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With the help of quantum mechanics one can formulate a
model of associative memory with optimal storage capacity.
I generalize this model by introducing a parameter playing
the role of an effective temperature. The corresponding ther-
modynamics provides criteria to tune the efficiency of quan-
tum pattern recognition. I show that the associative mem-
ory undergoes a phase transition from a disordered, high-
temperature phase with no correlation between input and
output to an ordered, low-temperature phase with minimal
input-output Hamming distance.

PACS: 03.67.L

The power of quantum computation [1] is mostly asso-
ciated with the speed-up in computing time it can pro-
vide with respect to its classical counterpart. Recently,
however, I showed [2] that this new paradigm of infor-
mation processing opens the possibility for another im-
provement upon classical computation, represented by
associative memories with exponential, and thus optimal,
storage capacity. Subsequent further studies [3] are turn-
ing quantum pattern recognition into a completely new
application of quantum information theory.

In traditional computers the storage of information is
address-oriented. Retrieval of information requires a pre-
cise knowledge of the memory address and, therefore,
incomplete or noisy inputs are not permitted. In or-
der to address this shortcoming, models of associative
(or content-addressable) memories [4] were introduced.
Here, recall of information is possible on the basis of par-
tial knowledge of their content, without knowing the stor-
age location. The best known examples are the Hopfield
model and its generalizations [5].

While these models solve the problem of recalling in-
complete or noisy inputs, they suffer from a severe capac-
ity shortage. Due to the phenomenon of crosstalk, which
is essentially a manifestation of the spin glass transition
[6] in the corresponding spin system, the maximum num-
ber of binary patterns that can be stored in a Hopfield
network of n neurons is linear in the number of neurons,
pmax = O(n) [4].

The probabilistic associative quantum memory pro-
posed in [2] solves both problems. It is content-
addressable and can thus recognize corrupted or incom-
plete inputs and it can store 2n binary patterns on
n qbits. Contrary to its classical counterpart, which
matches any input onto a stored pattern, the quantum
associative memory is characterized by both a recognition

process and an identification process. An input pattern
can be rejected as non-recognized even before an identi-
fication is attempted. For its simplest version, described
in [2], the identification efficiency cannot be tuned; only
the recognition efficiency can be influenced.

In this paper I propose a generalization of my previous
model, inspired by recent results on quantum optimiza-
tion [7]. This generalization introduces a new parameter
t playing the role of an effective temperature, which can
be tuned by adding a number b = [1/t]integer of certain
control qbits. A proper thermodynamics corresponding
to this parameter t can be defined. In particular, the free
energy F (t) describes the average behaviour of the recog-
nition mechanism at temperature t and provides criteria
to tune the efficiency of the associative memory. I show
that, by increasing b (lowering t), the associative mem-
ory undergoes a phase transition from a disordered phase
with no correlation between input and output to an or-
dered phase with minimal Hamming distance bewteen
the input and the output.

The memory model proposed in [2] consists of three
registers: one for the input, one for the memory |m〉
proper and one for a control qbit |c〉. The memory |m〉
consists of a coherent superposition of the p binary pat-
terns |pi〉 on n entangled qbits:

|m〉 =
1√
p

p∑
k=1

|pk〉 . (1)

I do not discuss here the algorithm for generating this su-
perposition starting from the p individual patterns, since
it is described in detail in [2].

The information retrieval algorithm entails repeating
a set of operations and measurements of the control qbit
|c〉 until this is found in state |0〉 or a threshold T of
repetitions is reached. When |c〉 = |0〉 is measured one
can proceed to a measurement of the memory register
that yields the output; if T is reached before obtaining
|c〉 = |0〉 the input is classified as “non-recognized”.

I propose here to generalize this device by increasing
to b the number of control qbits and repeating sequen-
tially all operations for each of them before measuring the
control register. The full initial quantum state is thus:

|ψ0〉 =
1√
p

p∑
k=1

|i; pk; 01, . . . , 0b〉 (2)

where |i〉 = |i1, . . . , in〉 denotes the input qbits, the sec-
ond register,m, contains the memory (1) and all b control
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qbits are in state |0〉. Applying the Hadamard gate [1]
H = (σ1 + σ3) /

√
2 (σi being the Pauli matrices) to the

first control qbit one obtains

|ψ1〉= 1√
2p

p∑
k=1

|i; pk; 01, . . . , 0b〉

+
1√
2p

p∑
k=1

|i; pk; 11, . . . , 0b〉 . (3)

I now apply to this state the following combination of
quantum gates:

|ψ2〉 =
n∏

j=1

NOTmj XORijmj |ψ1〉 , (4)

where the single-qbit gate NOT is represented by the
first Pauli matrix σ1, while the two-qbit exclusive OR
(XOR) has the matrix representation XOR = diag(1,σ1)
and performs thus a NOT on the second qbit if and only
if the first one is in state |1〉. Subscripts indicate the
qbits on which these gates are applied, m denoting the
memory register.

As a result of the above operation the memory register
qbits are in state |1〉 if ij and pk

j are identical and |0〉
otherwise:

|ψ2〉= 1√
2p

p∑
k=1

|i; dk; 01, . . . , 0b〉

+
1√
2p

p∑
k=1

|i; dk; 11, . . . , 0b〉 , (5)

where dk
j = 1 if and only if ij = pk

j and dk
j = 0 otherwise.

Consider now the following Hamiltonian:

H= (dH)m ⊗ (σ3)c1
,

(dH)m =
n∑

j=1

(
σ3 + 1

2

)
mj

, (6)

where σ3 is the third Pauli matrix. H measures the num-
ber of 0’s in register m, with a plus sign if c1 is in state
|0〉 and a minus sign if c1 is in state |1〉. Given how I have
prepared the state |ψ2〉, this is nothing else than the num-
ber of qbits which are different in the input and memory
registers i and m. This quantity is called the Hamming
distance and represents the (squared) Euclidean distance
between two binary patterns.

Every term in the superposition (5) is an eigenstate of
H with a different eigenvalue. Applying thus the unitary
operator exp(iπH/2n) to |ψ2〉 one obtains

|ψ3〉= ei π
2nH |ψ2〉 , (7)

|ψ3〉= 1√
2p

p∑
k=1

ei π
2n dH(i,pk)|i; dk; 01, . . . , 0b〉

+
1√
2p

p∑
k=1

e−i π
2n dH(i,pk)|i; dk; 11, . . . , 0b〉 ,

where dH

(
i, pk

)
denotes the Hamming distance bewteen

the input i and the stored pattern pk.
In the final step I restore the memory gate to the state

|m〉 by applying the inverse transformation to eq. (4)
and I apply the Hadamard gate to the control qbit c1,
thereby obtaining

|ψ4〉= Hc1

1∏
j=n

XORijmj NOTmj |ψ3〉 , (8)

|ψ4〉= 1√
p

p∑
k=1

cos
π

2n
dH

(
i, pk

) |i; pk; 01, . . . , 0b〉

+
1√
p

p∑
k=1

sin
π

2n
dH

(
i, pk

) |i; pk; 11, . . . , 0b〉.

The idea is now to repeat the above operations sequen-
tially for all b control qbits c1 to cb. This gives

|ψfin〉= 1√
p

p∑
k=1

b∑
l=0

cosb−l
( π

2n
dH

(
i, pk

))×
sinl

( π
2n
dH

(
i, pk

)) ∑
{Jl}

|i; pk; J l〉, (9)

where
{
J l
}

denotes the set of all binary numbers of b bits
with exactly l bits 1 and (b− l) bits 0. This concludes the
deterministic part of the information retrieval process.

At this point one needs a measurement of the control
register. Note that the overall effect obtained by the
deterministic operations is an overall amplitude concen-
tration on memory states similar to the input if there
is a large number of |0〉 control qbits and an amplitude
concentration on states different to the input if there is a
large number of |1〉 control qbits. One is thus interested
in retaining the projected state after the measurement
only if all control qbits are measured in state |0〉. This
will generically entail repeating the deterministic part
of the algorithm several times, until exactly the desired
state for the control register is obtained. If the number
of such repetitions exceeds a preset threshold T the in-
put if classified as ”non-recognized” and the algorithm
is stopped. Otherwise, once |c1, . . . , cb〉 = |01, . . . , 0b〉 is
obtained, one proceeds to a measurement of the mem-
ory register m, which yields the output pattern of the
memory.

Since the expected number of repetitions needed to
measure the desired control register state is 1/P rec

b , with

P rec
b =

1
p

p∑
k=1

cos2b
( π

2n
dH

(
i; pk

))
, (10)

the probability of measuring |c1, . . . , cn〉 = |01, . . . , 0n〉,
the threshold T governs the recognition efficiency of the
input patterns.

Once the input pattern i is recognized, the measure-
ment of the memory register yields the stored pattern pk

with probability
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Pb

(
pk
)
=

1
Z

cos2b
( π

2n
dH

(
i, pk

))
, (11)

Z= pP rec
b =

p∑
k=1

cos2b
( π

2n
dH

(
i, pk

))
. (12)

Clearly, this probability is peaked around those patterns
which have the smallest Hamming distance to the input.
The highest probability of retrieval is thus realized for
that pattern which is most similar to the input..

Contrary to the simplest version of this model pre-
sented in [2], however, here there is a second tunable
parameter, namely the number b of control qbits. This
new parameter b controls the identification efficiency of
the quantum memory since, increasing b, the probability
distribution Pb

(
pk
)

becomes more and more peaked on
the low dH

(
i, pk

)
states, until limb→∞ Pb

(
pk
)

= δkkmin ,
where kmin is the index of the pattern (assumed unique
for convenience) with the smallest Hamming distance to
the input.

The role of the parameter b becomes familiar upon
a closer examination of eq.( 11). Indeed, the quantum
distribution described by this equation is equivalent to
a canonical Boltzmann distribution with (dimensionless)
temperature t = 1/b and (dimensionless) energy levels

Ek = −2 log cos
( π

2n
dH

(
i, pk

))
, (13)

with Z playing the role of the partition function.
The appearance of an effective thermal distribution

suggests studying the average behaviour of quantum
associative memories via the corresponding thermody-
namic potentials. Before this can be done, however, one
must deal with the different distributions of stored pat-
terns characterizing each individual memory. To this end
I propose to average also over this distribution, by keep-
ing as a tunable parameter only the minimal Hamming
distance d between the input and the stored patterns.
In doing so, one obtains an average description of the
average memory.

As a first step it is useful to normalize the pattern
representation by adding (modulo 2) to all patterns, in-
put included, the input pattern i. This clearly preserves
all Hamming distances and has the effect of normaliz-
ing the input to be the state with all qbits in state |0〉.
The Hamming distance dH

(
i, pk

)
becomes thus simply

the number of qbits in pattern pk with value |1〉. The
partition function for the average memory can then be
represented as

Zav =
p

Nλ

∑
{λ}

n∑
j=d

λj cos2b

(
π

2
j

n

)
, (14)

where λj describes a probability distribution such that∑n
j=d λj = 1, {λ} is the set of such distributions and Nλ

the corresponding normalization factor.
I now introduce the free energy F (b, d) by the usual

definition

Zav = p e−bF (b,d) = Zav(b = 0) e−bF (b,d) , (15)

where I have chosen a normalization such that exp(−bF )
describes the deviation of the partition function from
its value for b = 0 (high effective temperature). Since
Z/p, and consequently also Zav/p posses a finite, non-
vanishing large-n limit, this normalization ensures that
F (b, d) is intensive, exactly like the energy levels (13),
and scales as a constant for large n. This is the only dif-
ference with respect to the familiar situation in statistical
mechanics.

The free energy describes the equilibrium of the sys-
tem at effective temperature t = 1/b and has the usual
expression in terms of the internal energy U and the en-
tropy S:

F (t, d)= U(t, d)− tS(t, d) ,

U(t, d)= 〈E〉t , S(t, d) =
−∂F (t, d)

∂t
. (16)

Note that, with the normalization I have chosen in (15),
the entropy S is always a negative quantity describing
the deviation from its maximal value Smax = 0 at t = ∞.

By inverting eq.(13) with F substituting E one can
also define an effective (relative) input/output Hamming
distance D at temperature t:

D(t, d) =
2
π

arccos e
−F (t,d)

2 . (17)

This corresponds exactly to representing the recognition
probability of the average memory as

(P rec
b )av = cos2b

(π
2
D(b, d)

)
, (18)

which can also be taken as the primary definition of the
effective Hamming distance.

The function D(b, d) provides a complete description
of the behaviour of quantum associative memories, which
can be used to tune their performance. Indeed, suppose
that one wants the memory to recognize and identify in-
puts with up to εn corrupted inputs with an efficiency
of ν (0 ≤ ν ≤ 1). Then one must choose a number b
of control qbits sufficiently large that (D(b, εn)− ε) ≤
(1− ν) and a threshold T of repetitions satisfying T ≥
1/cos2b

(
π
2D(b, εn)

)
, as illustrated in Fig. 1 below.

A first hint about the general behaviour of the effective
distance function D(b, d) can be obtained by examining
closer the energy eigenvalues (13). For small Hamming
distance to the input these reduce to

Ek ' π2

4

(
dH

(
i, pk

)
n

)2

,
dH

(
i, pk

)
n

� 1 . (19)

Choosing again the normalization in which |i〉 = |0 . . . 0〉
and introducing a “spin” sk

i with value sk
i = −1/2 if qbit

i in pattern pk has value |0〉 and sk
i = +1/2 if qbit i

in pattern pk has value |1〉, one can express the energy
levels for dH/n� 1 as
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Ek =
π2

16
+

π2

4n2

∑
i,j

sk
i s

k
j +

π2

4n

∑
i

sk
i . (20)

Apart from a constant, this is the Hamiltonian of an
infinite-range antiferromagnetic Ising model in presence
of a magnetic field. The antiferromagnetic term favours
configurations k with half the spins up and half down, so
that sk

tot =
∑

i s
k
i = 0, giving Ek = π2/16.The mag-

netic field, however, tends to align the spins so that
sktot = −n/2, giving Ek = 0. Since this is lower than
π2/16, the ground state configuration is ferromagnetic,
with all qbits having value |0〉. At very low tempera-
ture (high b), where the energy term dominates the free
energy, one expects thus an ordered phase of the quan-
tum associative memory with D(t, d) = d/n. This cor-
responds to a perfect identification of the presented in-
put. As the temperature is raised (b decreased) however,
the thermal energy embodied by the entropy term in the
free energy begins to counteract the magnetic field. At
very high temperatures (low b) the entropy approaches
its maximal value S(t = ∞) = 0 (with the normalization
chosen here). If this value is approached faster than 1/t,
the free energy will again be dominated by the internal
energy . In this case, however, this is not any more deter-
mined by the ground state but rather equally distributed
on all possible states, giving

F (t = ∞)= U(t = ∞) =
−1

1− d
n

∫ 1

d
n

dx 2 log cos
(π

2
x
)

=
(

1 +
d

n

)
2 log2 +O

((
d

n

)2
)
, (21)

and leading to an effective distance

D(t = ∞, d) =
2
3
− 2 log2

π
√

3
d

n
+O

((
d

n

)2
)
. (22)

This value corresponds to a disordered phase with no
correlation between input and output of the memory.

A numerical study of the thermodynamic potentials in
(16) and (17) indeed confirms a phase transition from the
ordered to the disordered phase as the effective temper-
ature is raised. In Fig. 1 I show the effective distance
D and the entropy S for 1 Mb (n = 8 × 106) patterns
and d/n = 1% as a function of the inverse temperature
b (the entropy is rescaled to the interval [0,1] for ease of
presentation). At high temperature there is indeed a dis-
ordered phase with S = Smax = 0 and D = 2/3. At low
temperatures, instead, one is in the ordered phase with
S = Smin and D = d/n = 0.01. The effective Hamming
distance plays thus the role of the order parameter for
the phase transition.
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FIG. 1. Effective input/output distance and entropy
(rescaled to [0,1]) for 1Mb patterns and d/n = 1%.

The phase transition occurs at bcr ' 10−1. The physi-
cal regime of the quantum associative memory (b = posi-
tive integer) begins thus just above this transition. For a
good accuracy of pattern recognition one should choose
a temperature low enough to be well into the ordered
phase. As is clear from Fig. 1, this can be achieved al-
ready with a number of control qbits b = O(104). Note
that this number becomes independent of the dimension
n of the patterns for large n. The computational load of
quantum pattern recognition is thus determined uniquely
by the accuracy requirements.
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