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Abstract

We derive theorems for induced signals on electrodes embedded in a medium with a po-
sition and frequency dependent permittivityε(~x, s) and conductivityσ(~x, s) that are con-
nected with arbitrary discrete elements. The problem is treated using the quasi-static ap-
proximation of Maxwell’s equations for weakly conducting media [1][2]. The induced sig-
nals can be derived by time dependent weighting fields and potentials and the result is the
same as the one given in [3]. We also show how these time dependent weighting fields can
be derived from electrostatic solutions. Finally we will apply the results to Resistive Plate
Chambers (RPCs) where we discuss the effects of the resistive plates and thin resistive
layers on the signals induced on plane electrodes and strips.
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1 Introduction

Most particle detectors can be approximated by assuming perfectly conducting electrodes sur-
rounded by insulating materials. In that case all the electric fields are instantaneous and the
current induced on a grounded electrode by a chargeQ moving along a trajectory~x(t) in the
detector can be calculated by Ramo’s theorem [4][5]:

I(t) = Q~E(~x(t))~̇x(t) (1)

where~E(~x) is the electric field in the detector if the charge is removed, the electrode in question
is put to unit voltage and all other electrodes are grounded. In a detector with resistive elements
the electric fields will show a time dependence and the above statement will not hold. In this
report we will derive a similar theorem for detectors containing resistive elements, i.e. we will
answer the question: what are the voltages induced by a time varying charge densityρ(~x, t) on
electrodes embedded in a medium with arbitrary conductivityσ(~x, s) and permittivityε(~x, s)
that are connected with arbitrary reactive elements (Fig. 1).

If we answer the question for electrodes embedded in a general medium without discrete ele-
ments, as shown in Figure 4, we have already solved the problem for connected electrodes since
we can assume the discrete elements to be contained in theε(~x, s) andσ(~x, s).

Finally the results will be applied to signals in Resistive Plate Chambers.
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Figure 1: Electrodes embedded in a medium with conductivityσ(~x, s) andε(~x, s) and connected
with an arbitrary reactive network. The time varying charge density induces voltages on the
electrodes.
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2 Quasi-static Approximation of Maxwell’s Equations

Maxwell’s equations for a linear isotropic medium with permittivityε and conductivityσ are
given by

~∇ ~D = ρ ~D = ε ~E ~∇ ~B = 0 ~B = µ ~H (2)

~∇× ~E = −∂
~B

∂t
~∇× ~H = ~je + σ ~E +

∂ ~D

∂t
(3)

where~je is an ’externally impressed’ current that is connected with an ’external’ charge density
by ~∇~je = −∂ρe/∂t. Assuming weak conductivityσ we can set

~∇× ~E = −∂
~B

∂t
= 0 ⇒ ~E = −~∇Φ (4)

and by taking the divergence of the second equation in (3) we find

~∇[σ(~x, s)~∇]Φ(~x, t) + ~∇[ε(~x, s)~∇]
∂Φ(~x, t)

∂t
= −∂ρe(~x, t)

∂t
(5)

Performing a Laplace transform and assuming thatΦ(~x, t = 0) = 0 andρe(~x, t = 0) = 0 we
have

L[Φ(~x, t)] = Φ(~x, s) L[
∂Φ(~x, t)

∂t
] = sΦ(~x, s) L[

∂ρe(~x, t)

∂t
] = sρe(~x, s) (6)

and the equation becomes

~∇[ε(~x, s)~∇]Φ(~x, s) = −ρe(~x, s) with ε(~x, s) = ε(~x, s) +
1

s
σ(~x, s) (7)

This equation has the same form as the Poisson equation for electrostatic problems. Let us
assume that we have a general charge density with a time dependence according to

ρe(~x, t) = ρ(~x)δ(t) → ρe(~x, s) = ρ(~x) . (8)

To find the corresponding time dependent potential, the equation to solve is

~∇[ε(~x, s)~∇]Φ(~x, s) = −ρ(~x) (9)

From this we can conclude the following statements:

If we know the electrostatic potential for the charge densityρ(~x) in a medium with givenε(~x) we
obtain the time dependent potential for a charge densityρ(~x)δ(t) in a medium with conductivity
σ(~x, s) and permittivityε(~x, s) by replacingε with ε+σ/s and performing the inverse Laplace
transform.

Since the Green’s function for the electrodynamic problem is the potential for the sourceδ(~x)δ(t)
the same conclusion applies:
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If we know the Green’s function for a medium with givenε(~x) we obtain the time dependent
Green’s function for a medium with conductivityσ(~x, s) and permittivityε(~x, s) by replacingε
with ε+ σ/s and performing the inverse Laplace transform.

In the next section we will show two simple examples.

2.1 Point Charge in infinite Space

The Green’s function for a homogeneous medium characterized by a constant dielectric constant
ε is given by

G(~r) =
1

4πε|~r| (10)

Replacingε by ε + σ/s and performing the inverse Laplace transform we find the Green’s
function for a medium with constant conductivityσ and permittivityε as

G(~r, t) =
1

4πε|~r|
(
δ(t)− σ

ε
e−

t
τ

)
τ =

ε

σ
(11)

E.g. putting at timet = 0 a charge densityρ(~r) into the medium i.e.ρe(~r, t) = ρ(~r)Θ(t) the
time dependent potential is given by

Φ(~r, t) =

∫
V

∫ t

0

G(~r − ~r′, t− t′)ρ(~r′)Θ(t′)dt′d3r′ =
e
−t
τ

4πε

∫
V

ρ(~r′)
|~r − ~r′|d

3r′ (12)

The potential is equal to the electrostatic one, but ’destroyed’ with the time constantτ = σ/ε.

2.2 Point Charge in an infinite Half-Space

Let’s assume two infinite half spaces with different constantσ, ε and a point chargeQ at the
boundary (Figure 2). This electrostatic solution (σ = 0) is given by [7]

Φ(~r) =
Q

4π

2

(ε1 + ε2)

1

|~r| (13)

This has the same form as the above solution 10, so the potential for a point chargeQ created
at t = 0 we have

��
��
��
��
��
��
��
��

Q

ε1, σ1

ε2, σ2

Figure 2: Point charge on the boundary between two infinite half spaces of constantσ andε.
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Φ(~r, t) =
2Q

4π(ε1 + ε2)|~r| e
−t
τ τ =

ε1 + ε2

σ1 + σ2
(14)

If we setε1 = ε0, σ1 = 0, ε2 = εrε0 andσ2 = σ, the geometry is equal to a charge sitting on the
resistive plate in a Resistive Plate Chamber (RPC). With typical numbers of1/σ = 1010 Ωcm
andεr = 5 we find a time constant ofτ = 5.3 msec, so the charge is ’removed’ very slowly
compared to the RPC signal duration of a few nanoseconds.

4



3 Generalized Green theorem and Impedance Matrix

In order to apply the quasi-static approximation to the problem of induced signals we need a
generalization of Green’s theorem and the capacitance matrix. If we haveN insulated electrodes
on potentialsVi (Figure 3a), the charges on the electrodes are given by

Qi =
∑

j

cijVj (15)

wherecij is the capacitance matrix. This is derived from Green’s second theorem [7] which
reads as

∫
V

(ψ∆φ− ψ∆φ)dV =

∫
S

(ψ~∇φ− φ~∇ψ)d ~A (16)

a)

V1 

Q1

Q3

Q2

V3

V2

b)

ε(x,s)

(x,s)σ

2
1

3

2

3

V1(t)

V2(t)

V3(t)

1I  (t)
ext

I  (t)
ext

I  (t)
ext

Figure 3: (a) The voltagesVi and chargesQi on insulated electrodes are connected through the
capacitance matrixcij . (b) The voltagesVi and currentsIext

i flowing onto electrodes embedded
in a general conducting medium are connected by the impedance matrixZij(s).

Now we derive a similar relation for electrodes in a medium withε(~x, s) andσ(~x, s) (Figure 3b).
We want to know the voltagesVi(t) on the electrodes for given currents put on the electrodes.
Since there are no charges in between the electrodes the equation to solve is

~∇[ε(~x, s)~∇]Φ(~x, s) = 0 V i(s) = Φ(~x, s)|~x=Si
Vi(t) = L−1[V i(s)] (17)

Si is the surface of electrodei andε = ε+ σ/s as defined before. The charges on the electrode
surfaces and the currents flowing from surfaces into the medium are given by

Qi(s) =

∫
Si

ε(~x, s)
∂Φ(~x, s)

∂~n
d ~A I i(s) =

∫
Si

σ(~x, s)
∂Φ(~x, s)

∂~n
d ~A (18)

If the electrodes are not connected to an ’external’ current source, the rate of change of the
charge on the surface is only due to the current leaving through the surface, so the two are
connected by
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d

dt
Qi(t) + Ii(t) = 0 → sQi(s) + I i(s) = 0 (19)

where we have assumed that att = 0 the charges on the electrode surfaces are zero. If the
electrodes are connected to external current sources the relation is

d

dt
Qi(t) + Ii(t) = Iext

i (t) → sQi(s) + I i(s) = I
ext

i (t) (20)

We use a modified version of Green’s theorem given by

∫
V

[
ψ(~x)~∇[f(~x)~∇]φ(x)− φ(~x)~∇[f(~x)~∇]ψ(~x)

]
d3x

=

∫
S

[
ψ(~x)f(~x)

∂φ(~x)

∂~n
− φ(~x)f(~x)

∂ψ(~x)

∂~n

]
d ~A (21)

which holds for arbitrary functionsψ, f, φ. The surfaceS encloses the volumeV . We replaceφ
with Φ(~x, s), f(~x) with ε(~x, s) and can still choseψ arbitrarily. We choseψ to be the potential
function of the geometry in Fig. 3b with still arbitrary boundary conditionsvi(t) i.e.

~∇[ε(~x, s)~∇]ψ(~x, s) = 0 vi(s) = ψ(~x, s)|~x=Si
vi(t) = L−1[vi(s)] (22)

Now we insertΦ, ψ and ε in Green’s theorem, the volumeV in between the electrodes is
enclosed by the electrode surfacesS =

∑
Si and a surface at infinity where all the fields are

zero. The ’volume’ terms in the first line of Eq. 21 are zero and we are left with the surface
terms of the second line, so we get

∑
i

vi(s)[Qi(s) +
1

s
I i(s)] =

∑
i

V i(s)[qi(s) +
1

s
ii(s)] (23)

multiplying both sides withs and using Eq. 20 we have

∑
i

vi(s)I
ext

i (s) =
∑

i

V i(s)i
ext
i (s) (24)

which is called the ’reciprocity theorem’. If we now chosevi(s) such that we put a constant
voltagev11 on electrode 1 (i.e. a voltage delta pulsev11δ(t) in the time domain), we have and
’external’ currentiext

1 on this electrode, voltagesv1i(s) on the other electrodes and no ’external’
currents on the other electrodes and we find

V1(s) =
1

i
ext
1 (s)

∑
j

v1j(s)I
ext

j (s) (25)

The same we can do with electrode 2 etc. and we therefore find the relation

V i(s) = Zij(s)I
ext

j (s) Zij(s) =
vij(s)

i
ext

i

(26)
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where i
ext

i (s) is the current flowing onto electrodei when we put a constant voltagevii on
electrodei andvij(s), j 6= i are the corresponding voltages on the other electrodes. The matrix
Zij is called thecharacteristic impedance matrixof the electrode system. We will use it later to
find the connection between induced voltages and currents.
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4 Induced Signals in Weakly Conducting Environment

Next we want to find the voltages and currents induced on the electrodes by a time varying
charge density in between the electrodes. as shown in Fig. 4. The volume between the electrodes
has a position and frequency dependent permittivity and conductivity. Using the quasi-static
approximation we look for the solution of the following problem:

~∇[ε(~x, s)~∇]Φ(~x, s) = −ρ(~x, s) V i(s) = Φ(~x, s)|~x=Si
Vi(t) = L−1[V i(s)] (27)

whereSi is the surface of electrodei andVi is the voltage of electrodei. As beforeε = ε+σ/s.

a)

  (x,t)ρ
ε(x,s)

(x,s)σ

1
2

3

V1(t)

V2(t)

V3(t)

b)

  (x,t)ρ
ε(x,s)

(x,s)σ

I (t)G
1

2
1

3

I (t)G

I (t)G

2

3

Figure 4: (a) The time dependent charge density induces voltages on the electrodes which are
embedded in a general medium. (b) In case the electrodes are grounded the voltages are always
zero and the charge distribution induces currents that are flowing between the electrodes and
ground.

The problem has the formal solution

Φ(~x, s) =

∫
V

G(~x, ~x′, s)ρ(~x′, s)d3x′ ~∇(ε(~x, s)~∇)G(~x, ~x′, s) = −δ3(~x− ~x′) (28)

whereV is the entire volume between the electrodes. As in the last section we use Green’s
theorem (21), replaceφ with Φ(~x, s), f(~x) with ε(~x, s) and can still choseψ arbitrarily. If we
again choseψ to be the potential function of the geometry in Fig. 4 where the charge density is
removed i.e.

~∇(ε(~x, s)~∇)ψV (~x, s) = 0 vi(s) = ψ(~x, s)V |~x=Si
(29)

with still arbitrary boundary conditionsvi(s) we find

∫
V

ψV (~x ′, s)ρ(~x ′, s)d3x′ =
∑

i

vi(s)[Qi(s) +
1

s
I i(s)]−

∑
i

V i(s)[qi(s) +
1

s
ii(s)] (30)

Since the electrodes in Fig. 4a are not connected to to any external source we haveIext
i = 0.

Multiplying both sides withs and using Equations 19, and 20 we find
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∫
V

sψV (~x ′, s)ρe(~x
′, s)d3x′ =

∑
i

V i(s)i
ext
i (31)

If we chose the boundary conditions forψ such thatiext
i = 0 for i 6= 1 andiext

1 = q0 = const.,
which means in the time domain that we defineψ by putting a current delta pulseq0δ(t) on
electrode 1 while leaving all other electrodes unconnected, we have

V 1(s) =
1

q0

∫
V

sψV (~x ′, s)ρe(~x
′, s)d3x′ (32)

and in the time domain we get

V1(t) =
1

q0

∫ t

0

∫
V

ψV (~x′, t− t′)
∂ρe(~x

′, t′)
∂t′

d3x′dt′ (33)

This is the desired theorem:

The voltage induced by a time dependent charge distribution on an electrode embedded in a
medium of permittivityε(~x, s) and conductivityσ(~x, s) can be calculated the following way:
we remove the charge, apply a delta currentq0δ(t) on the electrode in question which defines a
time dependent potentialψV (~x, t) in the space between the electrodes from whichV (t) can be
calculated with Equation 33. We callψV the ’weighting potential’.

If σ is zero i.e. the electrodes are insulated, the fields are instantaneous, the time dependence of
ψ becomesψ(~x, t) = ψ(~x)Θ(t) and the above theorem reads as

V1(t) =
1

q0

∫
V

ψV (~x′)ρe(~x
′)d3x′ (34)

If the electrodes are grounded (Figure 4b), the voltagesVi(t) are zero and the time dependent
charge density induces currentsI

ext

i (t) = IG
i (t)flowing between the electrodes an ground. We

therefore have the relation

d

dt
Qi(t) + I i(t) = IG

i (t) → sQi(s) + I i(s) = I
G

i (s) (35)

and equation 30 becomes

∫
V

sψI(~x
′, s)ρe(~x

′, s)d3x′ =
∑

i

vi(s)I
G
i (s) (36)

We see that definingψ by putting the voltage pulsev1(t) = v0δ(t) → v1(s) = v0 on electrode
1 while keeping all others grounded we find the induced current on the electrode by the relation

IG
1 (t) =

1

v0

∫ t

0

∫
V

ψI(~x
′, t− t′)

∂ρe(~x
′, t′)

∂t′
d3x′dt′ (37)
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which is the second desired theorem:

The current induced by a time dependent charge distribution on a grounded electrode embedded
in a medium of permittivityε(~x, s) and conductivityσ(~x, s) can be calculated the following
way: we remove the charge, apply a delta voltage pulsev0δ(t) on the electrode in question
which defines a time dependent potentialψI(x, t) in the space between the electrodes from
whichIG(t) can be calculated with Equation 37.

Since the above theorems hold for generalσ(~x, s) andε(~x, s) they are also valid if they are
connected with arbitrary networks as shown in Fig. 1 since we can imagine theYij = 1/Zij to
be contained inσ andε.

If σ is zero the time dependence ofψ becomesψ(~x, t) = ψ(~x)δ(t) and the theorem reads as

IG
1 (t) =

1

v0

∫
V

ψI(~x
′)
∂ρe(x

′, t)
∂t

d3x′ (38)

With ~∇je = −∂ρe/∂t we find

IG
1 (t) =

1

v0

∫
V

~EI(~x
′)~je(~x, t)d3x′ ~EI(~x) = −~∇ψI(~x) (39)

which recuperates Ramo’s theorem.

4.1 Signals induced by a moving Point Charge

The charge density of a point chargeQ created att = 0 and moving along a trajectory~x(t) is
given by

ρe(~x, t) = QΘ(t)δ3[~x− ~x0(t)] (40)

Inserting this in the above formula we find

V1(t) =
Q

q0
ψV (~x0(t), t) +

Q

q0

∫ t

0

~EV (~x0(t
′), t− t′)~̇x0(t

′)dt′ ~EV (~x, t) = −~∇ψV (~x, t) (41)

The first term is due to the creation of the charge and the second term is due to the movement
of the charge. In an detector the charge is always created through ionization i.e. an electron
and an ion are produced at the same place from where they move in opposite directions along
trajectories~x1(t) and~x2(t). In that case the charge density is given by

ρe(~x, t) = Θ(t)
[
Qδ3(~x− ~x1(t))−Qδ3(~x− ~x2(t)

]
where ~x1(0) = ~x2(0) (42)

The induced voltage then becomes

V1(t) =
Q

q0

∫ t

0

~EV (~x1(t
′), t− t′)~̇x1(t

′)dt′ +
Q

q0

∫ t

0

~EV (~x2(t
′), t− t′)~̇x2(t

′)dt′ (43)
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so the term due to the creation of the charge cancels and the signal can be calculated by the
weighting field ~EV (~x, t). The induced signal is only due to themovementof the charges. The
same relation is of course true for the induced current:

I1(t) =
Q

v0

∫ t

0

~EI(~x1(t
′), t− t′)~̇x1(t

′)dt′ +
Q

v0

∫ t

0

~EI(~x2(t
′), t− t′)~̇x2(t

′)dt′ (44)

4.2 Connection between Induced Current and Voltage

Finally we want to find the connection between the voltage induced on the electrodes and the
currents induced on the electrodes in case they are grounded. Arguing in thes-domain, the
weighting potential for the induced voltage on electrode 1,ψV (~x, s), is defined by a current
pulseq0 on the electrode 1. This current pulse will create voltage signals

vi(s) = Z1i(s)q0 (45)

on all the electrodes, whereZij is the impedance matrix defined earlier. A current pulseq0
on electrode 1 is therefore equal to voltage pulsesvi(s) on the electrodes. The corresponding
potentialψV for this boundary conditionvi(s) is given by

ψV (~x, s) =
∑

i

vi(s)
1

v0
ψi(~x, s) = q0

∑
i

Z1i(s)
1

v0
ψi(~x, s) (46)

whereψi(~x, s) are the potentials when electrodei is put to voltagev0 and all others are grounded.
This however is the definition of the weighting potentials for the current induced on the grounded
electrodes. Therefore we have the following connection:

The voltages induced by a time dependent charge distribution on electrodes embedded in a
medium of permittivityε(~x, s) and conductivityσ(~x, s) are connected with the currents induced
by the same charge distribution on the grounded electrodes are connected with the characteris-
tic impedance matrixZij(s) through

V i(s) =
∑

j

ZijI
G

j (s) (47)

This is a very useful result since usuallyψI and thereforeIG are easy to calculate from elec-
trostatic solutions, and once we knowψI for all electrodes we also knowZij as seen from the
definition 26. We will show an example later.
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5 RPC with Infinite Plane Electrode

To illustrate the formalism we first study the signal induced on an infinite plane electrode in
an RPC like detector geometry. After that we look at the signal induced on a strip electrode. In
these examples we calculate the induced current on a grounded electrode. The induced voltage
on an electrode connected to an amplifier will be treated later. We will assume that an electron
and an ion are produced in one point, the electron is moving with velocityv and the ion does
not move.

5.1 Resistive Layer touching the Plane Electrode

First we apply the formalism to the geometry shown in Figure 5. A point chargeQ is moving
between two resistive layers and we want to know the induced current on electrode 1.

I(t)

εr

εr

��
��
��
��

d2 ε2

σ

σ

vQ

electrode 1

ε0

d3 ε3

ε1d1

Figure 5: Resistive Plate Chamber. The charge moving in the gas gap induces a currentI(t) on
the electrode. The finite resistivity of the plates affects the signal.

The electrostatic weighting field of electrode 1 i.e. the electric field in the gap in case electrode
1 is put to voltagev0 is given by

Ez =
v0ε1ε3

ε2ε3 d1 + ε1ε3 d2 + ε1ε2d3
(48)

By applying the statements from section 2 we derive the time dependent weighting field i.e. the
electric field in the gap for a voltage pulsev0δ(t) by replacingε1, ε3 → ε0εr + σ/s, ε2 → ε0

which gives

Ez(s) =
v0(σ + εrε0s)

(d1 + d2εr + d3)ε0s+ σd2
(49)

In the limit if very small and very large conductivity we find

lim
σ→0

Ez(s) =
v0εr

d1 + d2εr + d3
lim

σ→∞
Ez(s) =

v0

d2
(50)

For small conductivity the weighting field is just the electrostatic one. For large conductivity
the resistive layers can be viewed as part of the electrodes and the RPC is equal to an empty
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condenser with plate separationd2. For finite conductivityσ the time dependent weighting field
is found by inverse Laplace transform of the above expression which gives

Ez(t) = v0

(
εr

d1 + d2εr + d3
δ(t) +

σ

ε0

d1 + d3

(d1 + d2εr + d3)2
e−

t
τ

)
τ =

ε0

σ

(d1 + d3εr + d3)

d2

(51)

Using Eq. 44, the current induced by a chargeQ created on the edge of the gas gap att = 0 and
moving with a constant velocityv through the gapd2 until it hits the resistive layer atT = d2/v
is

I(t) =
Q

v0

∫ t

0

Ez(t− t′)vdt′ (52)

which gives

I(t)

Qv
=

1

d1 + d2εr + d3

[
εr +

d1 + d3

d2

(1− e−
t
τ )

]
t < T

=
1

d1 + d2εr + d2

d1 + d3

d2
(e

T
τ − 1)e−

t
τ t > T

(53)

The result is shown in Fig. 6. Forτ >> T the resistive plates act like insulators and the signal is
not affected by the conductivity. Forτ << T the resistive plates act like perfect conductors and
the detector looks like an empty capacitor with gapd2. The total induced charge is

∫
I(t)dt = Q

independent of the conductivity of the resistive plates. The ’current tail’ fort > T is due to the
’annihilation’ of the charge sitting on the surface of the resistive plate which was pointed out in
section 2.2.

In Trigger RPCs [8], typical values areT ≈ 20 ns and1/σ ≈ 1010 Ωcm. Thereforeτ = ε0/σ ≈
10−3 s which is much larger thanT , so the conductivity of the resistive plates has no influence
whatsoever on a single RPC signal. For timing RPCs [9] typical values areT ≈ 1 ns and
1/σ ≈ 1012 Ωcm, so the effects is even smaller. We can conclude that in ’standard’ RPCs the
resistive plates affect the signal only through their dielectric constant.

5.2 Resistive Plate between Gas Gap and Plane Electrode

Next we look at the geometry shown in Figure 7. The gap where the charge is moving is sepa-
rated from the electrode through a resistive plate. The electrostatic weighting field in the gap is
now given by

Ez =
v0ε1ε2

ε2ε3 d1 + ε1ε3 d2 + ε1ε2d3

(54)

If the resistive layer 1 has a permittivityεr and layer 2 the conductivityσ we replaceε1 → εrε0,
ε2,→ ε0 + σ/s andε3 → ε0 and we find

Ez(s) =
v0(εrσ + ε0s)

[d1 + (d2 + d3)εr]ε0s+ σ(d1 + εrd3)
(55)

In the limit if very small and very large conductivity we find
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Figure 6: Current induced on the electrode from Figure 5. Ifτ ≈ T the signal shows an expo-
nential time dependence. ForT >> τ andT << τ the signals are equal to the electrostatic
case.

lim
σ→0

Ez(s) =
v0

d1 + (d2 + d3)εr

lim
σ→∞

Ez(s) =
v0εr

d1 + εrd3

(56)

We find that even for perfect conductivity of the resistive layer the movement of the charge
induces a signal on the electrode. At first sight this seems counter-intuitive since we expect
a perfect conductor to shield the signal from the electrode. However this is only true if the
conductor is grounded. If it is however floating (like in our assumption) a positive chargeQ
induces a negative charge on the top surface. This will result in a positive charge on the down
side of the plate which in turn induces a negative charge on the electrode which explains why a
floating electrode is ’transparent’.

The time dependent weighting field for finite conductivity has the same form as the one in
Equation 51 with different time constants so the induced signals have the same shape as shown
in Fig. 6.

5.3 Resistive Layer on Dielectric Insulator and Plane Electrode

Now we turn layer 2 into an infinitely thin layer with a given surface resistivityR. We use Eq.
55 replaceσ with 1/(d2R) and setd2 → 0 which gives

Ez(s) =
v0εr

d1 + εrd3
(57)

which means that a thin floating layer with whatever surface resistivityR has no influence on the
current induced on the electrode and the weighting field is the same as the one for a geometry
without layer 2 ! All these conclusions are only valid for an infinite plane electrode. The next
section which treats strip electrodes will clarify this picture.
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Figure 7: Detector where the gas gap is separated from the electrode by a resistive layer.
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6 Strip Electrode

To study the signals induced on a strip electrode in presence of conducting material we start
with the electrostatic weighting field for the geometry shown in Figure 8.

z

z=0

x=-w/2 x=w/2x=0

ε3

ε2

ε1

��������z=g

����

��������

z=-q

z=p

Figure 8: Geometry with a strip electrode of widthw and three layers of different permittivities.

The z−component of the electric field in layer 2 and 3 when applying the potentialv0 to the
strip electrode of widthw is given by [6]

Ei
z(x, z) =

4v0

π

∫ ∞

0

dκ cos(κx) sin
(
κ
w

2

)
Fi(κ, z) (58)

with

F2(κ, z) =
ε1(ε2 + ε3) cosh[κ(p− z)]− ε1(ε2 − ε3) cosh[κ(p+ z − 2g)]

D(κ)
(59)

F3(κ, z) =
2ε1ε2 cosh[κ(p− z)]

D(κ)
(60)

D(κ) = (ε1 + ε2)(ε2 + ε3) sinh[κ(p+ q)]

− (ε1 − ε2)(ε2 + ε3) sinh[κ(q − p)]
− (ε1 + ε2)(ε2 − ε3) sinh[κ(2g + q − p)]

+ (ε1 − ε2)(ε2 − ε3) sinh[κ(p+ q − 2g)]

Forx = 0, w →∞ the expressions transform into

E2
z (x, z) =

v0ε1ε3

ε2ε3q + ε1ε3g + ε1ε2(p− g)
E3

z (x, z) =
v0ε1ε2

ε2ε3q + ε1ε3g + ε1ε2(p− g)
(61)

which recuperates the expressions 48 and 54 for the infinite plane electrode. The time depen-
dent weighting field in case the layers have conductivitiesσ1, σ2, σ3 can again be calculated
by replacingεi with εi + σi/s and performing the inverse Laplace transform. We will only
show a qualitative discussion of the geometries with resistive plates and a careful quantitative
discussion of the effect of the thin resistive layer.
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6.1 Resistive Layer touching the Strip Electrode

First we study the geometry from section 5.1 for a strip electrode. Layer 1 and 3 have conduc-
tivity σ and layer 2 is the gas gap where the charge is moving. We useF2(κ, z) and replace
ε1, ε3 → ε0εr + σ/s, ε2 → ε0. For infinite conductivity of the resistive plates we find

lim
σ→∞

F2(κ, z) =
v0 cosh[κ(g − z)]

2 sinh(κg) cosh(κq)
(62)

soE2
z stays finite and we still find a signal on the strip. This is intuitively clear since the bottom

plate is in direct contact with the strips and the charge induced on the plate is flowing from the
strips onto the resistive plate.

6.2 Resistive Plate between Gas Gap and Strip Electrode

To study the geometry from section 5.2 where the gas gap and the readout electrode are sepa-
rated by a resistive and and an insulating layer we useF3(κ, z) and replaceε1 → ε0εr, ε2 →
ε0 + σ/s, ε3 → ε0. For infinite conductivity of the resistive layer we find

lim
σ→∞

F3(κ, z) = 0 (63)

so the layer ’shields’ the signal from the strip. From section 5.2 we know that the signal induced
on an infinite plane electrode isnot shielded by the conducting layer, so if we imagine many
strips next to each other we know that the sum of the signals on all strips is given by 55. From
this we see that the resistive plate will cause crosstalk to the other strips and the lower the
resistivity the more strips will show a signal and the smaller the signal on the individual strips
will be. For common RPCs the plate resistivity is so high that there is no effect on the induced
signal. However, in some RPCs the voltage is supplied to the resistive plate through a thin
carbon layer with surface resistivity between105 and106 kΩ which can have an effect on the
signal as shown in the next section.

6.3 Resistive Layer on Dielectric Insulator and Strip Electrode

Now layer 1 should represent an insulating dielectric with relative dielectric constantεr, layer 2
should represent an infinitely thin resistive layer with a given surface resistivity ofR and layer 3
is the gas gap. We useF3(κ, z) and setσ = 1/(gR), replaceε1 → ε0εr, ε2 → ε0+σ/s, ε3 → ε0,
take the limitg → 0 and we find the expression

F3(κ, z) =
1

2

sε0Rεr cosh[κ(p− z)]
κ sinh(κp) sinh(κq) + sε0R[(εr − 1) cosh(κq) sinh(κp) + sinh[κ(p+ q)]]

(64)

which we can write as

F3(k, z) = b(k, z)
sRC(κ)

1 + sRC(κ)
(65)

This is equal to the transfer function of a differentiatingRC element. In the previous section
we saw that the total signal induced on the infinite electrode is not affected by the resistance
R and is equal to the electrostatic case. The signal on the strip with finite width is however
differentiated and therefore we expect also signals on the neighbouring strips such that all of
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them add up to the signal given before. So for decreasing resistance we expect increasing signal
differentiation on the central strip and increasing crosstalk to all other strips. Performing the
inverse Laplace transform we find the expression for the time dependent weighting field:

Ez(x, z, t) =
4v0

π

∫ ∞

0

dκ cos(κx) sin
(
κ
w

2

)[
f1(κ, z)δ(t)− f2(κ, z)

τ
exp

(
− t
τ
f3(κ)

)]

(66)

with τ = Rε0(p+ q) and

f1(κ, z) =
1

2

εr cosh[κ(p− z)]

sinh[κ(p+ q)] + (εr − 1) sinh(κp) cosh(κq)
(67)

f2(κ, z) =
κ(p + q)

2

εr sinh(κp) sinh(κq) cosh[κ(p− z)]

sinh[κ(p+ q)] + (εr − 1) sinh(κp) cosh(κq)
(68)

f3(κ) =
κ(p+ q) sinh(κp) sinh(κq)

sinh[κ(p + q)] + (εr − 1) sinh(κp) cosh(κq)
(69)

wheref1, f2, f3 are dimensionless functions. The signal induced by a point chargeQ moving
alongz is then given by

I(t) =
Q

v0

∫ t

0

Ez(x, z(t
′), t− t′)ż(t′)dt′ (70)

In particle detectors one usually has an electron avalanche that induces the signal and since the
avalanche grows exponentially, the largest part of the induced signal is due the very end of the
avalanche development. For our calculation this means that we are interested only in a very
smallz range of the weighting field where we can assume it to be constant. Assuming now that
the charge is moving with a velocityv between time0 < t < T ’around’ positionz0 we can
perform the integration and (after changing the integration variable tor = (p+ q)κ) we find for
t < T :

I(t, z0)

Qv
=

8

π

∫ ∞

0

dr
p+q

cos(r x
p+q

) sin(r w
2(p+q)

)f1(
r

p+q
, z0) exp

(
− t

τ
f3(

r
p+q

, z0)
)

(71)

and fort > T :

I(t, z0)

Qv
= −8

π

∫ ∞

0

dr
p+q

cos(r x
p+q

) sin(r w
2(p+q)

)f1(
r

p+q
, z0)

[
exp

(
T
τ
f3(

r
p+q

, z0)
)
− 1

]
×

exp
(
− t

τ
f3(

r
p+q

, z0)
)

(72)

Figure 9 shows examples of signals for different resistivitiesR. For decreasing resistanceR
(decreasingτ ) the signal on the central strip is more and more differentiated and the crosstalk
to the first neighbour increases. Decreasing the resistance even more will cause a differentiated
signal also on the first neighbour and will start crosstalk to the 2nd neighbour etc.
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For a surface resistivity of 100 kΩ andp = q = 2 mm we haveτ = 3.5 ns which is comparable
to T = 20 ns in Trigger RPCs, so we can conclude that resistivities around105 Ω of the layers
supplying the voltage to resistive plates in RPCs with gap and plate dimensions of a few mm
have an effect on the induced signals.

(a)

Signal Strip

-0.4

-0.2

0

0.2

0.4

0.6

0 0.5 1 1.5 2 2.5 3

t/T

I(
t)

/Q
v 

(1
/m

m
)

τ=T
τ=0.1T
τ=0.02T
τ=0.002T

(b)

1st Neighbour Strip

-0.05

-0.025

0

0.025

0.05

0.075

0.1

0.125

0.15

0 0.5 1 1.5 2 2.5 3

t/T
I(

t)
/Q

v 
(1

/m
m

)

τ=T
τ=0.1T
τ=0.02T
τ=0.002T

Figure 9: Signal induced by a chargeQ moving atx = 0 alongz with velocityv betweent = 0
andt = T for the geometry shown in Fig. 8. The distancesp andq are 2 mm, the strip width is
w = 10 mm. (a) shows the signal induced on the central strip and (b) shows the signal induced
on a neighbour strip of same width. For decreasing values ofτ = Rε0(p + q) the signal on the
central strip is differentiated and the crosstalk to the neighbours increases.
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7 Induced Voltage

No we want to find thevoltageinduced in the detector shown in Figure 5 in case the electrode
is connected to ground through a general impedance networkZA(s) (Figure 10).
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V (t)

Figure 10: RPC geometry where the readout electrode is connected to an amplifier element.

As described in the introduction we consider this impedance to be ’part of the medium’. As
shown in section 4.2 this voltage is connected with the current induced on the grounded elec-
trode through

V1(s) = Z11(s)I1(s) (73)

whereI1(s) was already calculated in section 5.1 and is given by Eq. 53. To findZ11 we need
the currentiext flowing onto the electrode for a voltage delta pulsev11 on the electrode. The
electric field on the electrode surface is

E1 =
v11ε0

(d1 + d3)ε0 + d2(ε0εr + σ/s)
(74)

and therefore the charge on the electrode surface is

q1(s) = εrε0E1A (75)

whereA is the electrode area. The current leaving the surface of the electrode is

i1(s) = σE1 +
v11

ZA(s)
(76)

With iext
1 = sq(s) + i1(s) andZ11 = v11/i

ext
1 we have

Z11 =
ZA(s)ZD(s)

ZA(s) + ZD(s)
(77)

where the detector impedanceZD(s) is given by
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ZD(s) =
d1 + εrd2 + d3

A(sε0εr + σ)
+

d2σ

sε0A(sε0εr + σ)
(78)

In caseσ is zero the detector impedance becomes

ZD(s) =
1

sCD
CD =

Aε0εr

(d1 + εrd2 + d3)
(79)

whereCD is the detector capacitance. The equivalent circuit is shown in Figure 11. Applying
the current signal derived in section 5 to this equivalent circuit gives the voltage induced on the
electrode.

DA

1
1

Z   (s)Z  (s)

I (t)
V (t)

Figure 11: Equivalent circuit to calculate the induced voltage from the current induced on a
grounded electrode.
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8 Conclusions

We have investigated the signals induced on electrodes embedded in a conducting environment
by using the quasi-static approximation of Maxwell’s equations. The signals can be calculated
by time dependent weighting fields as also shown in [3]. If the electrostatic solution of the
weighting field for an insulating medium with givenε1(~x) is known, the time dependent weight-
ing field for a medium with conductivityσ(~x, s) and permittivityε(~x, s) is given by replacing
ε1(~x) with ε(~x, s) + σ(~x, s)/s and performing the inverse Laplace transform.

As examples we treated RPC like geometries, in particular we studied the effect of a thin re-
sistive layer on the signal induced on a strip electrode. We conclude that decreasing surface
resistivity of this layer introduces signal differentiation on the central strip and crosstalk to the
neighbour strips.

The resistivity of the materials used in ’standard’ RPCs results in time constant that are a few
orders of magnitude larger than the duration of the charge movement in the detector and has
therefore negligible influence on the signal. The thin carbon layers used for HV contact in RPCs
with surface resistivities of 0.1-1 MΩ however result in time constants that are comparable to
the charge movement duration and were therefore studied carefully in this report.

We would like to thank Martin Aleksa and Christian Lippmann for important discussions and
suggestions.

22



References

[1] H.A. Haus, J.R. Melcher, Electromagentic fields and energy, Prentice Hall Inc., Engle-
wood Cliffs, NJ, 1989.

[2] T. Heubrandtner, B. Schnizer, The Quasi-Static Electromagnetic Approximation for
Weakly Conducting Media, NIMA, EXT-2001-020 ; Univ. Graz , 20 Mar 2001

[3] E. Gatti, G. Padovini and V. Radeka, Signal evaluation in multielectrode radiation detec-
tors by means of a time dependent weighting vector, NIM 193 (1982) 651-653

[4] S. Ramo, Currents induced in electron motion, PROC. IRE 27, 584 (1939)
[5] W. Blum, L. Rolandi: Particle Detection with Drift Chambers. Springer Verlag 1994.
[6] Static electric fields in an infinite plane condensor with one or three homogeneous layers

/ Heubrandtner, T ; Schnizer, B ; Lippmann, C ; Riegler, W ; CERN-OPEN-2001-074 ;
Geneva : CERN , 31 Oct 2001. - 26 p.

[7] J.D. Jackson, Classic Electrodynamics, Wiley, New York, 1975
[8] R. Santonico et al., Development of Resistive Plate Counters, NIM A263 (1981) et. al.
[9] P. Fonte et. al, High-resolution RPCs for large TOF systems, NIM A449 (2000) 295-301

23


