler than the ones we will encounter here, it is

actually difficult to perform any computation exactly.

The advantage of (i) is that we do not have to study the ten-dimensional supergravity

but we can restrict ourselves to a truncation of the full theory that describes only the fields

relevant for our problem. In our case the relevant tool is five-dimensional N = 8 gauged

supergravity [14] of which we actually only need a further truncation which includes the

metric, the SO(6) gauge field and scalars in the coset SL(6,R)/SO(6). The Lagrangian

for these fields is

L = Lscalar + Lgauge , (17)

where Lscalar denotes the pure gravity plus scalar sector and Lgauge contains the kinetic

term of the gauge fields together with their interactions with gravity and the scalars.
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The explicit form of the gravity plus scalar Lagrangian is

1√
g
Lscalar =

1

4
R− 1

16
Tr
(
∂µ̂MM−1∂µ̂MM−1

)− P , (18)

with the potential

P = −g
2

32

[
(TrM)2 − 2Tr(M2)

]
, (19)

where g is a mass scale, which is related to the AdS5 radius via g = 2/R with R =

(4πgsN)1/4ls. The scalar fields sit in a symmetric traceless matrix M ij where the indices

are in the fundamental representation of SO(6), i.e. these scalars transform in the 20′.
Supersymmetric domain-wall solutions of (18) preserving 16 supercharges together with

four-dimensional Lorentz invariance correspond to states on the Coulomb branch of N =

4 SYM [15]. In this case the matrix M can be diagonalized using an SO(6) gauge

transformation and can be parametrized by six scalar fields

M = diag(e2β1 , . . . , e2β6) , (20)

obeying the constraint
∑6

i=1 βi = 0. Alternatively one could use five independent scalar

fields αI , I = 1, 2, . . . 5 which are related to the βi’s by βi =
∑5

I=1 λiIαI , where λiI is a

6 × 5 matrix, with rows corresponding to the fundamental representation of SL(6, IR).

The ansatz for the domain wall metric is

ds2 = e2A(z)(dz2 + ηµνdx
µdxν) = dr2 + e2A(r)ηµνdx

µdxν , (21)

where the relation between the coordinates z and r is such that dr = −eAdz. The most

general solutions is expressed in terms of an auxiliary function F (g2z), in terms of which

the conformal factor and the profiles of the scalars are [16]

e2A = g2(−F ′)2/3 , e2βi =
f 1/6

F − bi
, f =

6∏
i=1

(F − bi) , i = 1, 2, . . . , 6 . (22)

The constants of integration are ordered as b1 ≥ b2 ≥ . . . ≥ b6 and the function F obeys

the differential equation

(F ′)4 = f . (23)

Equating n of the integration constants bi (or equivalently the associated scalar fields βi)

corresponds to preserving an SO(n) subgroup of the original SO(6) R-symmetry group.

In general the hypersurface F = b1 corresponds to a curvature singularity which, however,

has the physical interpretation as being the location of the distribution of D3-branes once

we lift the solution to a Type IIB background. Furthermore, we can make contact with

the disc and three-sphere distributions discussed in section 2. The disc corresponds to

setting the integration constants b1 = b2 = b3 = b4 and b5 = b6 in which case the

unbroken R-symmetry group is SO(2)×SO(4) and the Goldstone bosons corresponding
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to the broken symmetries reside in the coset SO(6)/(SO(2)× SO(4)).3 For the three-

sphere we have to choose b1 = b2 and b3 = b4 = b5 = b6 while the unbroken symmetry

group and the coset are the same as for the disc. We note that the solutions (21), (22)

can be lifted to type IIB solutions of the form (16) and that, this class of solutions does

not include the uniform distribution of vevs on a circle.

Let us now add the gauge fields to the Lagrangian (18). The partial derivatives in

(18) are replaced by gauge-covariant ones ∂µ̂M
ij → ∂µ̂M

ij + g(Aik
µ̂ M

kj + Ajk
µ̂ M

ik), and

the gauge kinetic term has to be added

1√
g
Lgauge = −1

8
(M−1)ij(M−1)klF ik

µ̂ν̂F
jlµ̂ν̂ , (24)

where Aij
µ̂ and F ij

µ̂ν̂ are anti-symmetric in ij. Since we are interested in two-point functions

we only keep terms in (17) and (24) which are quadratic in the fluctuations δAij
µ̂ of

the gauge fields and the scalar fluctuations of the symmetric unimodular matrix δM ij .

Although we are only interested in the two point functions of the gauge fields we have to

keep scalar fluctuations since the gauge fields couple to the off-diagonal scalar fluctuations

δM ij . However, there are no couplings of the gauge fields to the metric and the diagonal

scalar fluctuations δM ii at quadratic order. At this point it is crucial to distinguish

between gauge fields that correspond to unbroken symmetries for which βi = βj and

gauge fields corresponding to broken symmetries for which βi 6= βj.

The case of unbroken symmetries is easier since δAij
µ̂ fluctuations do not couple to

scalar fluctuations. We can choose a convenient gauge δAz = 0 and the components along

the world volume directions Aµ can be decomposed into a transverse and a longitudinal

polarization Aµ = A⊥
µ + ∂µξ. The equation of motion for the physical modes A⊥

µ , which

obey ∂µA⊥
µ = 0, takes the form of a field equation for a scalar field Φ:

∂z(e
B∂zΦ)− k2eBΦ = 0 , (25)

with the definition

B = A− 2(βi + βj) , (26)

where we have omitted for notational convenience the i, j dependence of B. Note that

we have also performed a Fourier transform in the xµ-directions with k2 ≡ kµk
µ.

For the broken symmetries βi 6= βj, however, there are couplings between scalars and

gauge fields and things become more tricky. It is a highly non-trivial fact that we can

decouple the scalars via the field redefinition [4]

Aij
µ̂ → Aij

µ̂ +
1

g
∂µ̂

(
δMij

e2βi − e2βj

)
, βi 6= βj , (27)

which has the form of an abelian gauge transformation. Of course, this is nothing but the

Higgs mechanism. The Goldstone boson corresponding to the broken gauge symmetries

3See however the comments in the paragraph starting after (42).
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are eaten by the gauge bosons which thereby obtain a mass. Since the gauge fields are

massive now we cannot eliminate degrees of freedom by gauge fixing. In order to calculate

the two-point function we couple the gauge field to an external current via Aij
µ̂ J

µ̂
ij and

require the current to be covariantly conserved Dµ̂J
µ̂
ij = 0. The Az component decouples

from the other modes which in turn is related to the longitudinal component ξ. Again,

the decoupled equation for the transverse modes A⊥
µ , takes the form of a massive scalar

field equation

∂z(e
B∂zΦ)−

(
k2eB +

1

4
g2(bi − bj)

2e−B

)
Φ = 0 , (28)

where the scalar Φ denotes any component of A⊥
µ . For βi = βj , which implies bi = bj , we

recover from (28) eq. (25) that describes the cases with unbroken symmetry. Hence (28)

is the general equation that can be used to calculate all current-current correlators.

Let us shortly pause here and admire the result. In the field theory we study the

breaking of a global symmetry, which is signalled by the appearance of Goldstone bosons.

In the supergravity dual the global R-symmetry becomes a local gauge symmetry and we

observe a different mechanism, namely the Higgs phenomenon. The would be Goldstone

boson becomes an additional degree of freedom of the gauge field, i.e. the gauge field

becomes massive. Hence, we see that in the AdS/CFT correspondence spontaneous

symmetry breaking in the field theory corresponds to Higgsing of a local gauge symmetry

in the dual supergravity/string theory. In the rest of these notes we complete the picture

by showing how the massless poles in the examples of section 2 can be reproduced from

a supergravity calculation of the current correlators using (28).

We will follow the standard procedure of [2, 3] to determine the current-current cor-

relators using (28). We will work in Euclidean signature unless stated otherwise. In

order to proceed we need a complete set of eigenfunctions of (28), which can be found

explicitely only in a small number of examples, namely for the disc and three-sphere

distributions [15, 17]. Furthermore, we have to keep the solutions that blow up at the

AdS boundary since they correspond to operator insertions [2, 3]. Finally, we have to

evaluate the on shell-value of the action 1
κ2

∫
d5xL with 1

κ2 = N2

16π2 for solutions Φ of (28).

This yields the boundary term

− lim
ε→0

N2

32π2
eBΦ∂zΦ

∣∣∣zmax

z=ε
≡ N2

16π2
k2H(k) , (29)

where we have to normalize Φ|z=ε = 1 and take the limit ε→ 0 in (29), which corresponds

to the AdS boundary. Re-introducing Lorentz and group theory indices properly, we can

present the current-current correlators in momentum space schematically as

〈J ij
µ (k)Jkl

ν (−k)〉 =
N2

8π2

(
δµν − kµkν

k2

)
k4G̃ij,kl(k) , (30)

where a group theory factor and the momentum space version of the projector, which

guarantees that the amplitude is transverse, have been included. The expression (30) is

of course nothing but the momentum-space analogue of (11).
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For the cases of D3-branes distributions over a disc and a three-sphere, which were

discussed in section 2, (28) can be solved explicitly [4], but in general this is not possible.

But since we are mainly interested in the Goldstone bosons we will take a shortcut by

solving (28) for small k2 in order to extract the massless poles. It is useful to rewrite the

equation (28) in terms of the variable F

d

dF

(
(F − bi)(F − bj)

dΦ

dF

)
− k2 (F − bi)(F − bj)

f 1/2
Φ− b2ij

4(F − bi)(F − bj)
Φ = 0 , (31)

where F and bi were defined in equation (22) and bij = bi − bj . In order to extract the

massless poles it suffices to concentrate on the limit k2 → 0, where (31) can be solved

exactly for any distribution. This will give the leading contribution to the two-point

function of currents for large distances. At the AdS boundary F → ∞ we impose the

usual boundary condition Φ → 1 corresponding to a point-like source. Furthermore, we

require Φ to be smooth at the singularity F = b1 in the interior. In the following we use

units where g = 2/R = 1.

Correlators and comparison with field theory

In order to make a comparison between field theoretical and supergravity results for the

massless poles arising in the current correlators, we need the group theoretical factor

H ij,kl defined in (10). It can be shown that [4]

Aij = Nb1j δij , (32)

where we defined bij = bi − bj . Consequently, our distributions have a diagonal matrix

Aij . Hence, the only non-zero independent components of the group theoretical factor

H ij,kl are H ij,ij. If all indices correspond to directions which are perpendicular to the

distribution then H ij,kl = 0, whereas if all directions are along the distribution H ij,ij =

N(b1j + b1i). If we are in the coset one index is along the distribution (say i) and one is

orthogonal to it (say j), then one of the above terms is missing and thereforeH ij,ij = Nb1i.

This agrees perfectly with the two special cases of the disc and sphere distribution that

we considered before.

Currents transverse to the distribution: In this case the indices of the current i, j are

such that bi = bj = b1. Demanding regularity at the singularity F = b1 and imposing the

normalization condition at the boundary gives

Φ = 1 . (33)

Therefore (29) gives

H(k) = 0 . (34)

As expected this agrees with the field theoretical results for vev distributions on a three-

sphere (14) and on a disc (15).
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Currents longitudinal to the distribution: In this case the indices of the current are such

that bi, bj 6= b1. Imposing regularity at the singularity at F = b1 and the normalization

condition at the boundary, we find

Φ =
1

bij

(
b1j

(
F − bi
F − bj

)1/2

− b1i

(
F − bj
F − bi

)1/2
)

, (35)

from which, using (29), we compute

H(k) = −b1i + b1j

4k2
. (36)

A particularly interesting case is when bi = bj 6= b1. Then the above expressions reduce

to

Φ =
F − b1
F − bi

(37)

and

H(k) = − b1i

2k2
. (38)

The results for the sphere (14) and disc (15) distributions correspond precisely to that

result with b1i = r2
0/4 (b1 can be put to zero by a shift of the coordinate F ), for i = 1, 2, 3, 4

and i = 1, 2, respectively.

Currents in the coset: In this case the indices of the current are bi = b1 and bj 6= b1.

Proceeding as before we find

Φ =

(
F − b1
F − bj

)1/2

(39)

and

H(k) = − b1i

4k2
. (40)

Setting b1i = r2
0/4, as above, one easily sees that the result (40) agrees with the field

theory calculations for the disc (15) and the three-sphere (14), respectively.

Exact expressions for the sphere and disc distributions: In the case of a three-sphere dis-

tribution it is possible to compute exactly the two-point function for current correlators

in the supergravity side [4], since (31) admits an appropriate solution in terms of a

hypergeometric function. Here we denote for completeness the expression for

Hλ
sphere(k) =

r2
0

R4

1− λ

k2
+

1

4

(
ψ ((1 + ∆)/2) + ψ ((1−∆)/2) + 2γ

)
= − r2

0

R4

λ

k2
+

1

2

∞∑
n=1

2n+ k̃2

n(4n(n + 1) + k̃2)
, (41)

where k̃2 ≡ k2R4/r2
0 and ψ(z) is the standard notation for the derivative of the logarithm

of the Gamma function Γ(z). This expression has the correct behaviour in the infrared
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for k2 → 0 that we have already exhibited. In addition it can be shown that it gives rise

to the correct limit for the two-point function in the ultraviolet. The discrete spectrum

of poles at k̃2 = −4n(n + 1), n = 1, 2, . . ., corresponds precisely to the discrete mass

eigenvalues for the normalizable solutions of (31).4

In the case of distribution of vevs on a disc we also obtain [4]

Hλ
disc(k) =

r2
0

R4

λ− 1

k2
+

1

2
(ψ ((1 + ∆)/2) + γ)

=
r2
0

R4

λ− 1

k2
+

1

2

∫ ∞

0

dt
e−t − e−

∆+1
2

t

1− e−t
, (42)

where ∆ =
√
k̃2 + 1. This expressions also has the correct behaviour in the infrared

and ultraviolet limits. The branch cut for k̃2 = −1 corresponds to a mass gap of the

continuous spectrum for the associated normalizable solutions (in the Dirac sense) of

(31).

We close this section by explaining a subtlety of these results. In the case of the three-

sphere distribution we mentioned that the unbroken R symmetry is H = SO(2)×SO(4),

however we found Goldstone bosons in the coset SO(6)/H , but also in the “unbroken”

SO(4) sector. The resolution of this discrepancy is that the SO(4) symmetry is acciden-

tal and is caused by the approximation of a discrete distribution by a smooth distribu-

tion over a three-sphere. Clearly, the actual discrete distribution breaks this symmetry.

Hence, the Goldstone bosons live in the larger coset SO(6)/SO(2). Similar comments

apply to the disk case where the role of SO(2) and SO(4) have to be interchanged. It

is quite interesting that the gravity dual seems to know about this and reproduces the

correct set of Goldstone bosons.

We have shown that the field theory and supergravity calculations can be in excellent

agreement even beyond the conformal limit. The Goldstone bosons are sensitive to the

infrared physics of the field theory, which on the dual supergravity side is captured by

the interior of the geometry. However, for states on the Coulomb branch the supergravity

solutions generically have naked singularities in the interior, hence such good agreement

is better than one could expect. We have found that spontaneous breaking of global sym-

metries of the field theory translates on the supergravity side to the Higgs effect of local

gauge symmetries. It sounds somewhat counter intuitive, but the massive bulk gauge

fields corresponding to broken symmetries conspire to reproduce the correct spectrum of

Goldstone bosons in the dual field theory.

4We note that in general the dilaton, transverse graviton and gauge field fluctuations have degenerate
spectra for our models [18, 4]. This can be traced back to the fact that the corresponding fields belong
to the same N = 4 supermutliplet. For an explicit demonstration of this, in some related cases, see [6].

11



References

[1] J. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 231, hep-th/9711200.

[2] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Phys. Lett. B428 (1998) 105,

hep-th/9802109.

[3] E. Witten, Adv. Theor. Math. Phys. 2 (1998) 253, hep-th/9802150.

[4] A. Brandhuber and K. Sfetsos, JHEP 0012 (2000) 014, hep-th/0010048.

[5] D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Nucl. Phys. B546 (1999)

96, hep-th/9804058.

[6] M. Bianchi, O. DeWolfe, D.Z. Freedman and K. Pilch, JHEP 0101 021 (2001),

hep-th/0009156.

[7] K. Sfetsos, Nucl. Phys. B612 (2001) 191, hep-th/0106126.

[8] K. Sfetsos, JHEP 01 (1999) 015, hep-th/9811167.

[9] R. Brout, A brief course in spontaneous symmetry breaking. I: The paleolitic age,

hep-th/0203096; F. Englert, A brief course in spontaneous symmetry breaking. II:

Modern times: The BEH mechanism, hep-th/0203097.

[10] D.Z. Freedman, K. Johnson and J.I. Latorre, Nucl. Phys. B371 (1992) 353.

[11] I.R. Klebanov and E. Witten, Nucl. Phys. B556 (1999) 89, hep-th/9905104.

[12] P. Kraus, F. Larsen and S. P. Trivedi, JHEP 9903 (1999) 003, hep-th/9811120.

[13] J.A. Minahan and N.P. Warner, JHEP 06 (1998) 005, hep-th/9805104.

[14] M. Gunaydin, L.J. Romans and N.P. Warner, Phys. Lett. B154 (1985) 268;

M. Pernici, K. Pilch and P. van Nieuwenhuizen, Nucl. Phys. B259 (1985) 460.

[15] D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, JHEP 0007 (2000) 038,

hep-th/9906194.

[16] I. Bakas and K. Sfetsos, Nucl. Phys. B573 (2000) 768, hep-th/9909041.

[17] A. Brandhuber and K. Sfetsos, Adv. Theor. Math. Phys. 3 (1999) 851,

hep-th/9906201.

[18] A. Brandhuber and K. Sfetsos, JHEP 9910 (1999) 013, hep-th/9908116.

12


