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Abstract

We derive theorems for induced signals on electrodes embedded in a medium with a po-
sition and frequency dependent permittivityz, s) and conductivityo (Z, s) that are con-
nected with arbitrary discrete elements. The problem is treated using the quasi-static ap-
proximation of Maxwell's equations for weakly conducting media [1][2]. The induced sig-
nals can be derived by time dependent weighting fields and potentials and the result is the
same as the one given in [3]. We also show how these time dependent weighting fields can
be derived from electrostatic solutions. Finally we will apply the results to Resistive Plate
Chambers (RPCs) where we discuss the effects of the resistive plates and thin resistive
layers on the signals induced on plane electrodes and strips.
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1 Introduction

Most particle detectors can be approximated by assuming perfectly conducting electrodes sur-
rounded by insulating materials. In that case all the electric fields are instantaneous and the
current induced on a grounded electrode by a ch@geoving along a trajectory¥(t) in the
detector can be calculated by Ramo’s theorem [4][5]:

I(t) = QE((t))i(t) (1)

whereE (Z) is the electric field in the detector if the charge is removed, the electrode in question
IS put to unit voltage and all other electrodes are grounded. In a detector with resistive elements
the electric fields will show a time dependence and the above statement will not hold. In this
report we will derive a similar theorem for detectors containing resistive elements, i.e. we will
answer the question: what are the voltages induced by a time varying charge géerigifyon
electrodes embedded in a medium with arbitrary conductivty, s) and permittivitys (7, s)

that are connected with arbitrary reactive elements (Fig. 1).

If we answer the question for electrodes embedded in a general medium without discrete ele-
ments, as shown in Figure 4, we have already solved the problem for connected electrodes since
we can assume the discrete elements to be contained itithe ando (7, s).

Finally the results will be applied to signals in Resistive Plate Chambers.
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Figure 1: Electrodes embedded in a medium with conductivity s) ands(z, s) and connected
with an arbitrary reactive network. The time varying charge density induces voltages on the
electrodes.



2 Quasi-static Approximation of Maxwell’s Equations

Maxwell's equations for a linear isotropic medium with permittivitand conductivitys are
given by

ﬁﬁzp D=cE VB =0 Ezuf[ (2)
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wherej. is an 'externally impressed’ current that is connected with an "external’ charge density
by Vj. = —0p./0t. Assuming weak conductivity we can set

VxE=-———=0 =E=-V& (4)
and by taking the divergence of the second equation in (3) we find

Vo (&, s)V]®(T,t) + V]e(T, s)V] aq)éf’ 2. _apeéf, ’

()

Performing a Laplace transform and assuming that, ¢ = 0) = 0 andp.(7,t = 0) = 0 we
have

L@@, 1) = B(#s) L3 ] = sB(@,s) LT5=]=sp(Es)  (6)
and the equation becomes
VIF )V, 5) = —u(Fs)  with  e(F,5) = =(7,5) + ~o(Zs)  (7)

S

This equation has the same form as the Poisson equation for electrostatic problems. Let us
assume that we have a general charge density with a time dependence according to

pe(T,t) = p(T)o(t)  —  P(T,s) = p(T) . (8)
To find the corresponding time dependent potential, the equation to solve is

e —

V[e(@, ) VIB(Z, 5) = —p() (9)

From this we can conclude the following statements:

If we know the electrostatic potential for the charge dengif§) in a medium with given(z) we
obtain the time dependent potential for a charge dengifyd(¢) in a medium with conductivity
o(Z, s) and permittivity= (7, s) by replacings with € + ¢ /s and performing the inverse Laplace
transform.

Since the Green'’s function for the electrodynamic problem is the potential for the 99u6€)
the same conclusion applies:
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If we know the Green'’s function for a medium with givém) we obtain the time dependent
Green’s function for a medium with conductivity?, s) and permittivity=(Z, s) by replacings
with ¢ + o /s and performing the inverse Laplace transform.

In the next section we will show two simple examples.

2.1 Point Charge in infinite Space

The Green’s function for a homogeneous medium characterized by a constant dielectric constant
e is given by

1

G(r) = Arel]

(10)

Replacings by ¢ + ¢/s and performing the inverse Laplace transform we find the Green’s
function for a medium with constant conductivityand permittivitye as

G(7 1) = ﬁ (5@) - ge*%) r= g (11)

E.g. putting at time = 0 a charge density(7) into the medium i.ep. (7, t) = p(¥)O(t) the
time dependent potential is given by

f’l

t —t .
O(7,t) = / / G — 7.t —t")p()Ot)dt d*r = & / o) s 12
v Jo dre )y, |7 |

The potential is equal to the electrostatic one, but 'destroyed’ with the time constant/c.

2.2 Point Charge in an infinite Half-Space

Let's assume two infinite half spaces with different constantand a point charg€) at the
boundary (Figure 2). This electrostatic solutien=t 0) is given by [7]

_ Q 2 1
o(r)y=————— 13
() A7 (e1 + &9) |T] (13)
This has the same form as the above solution 10, so the potential for a point ¢hargated
att = 0 we have

el, ol

Figure 2: Point charge on the boundary between two infinite half spaces of consiaahi.
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If we sete; = ¢y, 01 = 0,9 = €,6¢9 ando, = o, the geometry is equal to a charge sitting on the
resistive plate in a Resistive Plate Chamber (RPC). With typical numbérsof= 10'° Qcm
ande, = 5 we find a time constant of = 5.3 msec, so the charge is removed’ very slowly
compared to the RPC signal duration of a few nanoseconds.



3 Generalized Green theorem and Impedance Matrix

In order to apply the quasi-static approximation to the problem of induced signals we need a
generalization of Green’s theorem and the capacitance matrix. If weMawsulated electrodes
on potentiald/; (Figure 3a), the charges on the electrodes are given by

Qi = Z ci;Vj (15)
j
wherec;; is the capacitance matrix. This is derived from Green’s second theorem [7] which
reads as

/ (GAG — bAG)AV = / (696 — ¢Fu)dd (16)
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Figure 3: (a) The voltages; and charges); on insulated electrodes are connected through the
capacitance matrix;;. (b) The voltage$; and currentd:** flowing onto electrodes embedded
in a general conducting medium are connected by the impedance tgtrix

Now we derive a similar relation for electrodes in a medium with s) ando (Z, s) (Figure 3b).
We want to know the voltagéds (¢) on the electrodes for given currents put on the electrodes.
Since there are no charges in between the electrodes the equation to solve is

o p—

6[6(5, s)V]|®(Z,s) =0 Vi(s) = ®(Z, s)|z=s, Vi(t) = LV i(s)] a7

S; is the surface of electrodeande = ¢ + o/s as defined before. The charges on the electrode
surfaces and the currents flowing from surfaces into the medium are given by

Q.(s) = /S e, s)%dﬁ I;(s) = /S o(# s)%wf (18)

If the electrodes are not connected to an 'external’ current source, the rate of change of the
charge on the surface is only due to the current leaving through the surface, so the two are
connected by



QIO =0~ Q) +Ti(s) =0 (19)

where we have assumed thattat= 0 the charges on the electrode surfaces are zero. If the
electrodes are connected to external current sources the relation is

SQO+LO =170~ Q)+ T =T 20)

We use a modified version of Green’s theorem given by

/V U@VIF@)VIe() - 6@ V@ V)| da

- [ [par@®? - s ax (1)

which holds for arbitrary functions, f, ¢. The surface encloses the volumg. We replace)
with ®(7, ), f(Z) with ¢(Z, s) and can still chose arbitrarily. We chose) to be the potential
function of the geometry in Fig. 3b with still arbitrary boundary conditiorig) i.e.

VIe@ s)VIP(E,s) =0 ils) = (T s)la=s,  vi(t) = L' [0(s)] (22)

Now we insert®, ¢» and ¢ in Green’s theorem, the volumé in between the electrodes is
enclosed by the electrode surfaces= > S; and a surface at infinity where all the fields are
zero. The 'volume’ terms in the first line of Eq. 21 are zero and we are left with the surface
terms of the second line, so we get

S ()@is) = S Vis)als) + it (23)

i

multiplying both sides withs and using Eq. 20 we have

Z —e:vt Z V —ea:t (24)

i

which is called the 'reciprocity theorem’. If we now choggs) such that we put a constant
voltagew;; on electrode 1 (i.e. a voltage delta putsei(t) in the time domain), we have and
‘external’ current$** on this electrode, voltages;(s) on the other electrodes and no 'external’
currents on the other electrodes and we find

1 _ —ext
Vils) = == > 0() 1" (5) (25)
1 -
The same we can do with electrode 2 etc. and we therefore find the relation

Vils) = Zy()T () Zys) = 22 (26)

—ext
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where%f"”t(s) is the current flowing onto electrodewhen we put a constant voltage, on
electrode andv;;(s), j # ¢ are the corresponding voltages on the other electrodes. The matrix

Z;; is called thecharacteristic impedance matrof the electrode system. We will use it later to
find the connection between induced voltages and currents.



4 Induced Signals in Weakly Conducting Environment

Next we want to find the voltages and currents induced on the electrodes by a time varying
charge density in between the electrodes. as shown in Fig. 4. The volume between the electrodes
has a position and frequency dependent permittivity and conductivity. Using the quasi-static
approximation we look for the solution of the following problem:

- — —

VI, s)VI(T, s) = —p(Z,s)  Vils) = (&, s)|as,  Vilt) = L7'[Vi(s)]  (27)

wheres; is the surface of electrodeandV; is the voltage of electrode As beforec = ¢ + o /s.
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Figure 4: (a) The time dependent charge density induces voltages on the electrodes which are
embedded in a general medium. (b) In case the electrodes are grounded the voltages are always
zero and the charge distribution induces currents that are flowing between the electrodes and
ground.

The problem has the formal solution

B(Z,s) = / Gz, @, s)p(d, s)d®c  V(e(Z,5)V)G(Z, T, s) = —0>(Z—7')  (28)
\%

whereV is the entire volume between the electrodes. As in the last section we use Green’s
theorem (21), replace with ®(Z, s), f(¥) with (%, s) and can still chose arbitrarily. If we

again chose to be the potential function of the geometry in Fig. 4 where the charge density is
removed i.e.

V(e(@, s)V)iy (T,8) =0 Ti(s) = (T, 8)v|azs, (29)

with still arbitrary boundary conditions;(s) we find

[ @ s ) = S Q) + T~ L Vdlat) + i) (@0)

1

Since the electrodes in Fig. 4a are not connected to to any external source wi"have).
Multiplying both sides withs and using Equations 19, and 20 we find
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/sz ) = ST (31)

If we chose the boundary conditions forsuch thati¢** = 0 for i # 1 andi¢** = ¢, = const.,
which means in the time domain that we defindy putting a current delta pulsgd(¢) on
electrode 1 while leaving all other electrodes unconnected, we have

T(s) = ql / Ty (@', P&, ) (32)

and in the time domain we get

t = 4/
Vi(t) = L / / Yy (7, —t’)Md%’dt’ (33)
do Jo Vv 8t

This is the desired theorem:

The voltage induced by a time dependent charge distribution on an electrode embedded in a
medium of permittivity (7, s) and conductivityr (7, s) can be calculated the following way:

we remove the charge, apply a delta curreqi(¢) on the electrode in question which defines a
time dependent potential, (%, t) in the space between the electrodes from wii¢t) can be
calculated with Equation 33. We call, the 'weighting potential’.

If o is zero i.e. the electrodes are insulated, the fields are instantaneous, the time dependence of
1 becomes) (7, t) = ¢ (Z)O(t) and the above theorem reads as

Vi(t) = qi / Py () pe( @) P (34)

If the electrodes are grounded (Figure 4b), the voltdgés are zero and the time dependent

charge density induces curreﬁf§t(t) = IZ(t)flowing between the electrodes an ground. We
therefore have the relation

SO HTW =120~ @)+ Tls) =TC6) (35)
and equation 30 becomes
/V U@, )57 5 = 3T ()I(s) (36)

1

We see that defining by putting the voltage pulse (t) = v (t) — T1(s) = v on electrode
1 while keeping all others grounded we find the induced current on the electrode by the relation

//w (@t —t) 9P ) 30y (37)
UO ot



which is the second desired theorem:

The currentinduced by a time dependent charge distribution on a grounded electrode embedded
in a medium of permittivity (%, s) and conductivityr (7, s) can be calculated the following

way: we remove the charge, apply a delta voltage pulg€s) on the electrode in question
which defines a time dependent potentig(z,¢) in the space between the electrodes from
whichI¢(t) can be calculated with Equation 37.

Since the above theorems hold for generéf, s) and=(Z, s) they are also valid if they are
connected with arbitrary networks as shown in Fig. 1 since we can imaging;thel/Z;; to
be contained i ande.

If o is zero the time dependencewbecomes)(Z,t) = ¢ (¥)d(t) and the theorem reads as

IG /wl i;\l (9pe(x t)d3 / (38)
U() ot

With V. = —dp. /0t we find

1

Vo

19(1) = (AEMﬂ<xWF’ (@) =~V (@) (39)

which recuperates Ramo’s theorem.

4.1 Signals induced by a moving Point Charge

The charge density of a point char@ecreated at = 0 and moving along a trajectory(¢) is
given by

pe(,t) = QO(1)8°[F — To(t)] (40)

Inserting this in the above formula we find

Q

Vi(t) = %i/fv(fo( ),t) + ©

- EV( o), t — )Tt Ey(Z,t) = —Viby(Z,t) (41)

0

The first term is due to the creation of the charge and the second term is due to the movement
of the charge. In an detector the charge is always created through ionization i.e. an electron
and an ion are produced at the same place from where they move in opposite directions along
trajectoriest; (t) andZ(t). In that case the charge density is given by

pe(@ 1) = O(t) [QF% (7 — 7, (t) — QO*(ZF — ()] where  #(0) = 5(0)  (42)

The induced voltage then becomes

m((ﬂ—ﬂ'wﬁ+Q

Vi(t
1<) CJO qo

EV( L), 6 — ) Ea()d (43)
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so the term due to the creation of the charge cancels and the signal can be calculated by the
weighting field £y (Z, t). The induced signal is only due to theovemenbf the charges. The
same relation is of course true for the induced current:

t t
L(t) = UQ Ef(@(t"),t — )z, (t)dt' + UQ Ep(Zs(t"), t — ") (t)dt (44)
0.Jo 0Jo

4.2 Connection between Induced Current and Voltage

Finally we want to find the connection between the voltage induced on the electrodes and the
currents induced on the electrodes in case they are grounded. Arguing érdtimeain, the
weighting potential for the induced voltage on electrode) (%, s), is defined by a current
pulseq, on the electrode 1. This current pulse will create voltage signals

Ti(s) = Zi(s)qo (45)

on all the electrodes, whetg;; is the impedance matrix defined earlier. A current puise
on electrode 1 is therefore equal to voltage puigés) on the electrodes. The corresponding
potentialy,, for this boundary conditiom;(s) is given by

— _ 1— 1—

Vy(@5) = D _Tils)=u(@.5) = a0 ) Zuls) (@, 5) (46)
wherey,(Z, s) are the potentials when electrade put to voltage), and all others are grounded.
This however is the definition of the weighting potentials for the current induced on the grounded

electrodes. Therefore we have the following connection:

The voltages induced by a time dependent charge distribution on electrodes embedded in a
medium of permittivity (Z, s) and conductivity (Z, s) are connected with the currents induced

by the same charge distribution on the grounded electrodes are connected with the characteris-
tic impedance matri¥/;;(s) through

Vi(s) = 3 2415 (5) (47)

This is a very useful result since usually and thereford“ are easy to calculate from elec-
trostatic solutions, and once we knaw for all electrodes we also know;; as seen from the
definition 26. We will show an example later.
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5 RPC with Infinite Plane Electrode

To illustrate the formalism we first study the signal induced on an infinite plane electrode in
an RPC like detector geometry. After that we look at the signal induced on a strip electrode. In
these examples we calculate the induced current on a grounded electrode. The induced voltage
on an electrode connected to an amplifier will be treated later. We will assume that an electron
and an ion are produced in one point, the electron is moving with veloatyd the ion does

not move.

5.1 Resistive Layer touching the Plane Electrode

First we apply the formalism to the geometry shown in Figure 5. A point ch@rgemoving
between two resistive layers and we want to know the induced current on electrode 1.

=

d3 €3 Er o

22 QP Ve

dl €1 Ero
electrode 1

(1)

Figure 5: Resistive Plate Chamber. The charge moving in the gas gap induces ajrent
the electrode. The finite resistivity of the plates affects the signal.

The electrostatic weighting field of electrode 1 i.e. the electric field in the gap in case electrode
1 is put to voltagey is given by

Vo€1E3
E., = 48
E9E3 d1 + E1€3 d2 -+ 6182d3 ( )

By applying the statements from section 2 we derive the time dependent weighting field i.e. the
electric field in the gap for a voltage pulsg(¢) by replacingsy,e3 — e, + /s, €2 — &9
which gives

Uo(O' + €r€08)

E.(s) = 49
(8) (dl + dg{fr + d3)€08 + O'dg ( )
In the limit if very small and very large conductivity we find
. VoEr . Vo
limFE.(s) = ———— lim E.(s) = — 50
UE% Z(S) d1 -+ d2€7~ + d3 ULHOlO Z(S) d2 ( )

For small conductivity the weighting field is just the electrostatic one. For large conductivity
the resistive layers can be viewed as part of the electrodes and the RPC is equal to an empty
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condenser with plate separati@n For finite conductivityr the time dependent weighting field
is found by inverse Laplace transform of the above expression which gives

Er o dy +ds _t go (dy + dse, + ds)
E.(t) = —(t) + — T = —
( ) Yo (d1 + dog, + d3 ) i €o (dl + dog, + d3)2€ ) ! o dy
(51)

Using Eq. 44, the current induced by a chafgereated on the edge of the gas gap-at0 and
moving with a constant velocity through the gag, until it hits the resistive layer & = ds /v
5

t
I(t) = Q E.(t —t")vdt/ (52)
Yo Jo
which gives
I(t) 1 dy + ds e
= , 1—e~ t<T
Qv dy + doe, + ds {5 5 =)
1 di+d 3)
1+ 3(e§ —1)€_$ t>T

B d1 + dggr + dg dg

The result is shown in Fig. 6. Far>> T the resistive plates act like insulators and the signal is
not affected by the conductivity. Fer<< T the resistive plates act like perfect conductors and
the detector looks like an empty capacitor with gapT he total induced charge js/(¢)dt = Q
independent of the conductivity of the resistive plates. The 'current tait forl" is due to the
'annihilation’ of the charge sitting on the surface of the resistive plate which was pointed out in
section 2.2.

In Trigger RPCs [8], typical values aflé ~ 20 ns andl /o ~ 10'° Qcm. Thereforer = gy /0 ~

10~% s which is much larger thah, so the conductivity of the resistive plates has no influence
whatsoever on a single RPC signal. For timing RPCs [9] typical value§d are 1ns and

1/ =~ 10 Qcm, so the effects is even smaller. We can conclude that in 'standard’ RPCs the
resistive plates affect the signal only through their dielectric constant.

5.2 Resistive Plate between Gas Gap and Plane Electrode

Next we look at the geometry shown in Figure 7. The gap where the charge is moving is sepa-
rated from the electrode through a resistive plate. The electrostatic weighting field in the gap is
now given by

VoE1E2
E, = 54
E92€3 d1 + €13 d2 + €1€2d3 ( )

If the resistive layer 1 has a permittivity and layer 2 the conductivity we replace; — ¢,.¢,
£9,— &0 + 0 /s andes — ¢ and we find

vo(er0 + €05)
[dl + (dz + d3)€r]808 + O'(dl + Erdg)

E.(s) = (55)
In the limit if very small and very large conductivity we find
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Figure 6: Current induced on the electrode from Figure 5.4 T the signal shows an expo-
nential time dependence. Fér >> 7 andT << 7 the signals are equal to the electrostatic
case.

hl lim E.(s) toer

lim B, (s) = =
Uli% (8) d1 + (dg + dg)c":} T—00 dl -+ €rd3

(56)

We find that even for perfect conductivity of the resistive layer the movement of the charge
induces a signal on the electrode. At first sight this seems counter-intuitive since we expect
a perfect conductor to shield the signal from the electrode. However this is only true if the
conductor is grounded. If it is however floating (like in our assumption) a positive cldarge
induces a negative charge on the top surface. This will result in a positive charge on the down
side of the plate which in turn induces a negative charge on the electrode which explains why a
floating electrode is 'transparent’.

The time dependent weighting field for finite conductivity has the same form as the one in
Equation 51 with different time constants so the induced signals have the same shape as shown
in Fig. 6.

5.3 Resistive Layer on Dielectric Insulator and Plane Electrode

Now we turn layer 2 into an infinitely thin layer with a given surface resistivityWe use Eq.
55 replacer with 1/(d2R) and setl, — 0 which gives

Vo

E - -
Z(S) d1 -+ €Td3

(57)

which means that a thin floating layer with whatever surface resistiv/itgs no influence on the
current induced on the electrode and the weighting field is the same as the one for a geometry
without layer 2 ! All these conclusions are only valid for an infinite plane electrode. The next
section which treats strip electrodes will clarify this picture.

14
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Figure 7: Detector where the gas gap is separated from the electrode by a resistive layer.
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6 Strip Electrode

To study the signals induced on a strip electrode in presence of conducting material we start
with the electrostatic weighting field for the geometry shown in Figure 8.

e S T |

; Z=p
€3
| z=
€2 J
; z=0
el
| R
= x=-w/2 x=0 x=w/2 =

Figure 8: Geometry with a strip electrode of widthrand three layers of different permittivities.

The z—component of the electric field in layer 2 and 3 when applying the potentitd the
strip electrode of widthw is given by [6]

Ei(x,z) = % /000 dk cos(kx) sin </@ %)Fi(/@, 2) (58)
with
Fy(n,2) — e1(g2 + 3) cosh[k(p — 2)] —Ds(lli)eg — e3) cosh[k(p + z — 2g)] (59)
Fyr,2) = 29 CO;}E[:)(J? —2)] 60
D(k) =

Forxz = 0, w — oo the expressions transform into

Vo€1E3
£9€3q + €1639 + €162(p — g)

Vo€1€2

Ez(x, z) =
£9€3q + €1639 + €162(p — g)

Ej(:c, z) =

(61)

which recuperates the expressions 48 and 54 for the infinite plane electrode. The time depen-
dent weighting field in case the layers have conductivities,, 03 can again be calculated

by replacinge; with ¢; + o;/s and performing the inverse Laplace transform. We will only
show a qualitative discussion of the geometries with resistive plates and a careful quantitative
discussion of the effect of the thin resistive layer.
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6.1 Resistive Layer touching the Strip Electrode

First we study the geometry from section 5.1 for a strip electrode. Layer 1 and 3 have conduc-
tivity o and layer 2 is the gas gap where the charge is moving. We's(ge =) and replace
£1,E3 — €08, + 0/8, 69 — €. FOr infinite conductivity of the resistive plates we find

vo cosh[r(g — 2)]

lim Fy(k,2) =

62
gl 2sinh(kg) cosh(kq) 2

so E? stays finite and we still find a signal on the strip. This is intuitively clear since the bottom
plate is in direct contact with the strips and the charge induced on the plate is flowing from the
strips onto the resistive plate.

6.2 Resistive Plate between Gas Gap and Strip Electrode

To study the geometry from section 5.2 where the gas gap and the readout electrode are sepa-
rated by a resistive and and an insulating layer welige, z) and replace; — coe,,e0 —
g0 + 0/s,e3 — €p. For infinite conductivity of the resistive layer we find

Ulinolo Fs(k,2) =0 (63)
so the layer 'shields’ the signal from the strip. From section 5.2 we know that the signal induced
on an infinite plane electrode mot shielded by the conducting layer, so if we imagine many
strips next to each other we know that the sum of the signals on all strips is given by 55. From
this we see that the resistive plate will cause crosstalk to the other strips and the lower the
resistivity the more strips will show a signal and the smaller the signal on the individual strips
will be. For common RPCs the plate resistivity is so high that there is no effect on the induced
signal. However, in some RPCs the voltage is supplied to the resistive plate through a thin
carbon layer with surface resistivity betwegd® and 10° k2 which can have an effect on the
signal as shown in the next section.

6.3 Resistive Layer on Dielectric Insulator and Strip Electrode

Now layer 1 should represent an insulating dielectric with relative dielectric corzstdayer 2
should represent an infinitely thin resistive layer with a given surface resistivityamid layer 3
is the gas gap. We udg(x, z) and set = 1/(gR), replaces; — eoe,,e0 — co+0/s,e3 — &,
take the limitg — 0 and we find the expression

1 seoRe, cosh[k(p — 2)]
Fs(k, z) = 2 k. sinh(kp) sinh(kq) + seoR[(e, — 1) cosh(kq) sinh(kp) + sinh[x(p + ¢)]] (64)
which we can write as RC/(x)
S K
f?’?)(].{;7 Z) = b(/{}, Z)m (65)

This is equal to the transfer function of a differentiatiRg’ element. In the previous section

we saw that the total signal induced on the infinite electrode is not affected by the resistance
R and is equal to the electrostatic case. The signal on the strip with finite width is however

differentiated and therefore we expect also signals on the neighbouring strips such that all of
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them add up to the signal given before. So for decreasing resistance we expect increasing signal
differentiation on the central strip and increasing crosstalk to all other strips. Performing the
inverse Laplace transform we find the expression for the time dependent weighting field:

E.(z,2, 1) = %0 /0 "~ dr cos(kz) sin (x2) [fl(/@, 2)5(t) — M exp (-% fg(/@))}

T (66)
with 7 = Rey(p + ¢) and
1 e, cosh[k(p — 2)]
hlk,2) = 3 sinh[r(p + q)] + (e, — 1) sinh(p) cosh(rq) 0

_ k(p+aq) e, sinh(kp) sinh(kq) cosh[k(p — z)]
Jalrz) = 2 sinh[k(p+ ¢)] + (e, — 1) sinh(kp) cosh(kq) (68)

B K(p + q) sinh(kp) sinh(kq)
Jalw) = sinh[k(p + q)] + (&, — 1) sinh(kp) cosh(kq) (69)

where f1, f>, f3 are dimensionless functions. The signal induced by a point cl@ng®ving
alongz is then given by

1ty="2

t E. (x,z2(t"),t —t")z(t")dt’ (70)

In particle detectors one usually has an electron avalanche that induces the signal and since the
avalanche grows exponentially, the largest part of the induced signal is due the very end of the
avalanche development. For our calculation this means that we are interested only in a very
smallz range of the weighting field where we can assume it to be constant. Assuming now that
the charge is moving with a velocity between timeé) < ¢ < T 'around’ positionz, we can

perform the integration and (after changing the integration variabletdp + ¢)x) we find for

t<T:

I(t 8 [
(éf):; / s cos(rgtg) sl i g ) o (£ ) (7)

and fort > T

Qu 7
exp (£ a3 20)) (72)

o - ‘§/om£005<r+>sm< i) i 20) [ (Eh(ig ) = 1] x

Figure 9 shows examples of signals for different resistivifiedor decreasing resistanége
(decreasing) the signal on the central strip is more and more differentiated and the crosstalk
to the first neighbour increases. Decreasing the resistance even more will cause a differentiated
signal also on the first neighbour and will start crosstalk to the 2nd neighbour etc.
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For a surface resistivity of 100kandp = ¢ = 2mm we haver = 3.5 ns which is comparable

toT = 20ns in Trigger RPCs, so we can conclude that resistivities ara0hg of the layers
supplying the voltage to resistive plates in RPCs with gap and plate dimensions of a few mm
have an effect on the induced signals.

Signal Strip 1st Neighbour Strip
06 015
1S 3 [= :
E T Razs) —
T 045 T=E it T . 1=04T
B . 1=0. i 1=0.02T
& L e | 1=0.02T Qo1 1=0.002T
s v . 1=0.002T = @ -
— 0.2 T0.075¢;
I R 005}
0 E L
02 0 B B e s
i -0.025] R
0.4 i
. 0.05 |
0 0.5 1 15 2 25 3 0 05 1 1.5 2 2.5 3
T T
(a) (b)

Figure 9: Signal induced by a chargemoving atz = 0 alongz with velocity v betweent = 0

andt = T for the geometry shown in Fig. 8. The distangeandq are 2 mm, the strip width is

w = 10 mm. (a) shows the signal induced on the central strip and (b) shows the signal induced
on a neighbour strip of same width. For decreasing values-efRe,(p + ¢) the signal on the
central strip is differentiated and the crosstalk to the neighbours increases.
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7 Induced Voltage

No we want to find thevoltageinduced in the detector shown in Figure 5 in case the electrode
is connected to ground through a general impedance netifugirk) (Figure 10).

d3 €3 Er o
d2e2 Qv eo
dl €1 Ero
Vi (t) @
ZA(9)
i 1e><t Vi1

Figure 10: RPC geometry where the readout electrode is connected to an amplifier element.

As described in the introduction we consider this impedance to be ’part of the medium’. As
shown in section 4.2 this voltage is connected with the current induced on the grounded elec-
trode through

Vi(s) = Zu(s)1i(s) (73)

wherel;(s) was already calculated in section 5.1 and is given by Eq. 53. Tadjnave need
the currenti®** flowing onto the electrode for a voltage delta puise on the electrode. The
electric field on the electrode surface is

V11€0
by = 74
! (dy + d3)eo + da(g0e, + 0/5) (74)
and therefore the charge on the electrode surface is
ql(S) = €T€0E1A (75)
whereA is the electrode area. The current leaving the surface of the electrode is
il(S) = O'E1 + L (76)
ZA(S)
With i§*" = sq(s) 4 i1(s) andZy; = v11/i§*" we have
ZA(8)Z
7y = A(S) D(S) (77)

a ZA(S) —+ ZD(S)

where the detector impedan£e (s) is given by
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. d1 + Erdg + d3 d20'

Z = 78
n(s) A(sepe, + 0) * segA(seoe, + o) (78)
In caseo is zero the detector impedance becomes
1 Agpe,
A = Cp = 79
D(S) SCD b (dl + €rd2 + dg) ( )

where(C is the detector capacitance. The equivalent circuit is shown in Figure 11. Applying
the current signal derived in section 5 to this equivalent circuit gives the voltage induced on the
electrode.

1O v

ZA(S) Zp(9)

Figure 11: Equivalent circuit to calculate the induced voltage from the current induced on a
grounded electrode.
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8 Conclusions

We have investigated the signals induced on electrodes embedded in a conducting environment
by using the quasi-static approximation of Maxwell’s equations. The signals can be calculated
by time dependent weighting fields as also shown in [3]. If the electrostatic solution of the
weighting field for an insulating medium with given() is known, the time dependent weight-

ing field for a medium with conductivity (Z, s) and permittivitys(Z, s) is given by replacing

e1(Z) with e(Z, s) + o (7, s) /s and performing the inverse Laplace transform.

As examples we treated RPC like geometries, in particular we studied the effect of a thin re-
sistive layer on the signal induced on a strip electrode. We conclude that decreasing surface
resistivity of this layer introduces signal differentiation on the central strip and crosstalk to the
neighbour strips.

The resistivity of the materials used in 'standard’ RPCs results in time constant that are a few
orders of magnitude larger than the duration of the charge movement in the detector and has
therefore negligible influence on the signal. The thin carbon layers used for HV contact in RPCs
with surface resistivities of 0.1-1 W however result in time constants that are comparable to
the charge movement duration and were therefore studied carefully in this report.

We would like to thank Martin Aleksa and Christian Lippmann for important discussions and
suggestions.
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