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ABSTRACT

The concept of locally plane wave is used to describe as
physically as possible the acoustic waves in the Sun.
The conditions at the internal and external limits of the
acoustic cavity are determined with rudimentary
hypotheses. The eigenfrequencies so obtained are
compared to numerical results in order to quantitatively
characterize the performances and the limits of such an
approach.

MOTIVATIONS

For linear oscillations with spherical symmetry and in
the adiabatic approximation, there exists 4 differential
equations which govern the fluid motion, see for
example [CD98]. By solving numerically these 4
equations, one can obtain the eigenfrequencies of the
Sun’s cavity and the eigenfunctions describing the
amplitude and phase of the standing wave.
Beside these numerical solutions, approximate but more
physical models are also necessary to better identify the
main physical phenomenon involved. Since many years,
numerous such approaches exist: Cowling’s
approximation, Lamb’s theory for atmosphere,
functional analysis, JWKB analysis, Duvall’s law,
asymptotic theory following Gough, Tassoul, or
Vorontsov , etc…[CD98, LTC94 and references
therein]. These different theories are often valid only in
a limited domain, and use different formalisms not
totally coherent between them. One can note that the
turning points are not always the same, and that the
constant L related to the horizontal eigenvalue is either
l(l+1) or (l+0.5)2.
The aim of this work is to provide an overall
understanding of the properties of the acoustic modes by
means of rudimentary concepts describing as closely as
possible the wave physics.

WAVE STRUCTURE

Hypotheses. The following hypotheses are employed:

−  Spherical symmetry for the equilibrium structure
and the wave.

− Adiabatic approximation.
−  Linear oscillation. The small and constant

amplitude is neither damped nor amplified.

− The wave is purely acoustic.
Only the last hypothesis is not classic and needs
additional comments. This approximation is even
simpler than Cowling’s. It means that the environment
looks homogeneous to the wave. That may be partly

justified by arguing that an oscillation at a small scale -
acoustic wave- cannot be very perturbed by a larger
scale phenomena -gravity wave-. The propagation
condition can be expressed as:
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where λ is the wavelength, k is the wavenumber , Hp is
the pressure scale height and a is a constant to be
determined. When the condition (1) is no longer valid,
the propagation environment can no longer be
considered as homogeneous and the acoustic wave is
reflected. If the pressure is decreasing, a ‘pressure
vacuum’ is encountered, and if  it is increasing, a
‘pressure wall’ is encountered.

Present approach. One merely propagates the wave in
known surroundings coming from a code calculating
independently the structure. Due to its small amplitude,
there is no feedback between the Sun structure and the
wave perturbation. The purely acoustic assumption
implies that during the propagation, the wave frequency
ν stays constant while the wavenumber continuously
follows the slight environment change, as given by the
dispersion relation
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where ω = 2πν  is the angular frequency, and c(r) is the
radially dependent sound speed.
In the presence of spherical symmetry, one knows
[CD98] that the vector 

r
k  has a length given by (2)

while its horizontal and radial components can be
expressed following the degree l (number of nodal lines
on a spherical surface) like
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This wave with a spherical wavesurface can be
considered from the formal point of view as a locally
plane wave because the radial projection of the
eigenvector is simply
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∫  is the phase advance between two points

r1, r2, and A, φ arbitrary amplitude and phase.

Kinetic energy. The wavenumber plays a key role
during the propagation. One can see a first example with

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25335614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


- 2 -

the radial density of kinetic energy εc.  As the wave
amplitude is constant, the kinetic energy inside each
wavelength is the same, and the one inside each length
unity is proportional to the number of wavelengths by
unit length, thus one has simply

εc ∝  kr. (5)
Indeed, kr given by (3) and Fig. 1, is simply the
envelope of the ‘normalized eigenfunctions’ given in
the litterature, see for example [CD98].

Standing wave. When the wave is reflected at the
external and internal limits of the Sun, there is
formation of a standing wave, and in this cavity only
determined frequencies are privileged, which are the
eigenvalues of the differential equations. In the radial
direction, the treatment formally looks very close to the
one for plane standing wave. Nodes and antinodes are
separated by π in phase, thus for the total propagation
path, the phase advance is (see Fig. 2 )
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where n is the number of radial nodes called the mode
order, α  is a number to adjust according to the phase
conditions in r1 and r2. If for example there are two
antinodes at the two ends, α = 0, whereas if there are
one node and one antinode, α = -0.5. In our case, α will
lay between –0.5 and 0. The relation (6) is a Duvall-like
law, it will be used here to calculate the
eigenfrequencies, but one needs before to determine r1,
r2, α, i. e. the turning points and the related phases.

EXTERNAL TURNING POINT (r2)

At the external limit of the Sun, the pressure is strongly
decreasing, and one can consider that a ‘pressure
vacuum’ is encountered when the condition (1) is no
longer fulfilled. There, in the absence of any constraint,
it is an antinode for the standing wave.
In fact, to be more precise, it is not Hp that must be used
but its projection on the direction of propagation, that is
on the vector 

r
k . As a result, (1) becomes
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which depends on the degree l. In the case of very high
frequency, (7) turns back to (1) and is independent of l.
One can find out aE empirically by using the fact that
the highest frequency detected is ~ 5000 µHz. From
Fig. 3 that presents the condition (1) with the [BTCZ99]
solar model, when aE ~ 12.7, the mode l=0, ν = 5000
µHz is the last one trapped in the Sun cavity.
The external conditions are thus totally determined. One
can also note that for very low frequencies, the relation
(7) could also be invalid in an internal point where the
pressure is increasing. If it is the case, low l, low n
modes could be not at their classic frequencies.

INTERNAL TURNING POINT (r1)

Modes l ≠ 0. For the non radial modes, the internal
turning point is given by the classical condition
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One can furthermore stress that this turning point is not
due to the refraction of a plane wave which has an
internal edge experiencing a higher speed than the
external one, because the wave is not plane but
spherical, so there is no external nor internal edge. The
reason lays in fact in the spherical symmetry hypothesis.
Indeed, in this case 

r
k  is given by (3), and kh increasing

indefinitely to the center implies that kr goes inevitably
to zero, whether the sound speed increases or decreases
towards the center. Physically speaking, as the surface
pattern is independent of r, there will be a location
before the center where the propagation consists only in
describing the surface pattern and the wave no longer
goes through.
What about the phase at the turning point? One can no
longer invoke Hp because its projection on 

r
k  is zero. In

fact only the conditions at the two extremes in
frequency are easy to determine. At the turning point,
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When the frequency goes to infinity, so does kh
2 , thus

after (1) the wave is in the ‘pressure vacuum’ condition
whatever the surroundings. So there is an antinode and
as it is already the case at the external limit, α must go
to zero. One can search for α a simple expression like

α =
b

kh
2 (10)

where b is a constant to be determined.
Now for the lowest frequency, that is for the
fundamental mode where l = 1, n = 1, as the external
limit is already an antinode, the internal one is
necessarily a node to obtain a standing wave. Thus α
must be –0.5. So we have every element to completely
calculate this mode and then to determine b. But seeing
the rudimentary aspect of expression (10), we can be
satisfied to make a rough calculation. If one admits that
the lowest frequency is slightly less than 300 µHz, then
b is slightly less than –8/R2, we can choose b = -10/ R2,
where R is the solar radius. Thus
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Modes l=0. For the radial modes, k = kr = ω/c. There is
no turning point like above and one could think that the
waves reach the center. Because of symmetry the center
cannot move, there will be a node at that point, so r1 = 0
and α  = -0.5 for all n. But there is a paradox with the
present linear theory: the kinetic energy density εc is not
zero at the center ! To overcome this paradox, one can



- 3 -

invoke the internal pressure of the wave. Indeed, due to
the spherical symmetry and the fact that the maximum
amplitude is constant along the radius, the wave sees its
own pressure increasing indefinitely to the center like
1/r2. It is equivalent to an internal pressure scale height

Hp = r/2 (12)
The condition (1) can then be used to calculate the
turning point corresponding now to a ‘pressure wall’,
thus

α = -0.5. (13)
Let aI0 be the constant (internal turning point for l = 0)
to be determined in (1). Knowing that the lowest
frequency for l = 0 is slightly  less than the one for l = 1,
and that the two modes have α about –0.5, r1 of the first
mode is slightly less than for the second one. That leads
to aI0≥ 8.89 and let us choose aI0 = 10. So r1 is given by
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Remark: with the formalism using l+0.5 instead of
l(l+1), one employs a coefficient 0.5 instead of 1.6.

RESULTS

Everything is now provided to calculate the
eigenfrequencies and all helioseismic quantities. The
calculation consists in solving the system of two
equations (6) and  (11) or (13) related to two unknowns
ω and α, with the definitions of kr, r1, r2 given by (3),
(8) or (14), and (7). These equations compose the whole
set of equations to be considered. One can point out the
extreme simplicity of the equations used and note that
the two structure functions involved are c(r) and Hp(r).
Calculations have been performed for the modes l = 0 to
10, covering the frequencies 400 to 5000 µHz, using the
[BTCZ99] model. The results are displayed in Fig. 4 to
12  with the following convention: crosses for l = 0,
continuous line for l = 1, to dot line for l = 10.
The external turning points exhibit a remarkable
behaviour: they depend mostly on the frequency and
very little on l. That means that every global behaviour
of the modes which follows this rule must be due to the
external conditions. Using this property, the inversion of
the surface conditions should be straightforward, even
with low degree modes, this is what we will do
hereafter.
The seismic parameters can be compared to the results
of [LTC94]. For the large separation, except the absence
of the bump at 2000 µHz, the discrepancies are globally
limited to only about 10 µHz. For the small separation,
except for the modes l = 0, 1, the remaining results are
very close. For the second difference, there is not here
exactly the same oscillation aspect, but the value range
is correct.
Finally the eigenvalues are compared in Fig. 10 to the
ones obtained by solving numerically the differential
equations. There is no asymptotic behaviour like when
this kind of approximation is used. The discrepancies

reach +10, -55 µHz for l = 0, and +25, -40µHz for the
other degrees. But one can note a global oscillation with
ν for every l. As discussed above, that is necessarily due
to surface conditions. The negative peak at 2500 µHz is
related to r2 around r/R = 0.999 and the positive peak at
4500 µHz around r/R = 0.9999. A rough manual
inversion of Hp (one could do it indifferently on c) like
in Fig. 11 leads easily to an important improvement for
ν−νnum as shown in Fig. 12: the discrepancy is now only
+10, -35 µHz for l = 0, and except for about the first ten
of modes l = 0, 1, where it is +10, +25 µHz, for the
remaining modes, it is better than ±10 µHz. The
correction in fact has merely softened the transition
Sun-Atmosphere at r/R=1. There remains a small global
oscillation that could also be removed by the same
method and that would further reduce the above
discrepancies by a factor of two.
One can conclude that in spite of very simple concepts
and expressions employed here, the agreement with
numerical calculations is very good.
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