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The front cover illustration can be viewed as a piece of art, a beautiful pic

ture generated by a computer. However, information invisible in two dimensions 

has been hidden inside the image. Very similar to nuclear emulsion scanning, 

in two dimensions only limited information can be extracted. To obtain the full 

information, a third dimension is needed. To see the hidden three-dimensional 

stereogram image one should relax the eyes and allow the point of focus to move 

behind the surface of the cover. It might be helpful to put the face close to the 

image, staring right through the booklet, and slowly move away from the cover, 

still staring ahead. If the focus is at the correct point, the three-dimensional 

image will become visible and the hidden information can be decrypted. 
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Chapter 1 

Charming neutrinos 

I have committed the ultimate sin, I have 
predicted the existence of a particle that can 
never be observed. 
Wolfgang Pauli [1] 

Neutrinos are not only charming but also very peculiar particles: postulated 

by a theorist, detected in an experiment and studied now for 40 years. But still 

today neutrinos remain enigmatic, newspapers title it The Ghost Particle and 

they are subject of research for many experiments all around the world. 

In the work described in this thesis some properties of neutrinos have been 

studied, in particular concerning their interaction with matter. It emphasizes 

that neutrinos are not only charming themselves but that they can also produce 

so called charmed particles. 

In the following introduction we give an overview of the intriguing field of 

neutrino physics. 

How did it all start? 

In the beginning of the 20 th century a fundamental problem teased the physi

cist: in certain radioactive decays the energy did not seem to be conserved. In 

1931 Wolfgang Pauli suggested that this missing energy could be carried away 

by an unknown neutral particle which was escaping detection. In 1934 Enrico 

Fermi developed a comprehensive theory of radioactive decays, including Pauli's 

hypothetical particle and coined it neutrino (which means in Italian little neu

tron). Since the neutrino (i/) interacts very weakly with matter it took until 

1959 to observe it. In that year Clyde Cowan and Fred Reines detected the 

neutrino for the first time in an experiment. For this discovery they received 



2 CHAPTER 1. INTRODUCTION 

Family Flavour Electric Charge Mass (MeV)1 

First (anti-)electron 
electron (anti-)neutrino 

e~ (e+) 
vt (ve) 

-1 (+1) 
0 

0.511 
< 3 x 10"6 

Second (anti-)muon 
muon (anti-)neutrino 

ß~ (ß+) 
Vß (vß) 

-1 (+1) 
0 

105 
< 0.19 

Third (anti-)tau 
tau (anti-)neutrino 

T- (r+) 
VT (VT) 

-1 (+1) 
0 

1777 
< 18.2 

Table 1.1: The lep ton families. 

the 1995 Nobel Prize in physics. Since the discovery, in numerous experiments 

it was tried to measure properties of the neutrino and to find answers to various 

questions. Is the neutrino stable? Are there other neutrino species? Is the 

neutrino its own antiparticle? Does a neutrino have a mass? How and where 

are neutrinos produced? Does the neutrino have a magnetic moment? How do 

neutrinos interact with matter? It goes beyond the scope of this thesis to give 

the status of the answers to all of these questions, but a comprehensive overview 

can be found in Reference [2]. One of the questions that is discussed in detail 

in this thesis is how neutrinos interact with matter and how they can produce 

charmed particles. 

How does the neutrino fit into today's picture of the world? 

In 1962 experiments at Brookhaven and CERN made a surprising discovery: 

there are at least two types of neutrinos. One is associated with the electron 

(e), the other with the muon (fi), the heavier partner of the electron. Later in 

1975 a third type (flavour) of particle from this lepton family was found, the 

tau (T) particle. The existence of the corresponding tau neutrino was already 

fully accepted for many years because of indirect evidence [3], before it was 

directly observed in 2000 by an experiment at Fermilab [4]. All ieptons have 

anti-particles; this completes our present picture of three lepton families as 

represented in Table 1.1. 

Not only in the neutrino field but also in other sectors of particle physics 

dramatic progress has been made during the past decades. In an experiment 

in 1968 at the Stanford Linear Accelerator (SLAC) it was found that nucléons, 

when probed at high space-time resolution, contain partons, later identified as 

quarks. Hence, the leading theoretical description is called the Quark-Parton-

Model (QPM). Particles called baryons, such as the proton, are bound states of 

throughout this thesis the natural system of units is used where h = c = 1 



Family Flavour Electric Charge Mass (MeV) 

First (anti-)up 
(anti-)down 

u (u) 
d (d) 

+2/3 (-2/3) 
-1/3 (+1/3) 

4 
7 

Second (anti-) charm 
(anti-)strange 

c(c) 
s(s) 

+2/3 (-2/3) 
-1/3 (+1/3) 

1.3 x 103 

170 
Third (anti-)top 

(anti-)bottom 
t(t) 

6(6) 
+2/3 (-2/3) 
-1/3 (+1/3) 

1.7 x 105 

4.4 x 103 

Table 1.2: The quark families. 

three quarks; mesons are composed of a quark and an antiquark. 

The quarks and anti-quarks also come in three families and their (trivial) 

names can be found in Table 1.2. In the QPM, the nucléon contains three 

valence quarks surrounded by a sea of virtual quark-antiquark pairs. For in

stance, the valence quarks of the proton are two u quarks, each with electric 

charge 2/3, and one d quark with charge -1/3, whereas the sea can consist of 

all quark-antiquark flavours. 

Both, quarks and leptons, are fermions with half integer spin (intrinsic 

angular momentum). 

Furthermore, it has been found that all interactions in nature are governed 

by four fundamental forces: the electromagnetic, weak, strong and gravitational 

force. They are all four2 mediated by bosons (with integer spin) summarized in 

Table 1.3. 

Neutrinos are only subject to the weak force. In the case of a (charged) W 

exchange the interaction is denoted as charged current (CC), in the case of a 

(neutral) Z exchange as neutral current (NC). 

In a CC interaction, there is a transition between different quark flavours. 

In technical terms, the quark mass eigenstates are no weak flavour eigenstates 

but linear combinations of these (flavour mixing). This results in particular 

2Until today no quantum theory for gravity has been developed. Hence, the graviton is 
only a hypothetical particle. 

Force Mediator Relative Strength Range (m) 
strong 

electromagnetic 
weak 

gravity 

gluon {g) 
photon (7) 
W^and Z° 

graviton (G) 

1 
10-2 

lO"5 

1 0 - 4 2 

< 10- 1 5 

CO 
1 0 - 1 8 

OO 

Table 1.3: The known forces. 
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probabilities for different transitions. Important for charm production, the sub

ject of this thesis, are the CC quark flavour transitions d -> c and s -¥ c. 

Experimentally it has been observed that transitions between quark flavours 

of different families are less probable than transitions within the same family. 

This experimental phenomenon is called Cabibbo suppression, and thus charm 

production on d quarks is Cabibbo suppressed with respect to the production 

on s quarks. The flavour mixing for all quark transitions is expressed in a 

3 x 3 matrix, called the Cabibbo-Kobayashi-Maskawa (CKM) matrix and can 

be parameterized by three mixing angles and a phase [5]. 

When neutrinos interact with matter, another concept becomes important: 

the detailed theoretical description of the internal dynamics of the nucléon. This 

can be well described by Quantum Chromodynamics (QCD), the fundamen

tal theory of strong interactions. In analogy with Quantum Electrodynamics 

(QED), the theory of the electromagnetic force, in QCD the quarks and gluons 

carry a 'charge' called colour being responsible for the strong force. Colour 

comes in three varieties, usually denoted as 'red', 'blue' and 'green'. Since the 

gluons carry colour themselves, they can interact not only with quarks but also 

with other gluons. Single bare quarks have not been observed in a detector. 

They are confined in colour neutral ('white') hadrons, the colour force increas

ing with inter-quark distance. However, for increasingly smaller distances the 

inter-quark coupling becomes weaker and the quarks behave as if they are al

most free. This phenomenon is called asymptotic freedom and it allows the use 

of perturbation theory within QCD at small distances. Structure functions ex

pressed in terms of quark and gluon distribution functions are used to describe 

the structure of hadrons in scattering processes on nucléons. 

Are neutrinos oscillating? 

No overview of the field of neutrino physics is complete without a discussion 

of the recent compelling evidence for neutrino oscillations, in particular com

ing from the Super-Kamiokande [6] experiment in Japan. Here neutrinos are 

measured that are generated by cosmic rays in the Earth's atmosphere. Af

ter decades of theoretical expectations and earlier experimental indications (see 

Reference [7] for a review), the experiment finds a specific neutrino flavour (vß) 

disappearing. 

The most natural explanation is that the neutrino flavour can change tem

porarily from vß to vT. The latter neutrinos are not detected in the Super-



Kamiokande experiment. Theoretically the possibility that neutrinos oscillate 

between flavours implies that at least one of them has a non-zero mass. 

The CHORUS experiment was designed to search for this vß -> vT os

cillation phenomenon. It uses the CERN neutrino beam and investigates a 

different regime of mass and mixing parameters than the Super-Kamiokande 

experiment. The CHORUS experiment does not observe a signal for neutrino 

oscillation within its accessible parameter space, which is different from that 

of the Super-Kamiokande experiment. More details of the present CHORUS 

oscillation search result can be found in Reference [8]. 

What is in this thesis? 

The thesis is structured as follows. After the current introductory chapter, in 

Chapter 2 a theoretical introduction is given on charm production by neutrinos. 

Furthermore, an overview of the present experimental situation can be found 

there. Chapter 3 describes the experimental setup of the CHORUS detector and 

explains the state-of-the-art scanning techniques of nuclear emulsion. Chapter 4 

deals with our study of deep-inelastic charm production, whereas in Chapter 5 

a different charm production process, diffractive production, is discussed. 

In summary, the research reported in this thesis has been performed to 

increase our insight concerning properties of the neutrino in relation to the 

quark structure of the nucléon. Not only the knowledge itself is important and 

interesting, but also the consequences it has for the understanding of the world 

around us. 

Quoting a recent paper [9], "[...] The relic tau neutrinos [may] have suffi

cient energy density to close the university", the impact of neutrino properties 

may even be larger for society than usually assumed. 
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Chapter 2 

Charm production in 
neutrino charged current 
interactions 

Things should be made as simple as possible, 
but not any simpler. 
Albert Einstein 

Charm production by neutrinos has been investigated in several exper

iments in the past. Modern detector technologies have recently allowed to 

increase statistics significantly. Hence, mechanisms and kinematics of heavy 

flavour production as well as of hadronization and of weak decays can be stud

ied in more detail. In most of the experiments, charm production is studied in 

the regime of deep inelastic interactions related to perturbative QCD. In deep 

inelastic scattering (DIS), where the four-momentum transfer Q2 is much larger 

than the nucléon mass (Q2 S> M2), neutrinos - like charged leptons - are used 

as a point-like probe to study the parton structure of the nucléon. On the other 

hand, at small Q2 values (Q2 ~ M2) long range processes become important 

where scattering processes can take place on nucléons or nuclei as a whole. The 

knowledge of this non-perturbative regime where neutrino-induced diffractive 

charm production takes place is sparse because it is experimentally difficult to 

access. In our work for the first time both production processes are studied 

together in an emulsion experiment. 

Recent results from HERA indicate that also 'hard diffraction' occurs in 

DIS: the nucléon does not break up even for Q2 » M 2 . The 'soft' scale is 

then governed by the four-momentum difference squared (t) of the initial and 
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final state nucléon. Observation of such events in neutrino scattering would, of 

course, also be very interesting. 

In this chapter the kinematic variables are introduced and the main theo

retical aspects of deep inelastic and diffractive charm production are described. 

Furthermore, because in the analysis we concentrate on leptonic charm decays, 

the theory of weak decays of charm particles is summarized. In the last sec

tion an overview of the present experimental situation in the field of charm 

production by neutrinos is given. 

2.1 Kinematics 

In the following the charged-current (CC) reaction uM N —> ß~ X is described 

in detail, where TV is a nucléon and where X describes the hadronic final state. 

The diagram for this process is given in Figure 2.1. The four-momenta intro-

Figure 2.1: Feynman-diagram for the CC interaction ußN -> fiX (left) and the 
corresponding kinematic representation in the laboratory frame (right). 

duced are I for the incoming neutrino, I' for the muon, p for the nucléon and p' 

for the hadronic final state. With the four-momentum transfer g = I — I' carried 
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by a iy-boson (wavy line) the Lorentz invariant kinematic variables are: 

Q2 -q2 = -(i-n2 

VP~P 
72 /2 

Square of the four-momentum transfer 

Leptonic energy transfer 

s = (l+p)2 

Q2 

x — — 
2p-q 
pq 

Square of hadronic final state invariant mass 

Square of center-of-mass energy 

Bjorken scaling variable 

Inelasticity variable 

(2.1) 

In the parton model, x can be interpreted as the fraction of the target 

nucleon's longitudinal momentum carried by the struck quark. 

When the Fermi motion is neglected and the nucléon is considered to be at 

rest, the four-momenta can be written in the laboratory frame 

( M \ 
0 
0 

V o J 

i' 
-Eßsin6 

0 
\ -Eßcos9 ) 

(2.2) 

( Ev \ 
0 
0 

\-EJ 
where M is the nucléon rest mass, Ev the neutrino energy, Eß the muon energy 

and where 9 corresponds to the angle between muon and neutrino momenta. 

Assuming the muon mass to be small with respect to |Q|, the kinematic 

variables become in the laboratory frame 
ß 

Q2=4E„Eßsin2-

v = Ev-Eß 

W2 = M2 + 2Mv - i 

s = M2 + 1MEV 

Q2 

(2.3) 

y = 

2Mv 
v 

E~„' 

In an experiment often the true values for the kinematic variables described 

above cannot be measured. For instance, neutrinos coming from leptonic de

cays escape detection and will distort the measurement of the total energy (that 

should reflect the incoming neutrino energy). Therefore, we make the distinction 

between visible quantities and true quantities. The true quantities can be esti

mated on a probabilistic basis from the visible quantities by using Monte-Carlo 

(MC) simulations. 
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2.2 Deep inelastic charm production 

In the DIS regime, where Q2 » M 2 , a neutrino CC interaction can produce 

a charm quark. However, charm quarks themselves are not detected in exper

iments. The charm quark has to dress up with other (anti-)quarks to form a 

'white' hadron that is measured in the detector. In the following the concepts 

for DIS production of charm quarks and hadronization into charmed particles 

are introduced. 

Neutrino-nucleon deep inelastic scattering 

Assuming (like in Figure 2.1) a single W exchange in a CC interaction, the 

differential cross section can be written as 

<PavN _G2
FMEU ( M 2 , N 

dxdy 7T V Mw + Q 
Mxy\ 

2z^-F 1 (x ,Q 2 ) 
(2.4) 

+ 2xF2(x,Q2) ( l - y - H ^ J + xF3(x,Q2)y ( l - | ) , 

where G F is the Fermi constant, Mw the W mass, Ev the energy of the in

coming neutrino, and where Fi,2,3(x, Q2) are the neutrino-nucleon structure 

functions [10]. 

In the naive QPM the neutrinos scatter off point-like spin 1/2 quarks and 

the structure functions are independent of the Q2 scale. Within the framework 

of QCD however, the structure functions develop a Q2 dependence to accom

modate the complexity of quark-gluon and gluon-gluon interactions inside the 

nucléon. 

Often, the cross section is written in terms of F2{x,Q2) and R(x,Q2) (re

placing Fi(x,Q2)), where 

a ) _^ .q a ) ( i + ^ ) - ^ c . Q a ) , (2.5) 
n[ 'W ' 2xF1(x,Q2) V ; 

Here R represents the ratio of the longitudinal and transverse cross sections, 

aL/aT of the exchanged W. The Callan-Gross relation 2xF1 = F2 implying 

that R(x, Q2) = 0 holds for Q2 -4 co, the Bjorken scaling limit. 

In the QPM the structure functions are expressed in terms of momentum 

weighted parton distribution functions (PDFs). In the CC neutrino-nucleon 

structure functions at the energies of the CHORUS experiment only d-valence 

and d, s, ü, c sea quarks play a role. For different quark (qi) and anti-quark (q2) 

flavours in the scaling limit then 
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2xFl(x,Q2) ~ F2(x,Q2) = xqi(x,Q2) +xq2{x,Q2) 

~ (xd{x,Q2) + xü(x, Q2) + xs(x,Q2) + xc{x, Q2)) 

xF3 = xqi{x,Q2) -xq2(x,Q2) 

~ (xd(x, Q2) - xü{x, Q2) +XS- xc(x, Q2)). 
(2.6) 

Assuming strong isospin symmetry and sea quark flavour independence, the 

PDFs of the proton (p) and neutron (n) are related: un = dv, dn — up, ün = dv 

and dn = u". 

Charm quark production 

For the specific case of charm quark production the struck quark must be a d or 

s quark. Taking into account the CKM-mixing, the charm structure functions 

take the form 

2xF{{x, Q2) = xF£(x,Q2) = \Vcd\
2xd(x,Q2) + \Vcs\

2xs(x,Q2), (2.7) 

where Vcd and Vcs are CKM-matrix elements. 

In charm production a way of accounting for heavy quark threshold ef

fects in leading order QCD is referred to as slow rescaling [11]. The structure 

functions are then assumed not to scale with x but rather with 

*"*+â;> (2-8) 
where mc is the charm quark mass. 

To take further into account target mass effects, the slow rescaling model 

is implemented in the Nachtmann model [12] with a scaling variable 

ÏN = , 2X , (2-9) 
1 + y/1 + 4M 2 £ | /Q2 

In the evaluation of the structure functions accounting for target mass and 

charm quark mass effects together, a substitution of the Bjorken scaling variable 

x is made with 

1 + % 
i = 2x- , Q (2.10) 

f 4 M 2 x 2 / Q 2 ( l + ^ ! ) 
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Charm quark fragmentation 

Single bare quarks have not been observed. Therefore, theoretical mechanisms 

have been postulated to describe the process, where a quark combines with 

other quarks to form an observable particle. This process which we refer to as 

hadronization or quark fragmentation, is described by non-perturbative models. 

All fragmentation models define a fragmentation parameter z = - g ^ , that 

describes the fraction of the momentum ph carried by a hadron with respect to 

the maximum momentum p™ax of the hadron (i.e. the momentum of the quark) 

that is allowed kinematically, at the same Ev, Q
2 and x. 

The analytical form of the fragmentation function usually depends on the 

quark mass. For light quarks (u, d and s), the Lund parameterization [13] is 

mostly used, with 

DL(z)<x-(l-z)ae-bm^z. (2.11) 

The parameters a and 6 are fitted to data from other relevant experiments and 

m± = yjm2 + p\ is called transverse mass. 

For heavy quarks two alternative parameterizations are available. The 

Collins-Spiller [14] function 

• W . ) « ( ^ + 3 £ = 4 ) „ + „ . (, _ i _ £ L ) ' ( 2 , 2 ) 

and the Peterson [15] function 

DP{z)cc\{l-\-^ \ (2.13) 

In most analyses of other experiments, the latter parameterization has been 

used to describe heavy quark fragmentation. For reasons of comparability we 

therefore use the Peterson parameterization as well. 

During the fragmentation process, the emerging hadron acquires a momen

tum component transverse to the original direction of the charm quark with a 

distribution of the type 

dN 
oc e 

-0PI 
d p i — (2.14) 

The parameter ß was measured by LEBC EHS [16] as ß = 1.1 ±0.3 correspond

ing to 0 4 ) = 0.9 ±0.2 GeV2. 

Experimentally, the fragmentation variable z can not be determined on 

an event-by-event basis for a (short-lived) charmed hadron that decays semi-

leptonically into a muon and a muon neutrino, because the neutrino energy 
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remains undetected. However, instead of the usual fragmentation variable z, 

the related and measurable variable 

Eß+ 
(2.15) 

is introduced, where E^+ is the energy of the muon from the charmed hadron 

decay. The variable zß plays a role similar to z in the description of the frag

mentation process. The statistical relation between zß and z can be determined 

using MC simulations. 

Production probabilities for charmed particle types 

To describe the fragmentation of charm quarks the various fractions of the pro

duced charmed hadron types need to be specified. They have been determined 

in the E531 experiment (see section 2.5). In Figure 2.2 these fractions are 

shown [17]. For neutrino energies above 30 GeV, values of (60 ± 6) % D°, 

(26 ± 6) % D+, (7 ± 5) % D+ and (7 ± 4) % A+ have been measured. 

250 300 

Ey(GeV) 

Figure 2.2: Charmed hadron production by neutrinos as measured by E531. 
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Towards lower energies the baryonic Ac fraction increases as expected from the 

correspondingly rising contribution of quasi-elastic processes. Folding the E531 

production probabilities with the CHORUS neutrino beam spectrum results in 

fractions of (55 ± 6) % D°, (19 ± 4) % D+, (13 ± 9) % D+ and (13 ± 7) % A+. 

2.3 Diffractive charm production 

Diffraction patterns are commonly known from light wave scattering in optics. 

The optical diffractive pattern is characterized by a large forward (small scat

tering angle) peak with a series of maxima and minima for increasing scattering 

angles. In nuclear and high energy physics the term diffraction has acquired re

lated but evolving meanings. Its main characteristics are interference, forward 

peaking, strong absorption, absence of internal excitation in the reaction dy

namics or exchange of Pomeron-like objects (with vacuum quantum numbers). 

In the context of diffractive neutrino interactions, we distinguish between 

diffractive incoherent scattering and diffractive coherent scattering off a nucleus. 

In the case of coherent diffractive scattering, the diffractive production shows an 

enhancement due to constructive interference of the phase coherent scattering 

amplitudes from the nucléons inside the target nucleus. The four-momentum 

transfer to the recoil system is written as t = —{p—p')2. The diffraction process 

considered here is characterized by small Q2 and small t, the recoiling system 

staying intact over the time scale of the interaction. 

Figure 2.3: Diffractive vector meson production in a neutrino interaction. 

A possible diffractive production mechanism for a charmed vector meson is 

shown in Figure 2.3. In a CC interaction, the virtual W-boson can transform 

into a es pair that hadronically scatters off the target nucléon or nucleus as a 
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whole, becoming an on-shell D* meson. 

In our diffractive production study, in particular the Cabibbo-favoured pro

duction and leptonic decay of the vector meson D*, containing a charm quark 

and a strange quark, is studied. The production of pseudo-scalar Ds mesons is 

suppressed in the kinematic domain of our experiment [18, 19, 20]. It should 

be mentioned that also the diffractive production of D* mesons is possible. 

However, this latter process is Cabibbo-suppressed, both in the production and 

in the leptonic decay by V*d/V*s giving in total a suppression factor of about 

2.8 x 1(T3. 

The cross section for diffractive vector meson product ion 

In the framework of the (generalized) vector meson dominance (VMD) model 

several authors have made theoretical predictions for diffractive vector meson 

production [21, 22, 23, 24, 25, 26]. The generalized VMD cross section for D* 

production can be written as 

^ o c ( l + - ^ - ) 2Q2dQiy{i + a)dy(l + e ^ ebi , (2.16) 

where m j . is the mass of the D* meson, a = 2^y', « = ^ j and where aL 

and aT are the longitudinal and transverse virtual vector meson cross sections. 

The slope parameter b describes the exponential behaviour of the cross section 

as a function of t. More details of the implementation of the model [21] in the 

MC simulation can be found in Reference [27]. 

In the evaluation of the overall cross section it turns out that following 

the suggestions in References [25, 28] for adjusting intrinsic integration limits, 

the cross section can change by more than 30%. Uncertainties in the slope 

parameter enter exponentially in the cross section. Due to these uncertainties, 

D* meson production can be described theoretically only in a semi-quantitative 

way [20]. 

2.4 Leptonic decays of charmed hadrons 

The analysis of charm production has to concentrate on specific decay channels 

not only to get an unambiguous tag for the charmed particle but also to get 

an essentially background free sample. Therefore, the deep inelastic analysis 

focuses on the (semi-)muonic charm decays. 
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The diffractively produced D*s meson decays instantaneously [5] 

according to D*s -» Dsl {BD.^Dsl = 0.942 ± 0.025) and D*s -> Dsn° 

{BD.^Di7ro = 0.058 ± 0.025). The diffractive analysis is based exclusively on 

the subsequent leptonic decay chain Ds -+ r —> ß. 

Muonic decays of charmed particles 

The experimental knowledge of mass, decay length and muonic branching ratio 

for charmed hadrons relevant to this analysis is summarized in Table 2.1. 

For the charged charmed particles the muonic branching ratios are not well 

known. Because in the muonic decay there is always a neutrino (but possibly 

also other neutrals) escaping detection, it is experimentally very difficult to 

simultaneously tag the particle type and measure the branching ratio. Because 

of this difficulty, usually a combined muonic branching ratio is determined: 

Bc-fß = B •£h^ß E^s. h—>fj.X} (2.17) 

where Ph is the production probability for a specific charmed hadron 

he(D°,D+,Df,A+). 

Similarly, a combined muonic branching ratio for charged charmed hadrons 

(hch) can be defined: 

(2.18) 

where Phch is the production probability for a specific charged charmed hadron 

with respect to all charged charmed hadrons hch e (D+, Df, A+). 

Details about the treatment of semi-leptonic decays can be found in Ref

erence [32]. The semi-muonic decays taken into account in the analysis are 

summarized in Table 2.2. 

hadron mass (MeV) er {ßm) hadron ->• ßX (%) 

D» 1864.5 ±0 .5 124 6.6 ± 0.8 [29] 
D+ 1869.3 ±0 .5 315 17.2 ± 1 . 9 [30] 

Df 1968.6 ±0.6 148.6 5.0 ± 5.4 [30] 

A+ 2284.9 ± 0.6 61.8 4.5 ± 1 . 7 [31] 

Table 2.1: The current knowledge of mass, decay length and muonic branching 
ratio of charmed hadrons. 
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Figure 2.4: Feynman-diagram for the decay Ds —> TVT. 

Tauonic Ds decay 

Our diffractive charm production search focuses on the decay chain 

Ds -4 r -4 fj, in order to get an unambiguous Ds tag with the double 

decay signature in the emulsion. Therefore, the decay Ds -4 T vT is reviewed 

here. 

The branching ratio for the decay Ds -4 TVT, shown in the Feynman dia

gram in Figure 2.4, is written as 

G F Vcl f p. TD, m2
Tmp3 (2.19) 

where G F represents the Fermi constant, Vcs the CKM-matrix element, fo, the 

decay constant, TD, the life-time of the Ds meson, mT the mass of the r lepton 

and mo, the mass of the Ds meson. 

decay channel branching decay channel branching 

rat io ra t io 

D° -4 M+ ^ K- 0.032 D+ -4 ß+ vß K11 0.07 

D° -4 ß+ vß K*- 0.027 D+ -4 ß+ vß K*° 0.044 

D° -4 ß+ vß K° -K- 0.002 D+ -4 ß+ vß K° n° 0.005 

D° -4 p + ^ A"" 7T° 0.002 D+ -4 ß+ vß K~ n+ 0.032 

£ ° - 4 jU+ ^ K*° 7T- 0.004 D+ -4 ß+ Vß K*° TT0 0.011 

0 ° -4 /i+ vß K— n° 0.004 D+ -4 ß+ vß K*- n+ 0.011 

D° - 4 ^ + ^ 7T- 0.002 D+ - 4 (M+ Vß 7T° 0.001 

L>° -4 JJ+ !/„ p - 0.002 D+ - 4 ß+ Vßt] 0.001 

A+ -4 M+ i/„ A° 0.021 D+ - 4 / i + i/f, r / 0.001 

A+ -4 ß+ i/„ E° 0.005 D+ -4 /J+ ^ p° 0.001 

A+ -^ ß+ vß E*° 0.005 D+ - 4 ß+ Vß UJ 0.001 

A+ -4 fj,+ vßn 0.003 Df - 4 ß+ Vß 1] 0.025 

A+ -^ /,+ vß A0 0.002 Df - 4 ^ + i/^ 7]' 0.008 

A+ -4 p + Vß p+ TV 0.006 Df -4 ß+ vß 4> 0.02 

A+ -4 y+ vß n TT° 0.006 Df -4 ,u+ l/„ ÄT+ Üf- 0.005 

Df -> M+ !/„ K° X 0 0.005 

Table 2.2: Muonic branching ratios used in the analysis [32]. 
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If all variables would be known independently, we would be able to calculate 

the tauonic branching ratio. However, the decay constant fo, is usually derived 

from measurements of the purely muonic and tauonic branching ratios (and 

amounts to fo3 = 254 ± 25 MeV [33]). Therefore, in the following we use 

the measured value of BD,^,TVX = 0.07 ± 0.04 [5]. 

2.5 Present experimental status 

To study neutrino induced charmed particles, very massive detectors are needed, 

because of the relatively small neutrino cross section and the presently available 

neutrino beam intensities. On the other hand charmed particles have a very 

short lifetime that requires a high spatial resolution for direct detection. There

fore, most of the earlier experiments investigating charm production relied on 

the measurement of inclusive muonic decays. The most relevant experiments 

in this field are E531, CCFR and NuTeV at Fermilab, and BEBC, CDHS, 

CHARM, CHARM II and NOMAD at CERN. 

In only two experiments nuclear emulsion was used: at Fermilab by the 

E531 experiment and at CERN by the CHORUS experiment. 

A short summary of the experimental apparatus for each of the experiments 

is given, before we describe the CHORUS detector in detail in the next chapter. 

• E531 

In the E531 experiment [34], 23 liters of emulsion are used as primary 

neutrino target in the Fermilab wide-band neutrino beam. The target is 

followed by a drift chamber spectrometer with a wide angular acceptance 

and a time-of-flight (TOF) system equipped with scintillator hodoscopes. 

Further downstream, a lead-glass calorimeter (AE/E = 0.14/i/Ë) is fol

lowed by an iron calorimeter (AE/E = l.l/y/Ë) interspersed with scintil

lator planes. An iron hadron absorber and scintillator planes are installed 

to identify muons. The experiment is optimized to measure hadronic de

cays of charmed particles. The momentum resolution of decay tracks is 

given by A p = v
/(0.004p2)2 + (0.014p)2. The data taking period covers 

1978- 1981. 

• CCFR 

The most recent results from the CCFR collaboration come from data 

taken in 1985 and 1987 in the Fermilab wide-band neutrino beam. The 

detector [35] is constructed as a target calorimeter followed by a toroidal 
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muon spectrometer. The calorimeter consists of iron plates interspersed 

with scintillators and drift chambers. The measured energy resolution is 

AE/Ehad = O.S9/\/Ehad. The muon spectrometer has drift chambers for 

muon tracking and hodoscopes for triggering. The momentum resolution 

is Ap/p = 0.11. 

• NuTeV 

The NuTeV experiment [36] took data during the period 1996 - 1999 in 

the Fermilab wide-band neutrino beam. The detector consists of a tar

get calorimeter followed by a toroid spectrometer. The calorimeter is 

composed of steel plates acting as target, interspersed with liquid scintil

lator counters and drift chambers to reconstruct tracks and measure the 

energy deposition. The hadronic energy resolution of the calorimeter is 

AE/E = 0.86/VE. The spectrometer measures charge and momentum 

of muons (p > 5 GeV) with a resolution Ap/p = 0.11. 

• BEBC 

The BEBC experiment took data in the CERN narrow-band and wide

band neutrino beams in the 1970's and 1980's. The cryogenic bubble 

chamber has a 10 m3 fiducial volume surrounded by a 3 Tesla supercon

ducting magnet and is supplemented with a two-plane 150 m2 external 

muon identification system. 

. CHARM 

The CHARM experiment [37] took data in the CERN narrow- and wide

band neutrino beam in the early 1980's. The detector is composed of a 

fine grained calorimeter followed by a muon spectrometer. The calorime

ter consists of marble (CaC03) plates sandwiched with scintillation coun

ters, proportional drift tubes and streamer tubes. The muon spectrometer 

consists of an iron toroid spectrometer surrounded by a magnetized iron 

frame and is instrumented with proportional drift chambers. The hadronic 

energy resolution is AE/Ehad = 0A9/y/Ehad. The muon momentum res

olution Ap/p is 0.15 to 0.20 on average. 

• CDHS 

The CDHS experiment [38] took data in the early 1980's both in the 

narrow-band and in the wide-band neutrino beams at CERN. It consists 

of a calorimeter with toroidally magnetized iron plates sandwiched be

tween planes of scintillator planes and drift chambers. Depending on 
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the interaction vertex with respect to the segmentation, the hadronic en

ergy resolution varies between AE/Ehad = 0.58/\/S/,Od and AE/Ehad = 

0.70/V-Efcad- The muon momentum is measured in a magnetic field with 

an average resolution Ap/p of 0.09. 

• CHARM II 

The CHARM II experiment [39] collected data during the period 1987 -

1991 using the CERN wide-band neutrino beam. The target is composed 

of glass plates interspersed with streamer tubes and scintillation counters. 

The electromagnetic energy resolution is AE/E — 0.09 + 0.15/VE and 

the hadronic energy resolution is AE/Ehad = 0.02 + 0.52/VBw- The 

target is followed by a muon spectrometer with a resolution Ap/p = 0.13 

at 20 GeV. 

• NOMAD 

The NOMAD detector [40], located behind the CHORUS detector in 

the CERN wide-band neutrino beam, consists of a 2.7 ton active drift 

chamber target, a transition radiation detector, a pre-shower calorime

ter (AE/E = \.Q/y/(E)), and an electromagnetic calorimeter (AE/E = 

0.01 + 0.032/y/(E)), all located inside a dipole magnetic field of 0.4 T. In

stalled outside the magnetic field is an iron-scintillator hadronic calorime

ter (AE/E = 1.0/y/(E)) followed by steel absorbers instrumented with 

drift chambers for detection and tracking of muons. The muon momentum 

resolution is Ap/p — 0.03 for momenta below 20 GeV. Data taking took 

place in the period 1994 - 1998. 

Prom the point of view of charm physics the experiments mentioned above 

contributed to measurements of the charm production cross section (relative to 

the full CC cross section), the charm quark mass, the strange sea and the charm 

fragmentation function. Details of the results from the other experiments are 

given in the relevant sections of the analysis chapters. 

Before CHORUS the E531 experiment was the only detector allowing direct 

detection and reconstruction of hadronic charm decays. Therefore, it could 

provide the relative production rates of the different charmed particle types, 

which lead to the first, and until this work only, direct measurement of the 

CKM matrix element VCd [17]. 

Concerning diffractive Ds production two results are available. One result 

combines all available experimental bubble chamber data [41], and recently the 
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NuTeV collaboration reported "evidence for diffractive Ds production" [42]. 

For charm studies the CHORUS experiment offers the possibility to observe 

and identify in the emulsion the primary neutrino vertex, as well as the charmed 

particle decay. Therefore, a background free sample is obtained that is used in 

the following analysis to study charm kinematics and properties. 
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Chapter 3 

The CHORUS experiment 

Magic is any sufficiently advanced technology. 
Arthur C. Clarke [43] 

The CHORUS (CERN Hybrid Oscillation Research Apparatus) experiment 

has been designed to search for neutrino oscillations of the type uß —» vT. 

It aims primarily at the detection of vT induced charged current interactions 

vT N -> T~ X. Due to the short lifetime of the r lepton (er ~ 90 /urn) excellent 

spatial resolution is needed. Therefore, nuclear emulsion is used simultaneously 

as a neutrino target and as a tracker in three dimensions with sub-/mi resolution. 

It allows to examine the primary interaction vertex along with any short-lived 

particle decay. In this thesis, we report on a study of the production and decay 

of - also very short lived - charmed particles. 

The topology and kinematics of the neutrino events are obtained by com

bining data from the electronic detector with tracks measured in the integrating 

emulsion detector (hybrid setup). The electronic detector information is used to 

predict the particle trajectories in the emulsion. Automated microscopes follow 

these trajectories through the emulsion until a primary neutrino interaction is 

found. 

To match electronic detector tracks with emulsion tracks, the emulsion is 

interspersed with layers of high resolution scintillating fiber trackers. For the 

kinematic reconstruction, downstream of this target area a hadron spectrom

eter, a calorimeter and a muon spectrometer are situated. The detector is 

schematically shown in Figure 3.1. 

The CHORUS experiment took data with emulsion target in the period 

1994 - 1997. In 1998 neutrino and anti-neutrino data were taken for calibra-

23 
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tion purposes and for dedicated studies, in particular for a structure function 

measurement using the calorimeter as target [44]. 

In this chapter we describe the main points of the neutrino beamline, the 

CHORUS subdetectors relevant for our work, and the properties, handling and 

scanning of the emulsion target. A complete and detailed description of the 

experimental setup can be found in Reference [45]. 

Calorimeter 
Magnetic 

Spectrometer 

' ° n S <*« rom^ 

I 
Figure 3.1: The CHORUS detector. 

3.1 Neutrino beam 

The CHORUS experimental setup has been installed in the beamline of the 

West Area Neutrino Facility (WANF), which was operated in the wide band 

mode [46, 47]. The layout of the beam line is shown in Figure 3.2. 

Protons are accelerated with the Super Proton Synchroton (SPS) to 450 

GeV in a cycle of 14.4 s. They are extracted in two 6 ms long spills, separated in 

time by 2.7 s, and then stopped in a beryllium target producing mainly pions and 

kaons. For the neutrino beam a sophisticated setup of pulsed magnetic lenses 

(horn and reflector) focuses the positively charged mesons while the negatively 

charged mesons are bent out of the beamline. The mesons decay in flight in 

a 290 m long evacuated tunnel and produce neutrinos mainly via the decay 
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Figure 3.2: Schematic overview of the neutrino beamline WANF (not to scale). 

channels 

7T+ -> n+v„, 
K+ 
K+ - * T T V * V 

M+*V, (3.1) 

The charged leptons from the decay as well as the remaining not-decayed 

mesons are absorbed in a beamdump of iron and a 400 m long path through 

earth. 

For the whole neutrino beamline a Monte-Carlo (MC) simulation has been 

developed (GBEAM [48]). The resulting energy spectra of the wide-band beam 

composition - consistent with measurements [44] - are displayed in Figure 3.3. 

The neutrino beam consists mainly of muon neutrinos with a mean en

ergy {EVy) = 27 GeV. Contamination with other (anti-)neutrino flavours is 

20 40 60 80 100 120 140 
Ev(GeV) 

Figure 3.3: The neutrino spectrum in the CHORUS experiment. 
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unavoidable. Muon anti-neutrinos primarily result from K° decays and the re

maining 7T~ component in the beam. Electron (anti-)neutrinos come mainly 

from semi-leptonic K± decays. Furthermore, in the production target and in 

the beamdump Ds mesons are produced. Their decays via D+ —y T+VT and 

Dj —» T~VT, T~ -¥ liTVpV-r result in an almost negligible prompt vT back

ground [49, 50]. 

3.2 The experimental setup 

3.2.1 Target area 

In the target area, stacks of nuclear emulsion and scintillating fiber trackers are 

installed: 

• Emuls ion [51] 

A volume of 206 liters nuclear emulsion, in total weighing 770 kg, is used 

in CHORUS for two purposes: as 'bulk sheets' in the primary neutrino 

target and as 'changeable (CS) and special sheets (SS) ' for high precision 

tracking to interlink the electronic trackers and the bulk emulsion. 

The bulk emulsion is distributed over 4 stacks, each consisting of eight 

modules with a size of 0.36 x 0.72 m2 installed on aluminium frames, and 

covering in total an area of 1.42 x 1.44 m2. Each module consists of 36 

individual plates. Every plate has a 90 /im thick plastic base covered with 

350 /an emulsion on both sides. Along the beam direction, the installed 

emulsion amounts to about 4 radiation lengths and 0.3 interaction lengths. 

• F i b e r t rackers [52] 

Fiber trackers are placed between the emulsion stacks to predict exit points 

from the upstream emulsion and directions of particle trajectories. Every 

tracker contains four tracker planes, allowing to measure unambiguous 

track parameters from orthogonal small-angle stereo projections (y, z, y', 

z'). The projections y' and z' are rotated by 8° with respect to y and z. 

A tracker plane consists of seven layers of scintillating fibers. The fiber 

diameter is 500 /im. One end of the fibers is covered with aluminium that 

acts as a mirror, while the other end is attached to an opto-electronic 

chain with a CCD camera. In total one million fibers are connected to 58 

opto-electronic readout chains. 
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The achievable precision in track reconstruction increases successively in the 

upstream direction from the fiber trackers (150 x 150 /jm2) to the bulk emulsion 

plates (10 x 10 /im2). The angular precision for the fiber tracker is about 2 mrad, 

and 1.5 mrad in the emulsion. 

To reduce fading of the latent images in the emulsion, the whole target 

region is inside a coolbox and kept at a temperature of (5.0±0.5)° C and a 

relative humidity of 60%. 

Since the neutrino interaction probability is proportional to the amount 

of traversed mass, we can inspect the detector by neutrino tomography. The 

distribution of (target) material can be seen in Figures 3.4, where all recon

structed neutrino interaction vertices from data taken in the period 1994 - 1997 

are plotted in the longitudinal and the transverse projections. 

In the neutrino tomography image of the longitudinal projection the dis

tribution of emulsion stacks and fiber tracker planes is visible. Furthermore, 

between -70 cm and -50 cm the presence of a pilot fiber target setup [53] can be 

seen. In the transverse projection the small gaps showing the aluminum frame 

holders between the eight emulsion modules are just visible. 

•60 -40 -20 20 40 60 

(a) (b) 

Figure 3.4: Neutrino tomography image of the target area in longitudinal (a) 
and transverse (b) projection. 
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3.2.2 Hadron spectrometer 

An air-core magnet [54] with a hexagonal shape is used for momentum and 

charge determination of charged particles (particularly hadrons) emerging from 

the target area. The magnet produces a toroidal field of 0.12 T and it is pulsed 

synchronously with the neutrino beam. 

In front of the magnet and behind, planes of scintillating fiber trackers are 

installed to measure the trajectory curvature. To reach even higher precision of 

trajectory parameters, an emulsion tracker (ET) has been installed inside the 

magnet before the 1996 run. 

The momentum resolution is the quadratic sum of two parts: (a) uncer

tainties of the track parameters before and after traversing the magnet 

Ap 
3.5% x p/GeV; (3.2) 

Pmeas. 

and (b) the momentum independent error due to multiple scattering inside the 

magnet 

Ap 

Pscatt. 
= 22%. (3.3) 

The momentum resolution of the spectrometer as a function of the momentum 

is depicted for muons in Figure 3.5. 

10 12 14 16 18 20 
Muon momentum (GeV) 

Figure 3.5: The muon momentum resolution for the hexagonal magnet spec
trometer. 



3.2. THE EXPERIMENTAL SETUP 29 

3.2.3 Honeycomb chamber 

A honeycomb tracker has been installed during the 1996 run to improve the 

track matching between the hexagonal magnet and the calorimeter. 

The tracker planes are built-up from hexagonal cells, where each cell is 

acting as a single wire drift chamber. The position of passing-through charged 

particle trajectories is extracted by measuring the drift time of the ionization 

electrons. The tracker consists of 3 modules of 6 planes (~ 3 x 3 m2) at angles 

of 0° and ±60° with respect to the horizontal Y-axis. The obtained residual 

after alignment and calibration is typically about 300 /im. 

Rasnik a l ignment sys tem 

In 1996 three RASNIK systems (Relative Alignment System of NIKhef) have 

been installed to monitor the relative alignment of the honeycomb chambers 

(a fourth system has been installed to monitor the alignment of the hadron 

spectrometer). 

The basic principle of the RASNIK is to project a coded mask - a finely 

detailed image (85 /im black-and-white squares on a raster) - through a lens onto 

a CCD camera. When the image of the mask moves, the local displacement is 

measured with a precision of a few /im. The pattern is used to decode the global 

position information. More details of the setup of the RASNIK system can be 

found in [55]. 

Figure 3.6 shows the movements registered with one of the RASNIK systems 

for a one month period in 1997 data taking. The upper two plots represent the 

lateral movements, whereas the lower plot shows the longitudinal movement 

(which is less precisely determined). The maxima and minima correspond to 

daily changes of the temperatures. In the substructure of the curves, the cycle 

of the ventilation system is just visible. Indicated in the figure are movements 

larger than the daily changes that could be correlated with manual interventions 

in the experimental area. 

3.2.4 Calorimeter 

It is important to measure the energy and to some extent also the direction and 

other characteristics of electromagnetic and hadronic showers emerging directly 

or indirectly from a neutrino interaction in the target. This is done in the 

calorimeter which has three segments with different granularity and dimensions. 

One segment (EM) is primarily sensitive to the electromagnetic component of 
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Figure 3.6: A one month record of movements along the three axes measured 
by one honeycomb chamber RASNIK system. 

showers and two segments (HAD1 and HAD2) to the hadronic part. 

The modules EM and HAD1 have been built using a 'spaghetti' tech

nique [56], where scintillating fibers (1 mm diameter) are embedded in a lead 

matrix. In HAD2, lead plates (16 mm thickness) are interspersed with scin

tillator strips (4 mm thickness). Between the calorimeter modules streamer 

tubes are mounted to get tracking information, in particular concerning muons. 

Details on the construction of the calorimeter can be found in Reference [57]. 

The volume ratio between lead and scintillator is 4:1 to reach an opti

mal compensation of the differences in detector response for electromagnetic 

and hadronic showers. This provides a good resolution for the measured total 

shower energy. The total thickness of the calorimeter corresponds to about 150 

radiation lengths or 5.6 hadronic interaction lengths. 

The energy resolution for electrons and pions is shown in Figure 3.7. For 

electrons it can be parameterized as 

AE _ (13.8 ± 0.9 )% 

~Ê ~~ y/WjGeV) 
+ (-0.2 ± 0.4) %, (3.4) 
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and for pions as 

AE (32.3 ± 2.4)% 
+ (1.4 ± 0.7) %. (3.5) 

E yjE (GeV) 

Details on the measured performance of the calorimeter can be found in Refer

ence [58]. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 

; /7(E (GeV)) 

(a) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 
7/,/<E (GeV)) 

(b) 

Figure 3.7: Measured energy resolution of the calorimeter for electrons (a) and 
pions (b), in the latter case compared with Monte-Carlo predictions. The solid 
straight lines represent the resolution function resulting from a fit to the data 
points. 

3.2.5 Muon spectrometer 

In the muon spectrometer, situated downstream directly behind the calorimeter, 

the momentum and charge sign of muons are determined. The calorimeter stops 

nearly all particles, except muons with a momentum greater than 1.5 GeV. 

The spectrometer is built-up from six toroidally magnetized iron disk modules 

(375 cm in diameter) sandwiched by seven tracking units with streamer tubes 

and drift chambers. The drift chamber modules are installed under 0° and ±60° 

with respect to the horizontal Y-axis. 

Embedded in the iron disks are scintillation counters primarily delivering a 

muon trigger signal. In addition, a range measurement and thus a momentum 

determination of muons with a momentum of less than 5 GeV at the entrance 

to the spectrometer is possible. 
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The momentum resolution of the muon spectrometer is shown in Figure 3.8. 

10 10 
Muon momentum (GeV) 

Figure 3.8: Momentum resolution for muons measured in the muon spectrome
ter. 

3.2.6 Trigger system 

The trigger system has been designed to primarily select neutrino induced inter

actions in the emulsion target and to reject background from cosmic rays, beam 

muons and neutrino interactions outside the target. In Figure 3.9 the setup of 

the scintillator hodoscopes (E, T, H, V and A) is shown. The E and T planes 

are installed between the emulsion target and hadron spectrometer, whereas H 

is located downstream of the hadron spectrometer. The A and V planes are 

installed upstream of the emulsion target. The size of the V plane has been 

chosen to fully cover the area defined by the angular acceptance of the E, T and 

Plane A V E T H 

Strips/layer 16 20 7 15 20 
Strip width (cm) 20 20 20 10 10 
Strip length (cm) 200 320 148 160 200 

Orientation vert. vert. vert. hor. hor. 
Area covered (cm2) 200 x 320 400 x 320 150 x 148 160 x 160 200 x 200 

Table 3.1: Segmentation characteristics of trigger hodoscopes. 
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Figure 3.9: Schematic view of the trigger hodoscopes. 

H planes, as well as the calorimeter and muon spectrometer. The segmentation 

characteristics of the planes are summarized in Table 3.1. 

A neutrino trigger in the target region is defined by a coincidence of hits in 

the hodoscopes E, T and H consistent with a particle trajectory with tan 6 < 0.20 

with respect to the neutrino beam axis. A veto is formed by any combination of 

a counter hit in the veto hodoscopes (V and A). Precise timing between T and V 

is needed (2 ns FWHM) to avoid vetoes due to backscattering of particles coming 

from neutrino interactions in the target. The trigger efficiency is typically 99%. 

Details of the trigger system can be found in Reference [59]. 

3.3 Emulsion target 

Using nuclear emulsion for visualizing particle trajectories is an old technique. 

In fact, many particles (n+,ir~, n°,K+
} K~, E+,Ä [60]) have been discovered 

with nuclear emulsion as a detector. Modern emulsion detectors are still based 

on the same principle, but their performance, ease of handling and their scanning 

have been improved tremendously. In this section, the emulsion handling and 

scanning is summarized, while including specific details relevant for the work 

described here. 
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Figure 3.10: Distortion correction. 

3.3.1 Track formation 

Along their path through the emulsion, charged particles break the bonds of 

silver-bromide molecules. The bromide diffuses slowly outward and along the 

particle trajectory specks of metallic silver remain behind. During the exposure 

those specks are not visible, they form a latent track image. The specks serve as 

active centers during the development process at a later stage. After subsequent 

chemical fixing and drying of the emulsion, grains of metallic silver form a visible 

track along the trajectory of any ionizing particle having passed through. 

3.3.2 Emulsion shrinkage and track distort ion 

After the development and fixation, the CHORUS emulsion has shrunk by a 

factor of typically 1.9. This shrinkage factor is locally constant. After the 

development, emulsion is still hygroscopic so that the equilibrium thickness 

depends on the ambient humidity and temperature. Therefore, scanning and 

storage of emulsion plates requires controlled environmental conditions. 

In the preparation phase, processing the emulsion generates inherent stresses 

that - after development - result in a gradual non-linear lateral displacement of 

the emulsion, increasing from the plastic base to the surface. Tracks are thus 

distorted in the emulsion. The distortion factor is locally constant and can 

be derived from arbitrary straight through-going reference tracks nearby (Fig

ure 3.10). Since the emulsion is fixed on the plastic base, grains close to the 
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base have not been displaced and the correct track angles of the reference track 

can be measured across the base. Extrapolating the track through the emulsion 

then describes correctly the original particle trajectory. The lateral distances 

of the grains from the measured track to the reference trajectory reflect the 

distortion correction as a function of the depth. 

3.3.3 Swelling of emulsion 

Events can be measured most accurately by measuring in three dimensions the 

coordinates of each single grain along a track. However, after the standard 

development procedure subsequent silver grains belonging to a traversing track 

are difficult to be resolved under a microscope due to the focal depth. In this 

case a special treatment with chemicals can be applied to uniformly expand 

(swelling due to water absorption) the emulsion layer in the 'beam' direction 

and to get a better separation of the grains. 

Procedure 1 Temperature Time Purpose 

water 23.5°C 4h slow expansion 
cooling 5°C lh 

CH3COOH 5°C 2h fast expansion 
Na2S04 23.5°C 24h stop expansion 

D-sorbitol + glycerin 
+ water (0.823:0.144:1) 

23.5°C 24h fixing 

P rocedu re 2 Temperature Time Purpose 
water 23.5°C 4h slow expansion 

cooling 5°C lh 
CH3COOH 5°C 2h fast expansion 

Na 2S0 4 23.5°C 24h stop expansion 
alcohol (60%) + glycerin (25%) 

+ water(15%) 
23.5°C 24h fixing 

Procedure 3 Temperature Time Purpose 
water 19°C 10h slow expansion 

alcohol (50%) + glycerin (50%) 19°C 22h stop expansion 
and fix 

Table 3.2: Procedures for emulsion swelling. 

This technique has been applied for the special event presented in Chap

ter 5. Several tests have been performed with a series of test emulsion plates 

using different procedures and chemicals. Plates were hung in a basin filled 

with a specific test solution, while kept under constant temperature. In this 

way a uniform expansion was obtained. Different trials are listed in Table 3.2. 

Procedure 3 has been chosen to be applied on the CHORUS emulsion plate 
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containing the above mentioned event. Procedure 2 was abandoned because the 

expansion rate was too small. The plates treated with procedure 1 showed a 

proper expansion, however sorbitol crystallized and damaged the surface of the 

emulsion after drying. 

3.3.4 Automatic scanning 

Until approximately 10 years ago, emulsion could be read out exclusively by 

manually controlled microscopes. However, analyzing the CHORUS emulsion 

manually would take hundreds of man-years. The CHORUS experiment is only 

possible thanks to the development of automatic scanning systems [61]. 

Using track predictions from the target tracker, automated microscope sys

tems controlled entirely by computers locate in good approximation the cor

responding tracks in the emulsion. A CCD camera takes images at different 

depths resulting in a tomographic digital representation of the emulsion. Us

ing automatic control, identified particle trajectories are then traced backward 

through the emulsion plates until the primary vertex is found. 

The technique for automatic scanning has been pioneered by the Nagoya-

University group [61]. Recently the CERN and NIKHEF groups have jointly 

CCD 
Mpixel 

Objective, 
shutter, 

light source 

Data (LVDS' 

• 

Clean jPOom •*-
10 m Opera tor room 

Figure 3.11: Schematic description of the track recognition by an automatic 
scanning system (see text). 
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set up a laboratory for automatic emulsion scanning at CERN [62]. 

In the Nagoya-setup tracks are recognized by hadware controlled summing 

of the binary images while applying a differential shift corresponding to the 

predicted track angles. At the correct differential shift a track shows up as a 

pronounced peak or cluster in the summed image. 

In the CERN/NIKHEF-setup a software controlled, and thus more flexi

ble track detection method has been implemented. The CCD-images are first 

digitally filtered to enhance the grain signal. The barycentres of pixel clusters 

over threshold are then used as grain coordinates. From these three-dimensional 

coordinates (about 3000 per layer) the particle trajectories are reconstructed. 

A schematic description of the CERN/NIKHEF scanning station1 is given 

in Figure 3.11. A digital CCD camera2 (1024 x 1024 pixels, 15-30Hz) reads the 

images from the microscope optics.3 The online data taking is controlled by a 

personal computer (PC) equipped with a digital signal processor (DSP) board.4 

Apart from filtering and identifying grains, the DSP is also used to control the 

camera and the shutter of the optics. Microscope tables5 (800 x 400 mm2) are 

positioned with micro-stepper motors via the serial interface of the PC. The 

compressed grain data (19 bits/grain) are sent via fast 100 MB/s ethernet to a 

cluster of dual Pentium III machines, where the tracking is performed. Results 

from the data taking are stored in an Objectivity database running on a SUN 

Sparc5. Environmental conditions are not only controlled but also monitored 

and stored in the database. For physics analysis, the most relevant data that 

need fast access (e.g. reconstructed tracks) are stored on 300 GB of RAID disks. 

For the low level data (raw images) 1 TB tape space on the High Performance 

Storage System (HPSS) system at CERN has been allocated. Four scanning 

stations (3 CERN, 1 NIKHEF) have been equipped with the described set-up. 

Other scanning laboratories contributing to the CHORUS analysis are lo

cated in the universities of Ankara, Bari, Naples, Rome, Salerno, Toho and 

Utsunomiya. 

3.3.5 Scanning procedure 

The scanning starts with a given target tracker (TT) track, whose corresponding 

emulsion track is searched with the automatic microscope in the CS plate. 

1 Status: Autumn 1999 
Manufactured by Thomson [63] 
Manufactured by Jenoptik [64] 
Manufactured by LSI/Blue Wave [65] 
Manufactured by MICOS [66] 
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The scanning is done by spiraling outward around the predicted position and 

searching for trajectories in the emulsion with similar direction (in the following 

also called angle) as the TT track. The spiraling stops as soon as a candidate has 

an angle in the emulsion differing by AÖ < 6 mrad from the predicted direction. 

If no such match is found, all candidates in the area of 11 x 11 microscope views 

(1 view= 120 x 90 ^m2 at 50 x magnification) with AÖ < 15 mrad are denoted 

as 'found on CS'. 

Such a track found on CS is then followed on SS (see Subsection 3.2.1), 

using the position found in CS. It is searched within 7 x 7 microscope views 

centered around the prediction and is called 'found on SS' if its angle differs by 

less than 15 mrad from the prediction. The measured S S angle becomes the 

reference for the scanning of the target emulsion. 

Starting at the back-end of the target emulsion, the initially scanned region 

is centered around the predicted position and has a radius of 15 + 50 x A8x7 pm.6 

The angular tolerance for confirming a track is 25 + 50 x A.9xr mrad. 

The confirmed tracks are then subsequently followed to the next plate. In the 

bulk of the emulsion target the plate-to-plate finding efficiency as a function of 

the track angle is shown in Figure 3.12. 

If - during scan-back - no continuation of a track is found in two subsequent 

plates, the first plate missing the track is called vertex plate and the event is 

denoted for this analysis as having its vertex located in the emulsion. 

0.98 

0.94 

0.90 

0:1 0.2 0.3 0.4 
track angle(rad) 

Figure 3.12: The plate-to-plate matching efficiency in the bulk emulsion as 
function of the track angle. 

6A6x7 is the angle with respect to the direction of the X7 testbeam in the CERN West 
Area. The muon halo of this beam reaches the emulsion target and provides a controlled 
density of reference tracks in the emulsion. 
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Figure 3.13: Screen-shot of the manual scanning program. 

3.3.6 Manual scanning 

Once a charm (or r) candidate vertex has been located by the automatic system, 

it is checked and measured extensively under manual control. To measure track 

directions in the emulsion not only sufficiently accurately but also efficiently 

in time, usually not all grain coordinates along the track are measured and 

included in the final fit. 

If the track crosses the plastic base, the entry and exit grains are measured 

to simply determine the local track angle. If the track has to be measured inside 

the emulsion layer, a distortion correction is needed using a reference track (see 

Subsection 3.3.2). 

A screen view of the program implementing decision logics and microscope 

control for manual measurements on the CERN-NIKHEF scanning stations, is 

displayed in Figure 3.13. 

The accuracy of the manual measurement depends not only on the optical 

system and emulsion quality, but also on the experience of the scanner. Figure 

3.14 shows the difference of the manually measured angles with respect to the 

automatically measured angles on a special sheet (SS) 

A<p- s«. manual ^s)2 + manual HsY- (3.6) 

The inaccuracy of a standard manual track angle measurement can therefore be 

up to 25 mrad. This has to be taken into account in the minimum visible decay 

angle (see Section 4.1.2). 
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Figure 3.14: Accuracy of the manual track angle measurement. 

3.4 Event reconstruction 

Signals of the electronic subdetectors are recorded as 'raw' data. Over the 

running period of one year they amount to about 400 GB. Event reconstruc

tion starts from the raw data using the reconstruction and analysis package 

CHORAL [67]. The reconstruction output of an event gives access to informa

tion that can be used for the analysis. 

Inside CHORAL, algorithms perform 'stand-alone' track finding in all sub-

detectors. Trajectories are then matched between different subdetectors, before 

the ones emerging from the target region are used to predict the track inside the 

emulsion target. 

To find and identify muon tracks in the muon spectrometer and determine 

their momentum and charge sign, different methods are implemented in the 

CHORAL package. The SAMTRA method is based exclusively on the drift 

chamber information while the DATSPC method uses streamer chamber data -

both wire and strip hits - as well. 

The momentum fitting part of SAMTRA uses a global fit along the length 

of the track, taking into account the energy loss and multiple scattering [68, 69] 

in iron and scintillators. Another method, SUPERSAMTRA, uses the DAT

SPC information with the corresponding driftchamber hits together with the 

SAMTRA momentum fitting part to obtain the momentum value. For muons 

in the low momentum range (< 5 GeV) the CAMMOR method is applied to 

determine the stopping range [70] inside the spectrometer, allowing to derive 
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the momentum through the range-energy relation [71]. 

For each muon track in every event there are usually several track candi

dates with momentum values and charge sign (except for CAMMOR). A de

cision routine chooses the 'best' result, taking into account the reconstructed 

track length, the fit quality (x2) and whether the muon stopped inside the muon 

spectrometer. 

For our work, the most relevant output parameters of the reconstruction 

program are the vertex location, the direction and momenta of the identified 

muons and the visible energy in the calorimeter. 

In the following this 'electronic' information will be combined with emulsion 

information (hybrid analysis) to gain insight in charmed particle production. 
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Chapter 4 

Deep inelastic charm 
production 

Neutrino physics is largely an art of learning a 
great deal by observing nothing. 
Hairn Harari [72] 

In this chapter the procedure for analyzing charm events produced in 

charged-current (CC) deep inelastic scattering (DIS) is described and the re

sults are reported. First an introduction is given about the classification and 

signature of neutrino events in the CHORUS detector. Then the general proce

dure for the analysis chain of charm events found in the emulsion is described. 

In order to extract physics results it is necessary to model and understand the 

data in a Monte-Carlo (MC) simulation. The outcome of the comparison of MC 

simulation and data is shown and the description of the selection criteria for 

charm events is presented. 

The observed event sample is summarized in terms of event topologies and 

kinematics. Furthermore, the charm production cross section, the charm quark 

mass, charm fragmentation, the strange sea component and the weak mixing 

angle VC(j are extracted. 

4.1 Analysis procedure 

4.1.1 Classification of neutr ino events 

In CHORUS the recorded neutrino events are classified according to the num

ber of muons seen in the spectrometer. In Figure 4.1 examples of zero muon 

(0/x) (a), one muon (1/i) (b) and dimuon (2/z) (c) events in the detector are 

43 
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Figure 4.1: Examples of zero, one and two muon events in the CHORUS detector 
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(a) 

Figure 4.2: A typical neutrino interaction in emulsion (a), and the result of a 
general tracking algorithm (b). 

displayed. Neutrino interactions identified in the emulsion can be examined 

near the primary vertex down to micrometer level. A typical neutrino event 

in a single emulsion layer perpendicular to the neutrino beam is shown in Fig

ure 4.2a. The clearly visible black tracks are mainly heavily ionizing fragments 

from nuclear breakup in the interaction emitted at large scattering angles. The 

particles resulting directly from the partonic neutrino interaction are usually 

minimum ionizing, and produced in the forward direction. Since Figure 4.2a 

is only a two dimensional thin emulsion slice, particles going into the forward 

direction manifest themselves in this projection only in single spots; thus they 

are not recognizable as tracks in this figure. To visualize those tracks, a series 

of parallel emulsion layers allowing recording in a third dimension is needed. 

An outcome of such a three dimensional reconstruction {general tracking) is 

displayed in Figure 4.2b. 

4.1.2 Correcting the da ta 

To locate a neutrino interaction and - in particular - a charmed particle decay 

in the emulsion, several analysis steps have to be made. If a neutrino has 

interacted in the emulsion the event is expected to also have triggered the data 

aquisition, and to have been reconstructed from the electronic detector data. 
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Figure 4.3: Flow diagram visualizing the gradual steps in the analysis of a 
complete physics sample of charm events. 

The reconstructed particle trajectories followed backwards predict tracks in the 

emulsion. The automatic microscopes have to locate and trace these tracks 

further backwards in the emulsion, from plate to plate until a primary vertex is 

found. Only then the emulsion plate and coordinates of the vertex position are 

known so that an operator (scanner) can examine such an event in detail. 

In every step of the above procedure losses and smearing occur. These 

depend often on instrumental (and indirectly on kinematical) characteristics. 

They have to be taken into account, before an original 'physics true' distribution 

can be quantitatively associated with the corresponding measured distribution. 

Conversely, we want to design a procedure that - given a measured distribution 

- allows to reconstruct as closely as possible the corresponding 'physics true' 

distribution. For this purpose, we first describe in the following the flow dia

gram from a simulated 'physics truth' towards the final distribution of measured 

events (Figure 4.3) in more detail. 

• De tec to r recons t ruc t ion acceptance ARec 

Neutrino events are triggered in the detector and reconstructed with a cer

tain kinematic acceptance probability (short: acceptance) and (in)efficiency 

(e.g. due to dead time, misalignment, etc.). Similarly, it has to be taken 
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into account that also in the analysis, e.g. by selecting explicitly a kine

matic region, the acceptance is affected. The trigger, reconstruction and 

explicit kinematic selection together are taken care of in ARec(k), where 

k stands for all kinematic variables. It is evaluated by using a MC simu

lation. Applying our current kinematic selections e.g. for dimuon charm 

events, ARec amounts to typically 30%, when integrated over the kine

matic variables. 

• Automatic scanning efficiency AAS 

Once a measured event from the electronic detector has been reconstructed, 

the track exit points on the emulsion stack are predicted. An automatic 

microscope scanning system locates the predicted tracks, and follows them 

upstream through the emulsion plates until the primary vertex is found. 

Tracks and vertices can get lost due to wrong or inaccurate track predic

tions, as well as due to inefficiencies of the emulsion and/or of the scanning 

system. 

The vertex location efficiency of the automatic scanning process (AAS(k)) 

is evaluated from the analysis of a data sample composed of 2p events gen

erated from charmed particle decays and pions decaying in flight showing 

an identical signature in the electronic detector. 

In this sample 763 2\i events have been located in the emulsion with re

spect to an original sample of 2256 preselected 2(i events in the detector. 

The scanning efficiency AAS integrated over the kinematic dependence is 

therefore 34%. 

Unfortunately, the large number of 1/j, events scanned for the oscillation 

search could not be used for determining AAS due to a 30 GeV upper 

momentum cut that was applied on the Iß predictions. Such a cut is 

unacceptable for our work. 

• Manual scanning efficiency AM 

In the search for charm events, the located 2ß events are examined man

ually for decay topologies. Here, for a given event topology the optical 

system and the human eye introduce an additional acceptance limitation. 

This function (AMS (k)) has been estimated by a MC simulation and veri

fied by a cross check with the charm events found in the data. Taking into 

account the limited focal depth of the microscopes and the grain density 

inside the emulsion, a shortest visible flightlength of 10 fim is expected 
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Figure 4.4: Measured decay angle versus track angle (see text). 

and assumed in the estimate. 

Furthermore, in principle it is expected that inside the emulsion, the small

est visible decay angle increases with the track angle (polar angle with re

spect to the X-axis). This effect occurs because of the particular emulsion 

plate orientation with respect to the microscope optics. 

It has been found that the (presumed) smallest visible decay angle as a 

function of the track angle depicted in Figure 4.4 is in good agreement 

with the observed decays and with our MC studies. The flat behaviour 

in the range 0 < 9 < 100 mrad follows from the limited accuracy of 

the manually measured angles (see Figure 3.14). The linear trend towards 

zero as described in the CHORUS proposal (see Figure 4.4) may thus be 

too optimistic for our present data set. 

For part of the data, additional selection criteria have been applied in 

order to decrease the manual scanning load. For 1996-1997 data, candidate 

events have only been scanned manually, if a) the ß+ and the /i~ stop in 

different emulsion plates, or b) fi+ and / i " stop in the same plate but have 

a minimum distance of more than 5 ßm. These criteria have been included 
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in the MC simulation and AMS integrated over kinematics is estimated to 

be typically 82%. 

In the following sections distributions of various kinematic variables are stud

ied. The observed distributions can be corrected for the kinematic acceptances, 

cuts and (deduced or estimated) inefficiencies to obtain the corresponding 'true' 

distributions 

i W * 0 = ̂ §f*> (4-1) 

where N0bs(kj) is the observed distribution and A(kj) the acceptance, both as 

a function of the kinematic variable kj and integrated over all other kinematic 

variables. For charm events, the acceptance function is 

A(kj) = ARec{kj) AAS(kj) AMS{kj). (4.2) 

In the determination of the charm production cross section described in section 

4.2.3 we normalize with respect to the cross section for the CC event sample. 

However, this CC event sample and the charm sample cannot be compared 

on the 'emulsion level' without introducing additional biases, because of the 

unfortunate upper muon momentum cut in the CC sample. Therefore, the 

corresponding 'true' distributions of CC events observed and reconstructed in 

the detector are used for the normalization. The 'true' CC data distributions 

are obtained from the observed distributions according to Equation 4.1 with the 

acceptance function 

A(kj)=ARec(kj). (4.3) 

In summary, the corrections are evaluated by MC simulations and - where 

possible - by data, taking into account all relevant hardware and software as

pects. To get confidence in this procedure, in the following section the physics 

input coming from CC event generators is compared—as a consistency check— 

with the deduced 'true' experimental distributions. 

4.1.3 Event generation and detector response 

For the various topics studied in this thesis, different MC generators have 

been used. For simulating deep inelastic neutrino interactions, the standard 

CHORUS event generator JETTA [73] has been employed. It is based on the 

LEPTO [74] package to simulate i/ß and vT CC interactions, and JETSET [32] 
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for hadronization and decays. The structure functions are parameterized ac

cording to GRV94LO [75]. In the JETTA generator heavy quark effects are not 

implemented (see slow rescaling model Equation 2.8). 

For extracting physics parameters of charmed hadron production, a new 

fast and flexible simulation has been developed, based on the event generator 

MICKEY used for the structure function analysis in the CHORUS calorime

ter [44], This simulation uses also the GRV94LO structure function set and 

includes heavy quark effects according to the slow rescaling model. The Peter

son model (see Equation 2.13) is implemented for the charm fragmentation and 

particle decays are realized with the JETSET package. For the search of diffrac-

tively produced charmed mesons, a new event generator (ASTRA) has been 

written. The output of the generators has been interfaced to the GEANT [76] 

based CHORUS detector simulation EFICASS including all details of the de

tector and providing the appropriate detector response for the MC-generated 

events. 

In the following, some CC distributions obtained with the deep inelastic 

MC generators are compared with the 'true' data obtained with the correction 

procedure described in the previous subsection. A kinematic region that is 

dominated by deep inelastic production is selected. The selection criteria for the 

data versus MC comparison are v > 2.3 GeV, Q2 > 5 GeV2 and W2 > 2 GeV2. 

In Figure 4.5 the one-dimensional projections for the neutrino energy Ev 

(a), the momentum of the negatively charged muon pß- (b), the Bjorken x 

(c), the inelasticity y (d), the square of the transferred four-momentum Q2 

(e) and the square of the invariant mass of the hadronic final state W2 are 

displayed. The data (1994 - 1995) have been corrected according to Equation 4.1 

for instrumental acceptances and inefficiencies and they are compared with the 

JETTA MC (squares) and MICKEY MC (triangles) simulations. The data and 

MC distributions are normalized to the same number of entries. 

For the Ev (Figure 4.5a) distribution, data and MC clearly reproduce the 

shoulder of high energy (>70 GeV) neutrinos that originates mainly from the 

kaon contribution in the CERN primary meson beam. The two MC simulations 

agree with each other, however they deviate from the data points in the low part 

of the spectrum 120 < Ev < 160 GeV. This deviation can be understood in 

terms of a not fully realistic estimate of horn and reflector current in the neutrino 

beam simulation [44], of which an output sample serves as input to our physics 

MC event generation. The deviation which is minor in terms of the integrated 
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Figure 4.5: Data and MC comparison in ID projections for various kinematic 
variables. The black dots represent the - for acceptance - corrected ('true') data, 
the squares the JETTA MC and the triangles the MICKEY MC ( (a) E„, (b) 

V , ( c ) ï , ( d ) ï , ( e ) Q 2 , ( f ) n 



52 CHAPTER 4. DEEP INELASTIC CHARM PRODUCTION 

beam, anyhow largely cancels in the ratio of charm event distributions and CC 

event distributions. 

For Eß- (Figure 4.5b) both MC distributions agree with the data. Good 

agreement also exists for Bjorken x (Figure 4.5c). 

In the ^-distribution (Figure 4.5d) the MC distributions agree, except at 

y < 0.25 where the data are higher than MC, and at y > 0.9 where they are 

lower. These deviations could be avoided by applying more stringent cuts. How

ever, the systematic error originating from this deviation is small in comparison 

to the statistical error of the charm data sample. In favour of keeping more 

charm events in the sample this deviation has been accepted. 

For Q2 (Figure 4.5e) and W2 (Figure 4.5 (f)) the agreement of both gen

erators and the data is again within the error bars. 

In conclusion both simulation methods, JETTA and MICKEY, are in over

all agreement with our CC data. Hence, both generators can model the observed 

CC data including all detector effects and they can be used in the analysis of 

the charm data sample. 

4.1.4 Charm event selection 

For our study of CC deep inelastic charm production, events with two muons 

of opposite charge in the final state are preselected (see Sections 2.2 and 2.4). 

Identification and reconstruction of the /x+ and p,~ momenta in the muon spec

trometer is required. 

Furthermore, only those events are used in this analysis where the vertex 

is reconstructed in the emulsion. The emulsion plates are distributed for scan

ning over several laboratories. However, for the CHORUS Phase I analysis and 

scanning (used in our work), it is only the Nagoya University laboratory - who 

pioneered automatic scanning - that really counts in terms of scanning capacity. 

Therefore, we concentrate on events with a vertex position predicted in emulsion 

plates that have been scanned at Nagoya University. 

Using the electronic prediction, the dimuon events are scanned by auto

matic scanning systems, and after the location of the primary vertex, each event 

is examined by an operator for a charm-type decay topology. The outcome of 

this selection is our raw charm data sample. 

The CC (1/i) event sample selected for our analysis has one identified muon 

in the spectrometer with negative charge and a reconstructed vertex in the 

emulsion. The selected kinematic region is v > 2.3 GeV, Q2 > 5 GeV2 and 
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W2 > 2 GeV2. 

In Table 4.1 the year-by-year event samples with a reconstructed vertex in 

the emulsion and the events with a vertex located by the automatic scanning 

system are summarized. 

In 1995 and 1997 there are less events with a located vertex in the emulsion 

target than expected from the number of recorded CC events. The reason is 

that in 1995 a set of emulsion plates was not usable for scanning because of 

a damaged surface. The fraction of located vertices in 1997 data is smaller 

because internal scanning criteria have been changed to decrease the scanning 

load. This has been taken into account in the analysis. 

After the manual scanning, the number of found charm events also reflects 

in the year-by-year statistics of the automatically scanned and located events as 

depicted in Figure 4.6. In total a sample of 132 charm decays has been obtained. 

Year 1994 1995 1996 1997 all 
Iß events predicted in the emulsion 38014 54141 68508 80973 241636 
2ju events predicted in the emulsion 378 540 610 724 2252 

Events tried for scanning 355 371 583 662 1971 
ß+ tried for scanning 320 311 567 647 1845 

Event found on CS 211 216 422 568 1417 
Event found on SS 199 198 366 329 1092 

Vertex in bulk plate 3-36 137 123 270 233 763 

Table 4.1: Raw data event samples for our analysis. 

Charged 
72 events 

• Neutral 
60 events 

94 95 96 97 (year) 

Figure 4.6: Number of charm events found, split into neutral charm and charged 
charm decays. 
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4.2 Results 

Apart from E531, CHORUS is the only experiment where charmed particles 

can be directly observed in emulsion, both at the production and at the decay 

vertex. At the time of this analysis only a limited event sample of muonic charm 

decays was available (Phase ƒ scanning). In view of the Phase II event sample, 

being scanned presently, which includes hadronic decay channels and which is 

expected to be more than an order of magnitude larger, our analysis can serve 

as a basis for upcoming studies. In this perspective it is attempted to find an 

appropriate level of detail in presenting the results. 

4.2.1 Charm topologies 

In the observed charm decays, contributions from D°, D+, D+ and A+ are ex

pected. In the emulsion, neutral charmed particles can be distinguished from 

charged charmed particles. However, the particle type (D+, D+ or A+) can

not be identified on a single event basis.1 The type of information that 'can be 

V ^ 
^ 
V 

(a) (b) 

Figure 4.7: Topology of charm events where charged particles are visible in 
the emulsion (solid lines), and neutral particles (dashed and dotted lines) are 
invisible. Neutral charmed hadrons (dashed line) can usually be identified by 
the kinematics and topology of the visible parts of the event. 

extracted from charm events in emulsion can be judged from Figure 4.7. Only 

charged particles are visible (solid lines), the neutral particles (dotted lines) 

can not be seen as tracks in the emulsion. At the primary vertex and at the 

secondary decay vertex, the number of charged particles can be counted. Fur

thermore flight lengths and angles of the charmed particles can be measured. 

'It might be possible in the Phase II analysis to reconstruct the invariant mass of the 
charmed particles with hadronic decays. 
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Figure 4.8: Corrected ('true') number of charged decay products Nprong for 
charged charm (a) and neutral charm data (b). The integral is normalized to 
unity. The data (crosses) are compared with MC (histogram). 

Figure 4.9: Corrected ('true') distribution of the charged track multiplicity 7VS 

at the primary vertex for charm data (crosses) and MC (histogram). 
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Due to charge conservation, the charged charmed particles decay into an 

odd number of charged daughter particles (p + included), whereas a neutral 

charmed particle decay involves two or four charged daughter particles. 

In Figure 4.8 the number of events in each decay category is compared with 

the MC estimate from the JETTA program. The events are corrected according 

to Equation 4.1 and hence reflect the 'true' distribution. The integrals over the 

corrected data and over the MC are normalized to unity and the error on the 

data points is statistical (also in forthcoming figures). 

In the charged charmed particle decays (Figure 4.8a) we see slightly more 1-

prong decays and less 3-prong decays than the MC results, whereas the neutral 2-

prong and 4-prong decays (Figure 4.8b) agree with the MC values. The analysis 

of the particular production ratio of neutral and charged charmed particles is 

presented in detail in Section 4.2.4. 

M + 

charged decays 
Mean = 1158 pm 

neutral decays 
Mean = 1290//m 

+++ 
ti 2000 4000 6000 8000 10000 0 2000 4000 fiOOO 8000 100O0 

L(/im) L(pm) 

all decays 
Mean = 1254 pm 

2(100 4000 C0O0 8000 10000 

L(/m) 

Figure 4.10: Corrected ('true') flight length (L) distribution for data (crosses) 
and MC (histogram). 
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Figure 4.11: Azimuthal angle (<f>) between the primary muon and the charmed 
particle trajectory viewed in projection onto the transverse plane (a); distribu
tion as a function of <j> (b) for corrected ('true') data (crosses) compared with 
MC (histogram). 

An interesting observation here is that the JETTA MC modeling of the frag

mentation and jet development at a primary neutrino vertex is rather well de

scribed by the string fragmentation model. The observed multiplicity of charged 

particles Ns (number of 'shower tracks') that emerge from the primary charm 

production vertex in the forward direction is displayed in Figure 4.9. The over

all shape with a biased production of an even number of charged particles is 

reproduced in the MC distribution. For charge conservation at the primary 

vertex, the nuclear fragments have to be taken into account. However, the com

plex nuclear dynamics leading to the emission of heavy nuclear fragments is not 

modeled in the MC. 

The flight length distribution of the charm events is shown in Figure 4.10. 

While the neutral charm events agree well with MC, at short flight lengths there 

is a slight excess of the charged charm events compared with the MC estimate. 

We studied whether this excess hints at a higher A+ contribution than modeled 

in the MC simulation. However, within the limited statistics of the sample this 

could not be found in other kinematic projections. 

The azimuthal angle at the primary vertex between the primary fi~ trajec

tory and the charmed hadron trajectory, projected on the plane transverse to 
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the neutrino beam direction, is displayed in Figure 4.11. The charmed particle 

is produced preferentially in the vß - \x~ DIS CC scattering plane. This is ex

pected, because in DIS the charm quark is produced back-to-back with respect 

to the muon in the neutrino-quark CM frame. In the laboratory system this is 

reflected - with pr smearing - in coplanarity of the corresponding momenta. 

4.2.2 Charm kinematics 

To get an overview not only of the topological properties - but also the kine

matics - of the events, the 'true' distributions in terms of various kinematic 

variables are presented in this section. The data are also here corrected accord

ing to Equation 4.1 and have their integral normalized to unity. The error on 

the data points is statistical. 

Figure 4.12 shows the 'true' distributions for Eß- , Eß+, Ev and Q2, whereas 

Figure 4.13 shows them for W2, Bjorken-z, y and zß. 

The overall agreement with the MC distributions is good. In W2 there is 

perhaps an excess in the data at low W2. The ^-distribution shows for the data 

large bin-by-bin statistical fluctuations. 

The secondary muon is identified by its positive charge. As expected, it 

is usually less energetic than the primary (negatively charged) muon from the 

CC interaction. The average energy of the interacting neutrinos producing a 

charmed particle (< E=harm > = 56.4 GeV) is higher than in a CC interaction 

(< £Ç C > = 49.3 GeV), also as expected. 

In the following subsection we use the shape of distributions to extract 

certain parameters for modeling the production process of charmed particles by 

neutrinos. In particular, we use the energy distribution to extract the charm 

quark mass, the ^-distribution to get information on the strange sea component, 

and the z^-distribution to derive a fragmentation parameter. 

4.2.3 Charm cross section 

The charmed particle cross section at different neutrino energies has been a 

controversial topic for many years. Charm quark mass effects are expected to 

manifest themselves as a threshold effect in the energy distribution. The big 

advantage of the CHORUS experiment is that the charmed particles can be 

directly observed and tagged, whereas in most of the previous experiments it 

was only possible to observe the final state particles. It was neither possible 

to see the primary vertex nor the charmed particle decay giving substantial 
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Figure 4.12: Corrected ('true') event distributions for kinematic variables (a) 
Eß_, (b) Eß+, (c) Ev and (d) Q2. The data (crosses) are compared with MC 
(histogram). 
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Figure 4.13: Corrected ('true') event distributions for kinematic variables (a) 
W2, (b) x, (c) y and (d) zß. The data (crosses) are compared with MC (his
togram). 
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uncertainties. Furthermore, in CHORUS the charm production cross section 

can be separated into charged and neutral contributions. Until now only in 

E531 this distinction could be made. 

The charm cross section is here calculated per CC interaction. To obtain 

the 'true' distributions, both the full CC distributions and the kinematically 

corresponding charm distributions have to be corrected - separately but consis

tently - for detector and emulsion acceptances and inefficiencies. Because the 

energy dependence of the cross section is studied, we show the behaviour of the 

correction functions against the variable Ev. The CC events are corrected for 

detector effects using ARec{E„) according to Equation 4.1 (Figure 4.14a). The 

charm distributions are corrected for detector effects ARec(El/), automatic scan

ning system inefficiencies AAS{EV) and manual scanning inefficiencies AMS(E„) 

according to Equation 4.1 (Figure 4.14b-d). 

Discussion of uncertainties 

In the evaluation of the charm production cross section, several systematic errors 

shown in Table 4.2 are taken into account. 

Because of the small size of the sample of observed muonic charm decays, 

the analysis is dominated by statistical errors. An additional statistical uncer

tainty arises from the limitation to 763 dimuon events located in the emulsion. 

For the estimation of the systematic uncertainties affecting A two com

ponents have been taken into account. Uncertainties in the calibration parame

ters of the calorimeter and discrepancies in comparing MC and testbeam results 

lead to an estimated systematic error for the hadronic energy scale of 5%. Fur

thermore, the uncertainty on the muon momentum scale is estimated to be 2.5% 

[77]. 

For the estimation of the systematic uncertainty affecting AAS, we must 

be aware that the scanning is highly depending on the 'quality' of predictions. 

The scanning efficiency includes uncertainties in the scanning process itself, 

the fiducial volume, the reconstruction and the location of the events. The 

systematic error has been evaluated from results of different scanning strategies. 

On average, the systematic uncertainty in AAS is estimated (conservatively) to 

be 15%. It is by far the largest uncertainty because it enters directly into the 

charm cross section.2 It has been tried [78] to simulate the entire scanning 

2This is one of the reasons, why for the CHORUS Phase II scanning the Iß events are 
scanned without cut on the muon momentum. This results in a CC sample for the automatic 
scanning correction that is about a factor 20 larger than the currently used sample. Hence, 
this contribution to the systematic uncertainty will be reduced drastically in the future by 
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Figure 4.14: Distributions of the various correction factors as a function of Ev 

for the CC and charm samples. 



4.2. RESULTS 63 

Source of systematic uncertainty A a(charm) 
-* cr(CC) 

Hadronic energy scale (5%) 
Muon momentum scale (2.5%) 
Reconstruction and Scanning 

0.14 
0.05 
0.69 

Table 4.2: Systematic uncertainties. 

system and procedure, however, no consistent agreement with the data could 

be reached in sufficient detail. 

C h a r m cross sect ion 

After having corrected the data leading to the corresponding 'true' distribu

tions, it is possible to plot the charm production (with muonic decay) per CC 

interaction versus neutrino energy (Figure 4.15a). The overlayed histogram 

shows the expectation from MICKEY MC calculation using a charm quark mass 

mc — 1.3 GeV and muonic branching ratios (see Equations 2.17 and 2.18) ac

cording to Table 2.2. The charm yield can be split into a charged (Figure 4.15b) 

and a neutral contribution (Figure 4.15c). 

There is an overall agreement of the measured charm yield and the MC 

simulation. In the charged charm production the data overshoot the expecta

tions in the second bin, whereas there are no entries in the first bin. This can 

be understood in terms of the rather steep rise in ARec below 50 GeV (see Fig

ure 4.14b). Therefore we can assume that the observed excess is of statistical 

nature. 

Over the full energy range, the measured overall charm yield per CC inter

action results in 

&char B, 

&CC 
(4.6 ±0 .4 ±0.7) x 10" (4.4) 

Gcharged charm ' ^ ^ = (2.7 ± 0.3 ± 0.4) x lu" 3 , 
occ 

(4.5) 

aDa • BDa_ 
OCC 

(1.9 ±0 .3 ±0.3) x 10 - 3 , 

where the first error is statistical and the second systematic. 

using Phase II data . 

(4.6) 
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Figure 4.15: Corrected ('true') charmed hadron production with (semi-)muonic 
decay per CC interaction for all charm (a), charged charm (b) and neutral charm 
(c) as a function of neutrino energy. 
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Comparison with results from other experiments 

In Figure 4.16 the results of the cross section ratio for charmed hadron produc

tion per CC with a muonic decay as a function of neutrino energy is compared 

with results from previous experiments. Within the errors there is good agree

ment with NOMAD, CCFR and the emulsion experiment E531. The CDHS 

data tend to be slightly lower than those of the other experiments, including 

our results, particularly at low energy. 

o 14 
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# this work E531 

V NOMAD © CDHS 

H CCFR 

-E3-

A7-
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Ev(GeV) 

Figure 4.16: Corrected ('true') charm/CC cross section ratio (with muonic de
cay) from the present work compared with results of previous experiments. 

4.2.4 Neutra l charm versus charged charm 

Having measured the charm/CC cross section ratio including the muonic branch

ing ratio separately for charged and for neutral charm production, it is possible 

to examine the dependence of the neutral-charged ratio on the neutrino energy. 

Assuming the muonic branching ratios BDo^ß= 6.6% and 

B-£)lch_>.ß = 10.0% (see Section 2.4), we can calculate the energy dependent 

ratio of neutral and charged charm production, and the result is shown in Fig

ure 4.17. Also in this figure, the assumptions of a constant ratio (dotted line) 
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and a charged contribution increasing towards low energies [17] (solid line) are 

shown. 

There is a slight tendency in the data that at low energies the charged 

particle component is higher than at.high energies. If confirmed with higher 

statistics, this can support the hypothesis of a higher quasi-elastic Ac contri

bution [17] at low energies, although no explicit excess of events with such 

characteristics could be identified in other kinematic projections. 
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Figure 4.17: Neutral-over-charged ratio for charm production. The crosses cor
respond to the data; the dotted line represents the expectation for a flat be
haviour and the solid line (histogram) for an increased charged charm contribu
tion towards lower energies. 

Comparison with results from other experiments 

While for cross section measurements of overall neutrino-induced charm pro

duction various experiments contribute, before CHORUS experimental data for 

distinctly identified neutral and charged charm production are limited to the 

E531 emulsion experiment. Since in this experiment a full kinematic recon

struction of the hadronic charm decays could be performed, it was possible to 

identify the type of charmed particle on a single event basis. A reanalysis [17] 

gave production fractions for different charm types as shown in Figure 2.2. The 

data of Figure 2.2 are converted into the neutral-over-charged charm production 

ratio and overlayed with the CHORUS experimental results in Figure 4.18. 

Within the error bars, the CHORUS data points agree with the E531 mea

surement, which is consistent with an enhanced fraction of Ac events at low 

energy. 
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Figure 4.18: Neutral-over-charged charm production. The hatched area corre
sponds to the E531 measurement. 

4.2.5 Charm quark mass 

Using the neutrino energy distribution of charm production per CC (Figure 4.15a), 

it is possible to compare the data with MICKEY MC calculations that in

clude slow rescaling (see Equation 2.8) while varying the charm quark mass 

parameter (mc). For every mc value a measure for the goodness of the fit (x2) 

can be calculated [5]. The resulting x2 distribution is shown in Figure 4.19. 

The x2 at the minimum is 9.4 with 5 degrees of freedom. At very low values 

Figure 4.19: x2 distribution as a function of the charm quark mass (see text). 
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(mc < 0.5 GeV) quark mass effects are suppressed in the MC. This is why the 

X2 distribution is fit by a parabola for 0.6 < mc < 3.0 GeV. The result is 

1.6 ± 0.8 GeV, (4.7) 

where the error is determined by the width of the x2 distribution one unit above 

the minimum. 

Comparison with results from o ther exper iments 

In Table 4.3 the above deduced mass parameter is compared with other mea

surements. The central value of our measurement is larger than the central 

values obtained by CCFR and NOMAD and less than those from CHARM II 

and the CHORUS calorimeter analysis. Within the error bars there is a good 

overall agreement with the other measurements. 

Experiment mc(GeV) Ref 
CHARM II 1.8 ±0.4 [791 

CCFR 1.3 ±0.2 [801 
NOMAD 1.3 ±0.4 [811 

CHORUS calo 2.1 ±0.9 [82] 
this analysis 1.6 ±0.8 

i • i 

C E 

i • 

• l o 

1 • I TH 

0.5 1 1.5 2 2.5 GeV 

Table 4.3: Comparison of the obtained charm quark mass with values from 
various neutrino experiments. 

4.2.6 Charm fragmentation 

The charmed particle momentum fraction of the maximum available momentum 

(z), often used as the main parameter to describe the fragmentation process, 

cannot be measured in the present case, since only charged decay products 

are observed (moreover with their momenta poorly measured). However, the 

positive muon from the decay can be identified and its momentum can be well 

measured. Since the momenta of parent and daughter particles in the decay are 

correlated, the measured value zß (see Equation 2.15) can be used to obtain the 

charmed particle z value. In the following an unfolding procedure is introduced 

and then applied to our data. 
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Unfolding p rocedure 

The problem of unfolding a measured (histogram) distribution H M to obtain 

the underlying true distribution HT can be expressed in general as A H M = HT, 

where A is the response (folding) matrix. In the present case the distribution 

(HM) for Zß should be converted into the one (HT) for z. 

Following the argumentation in [83] a regularization of the response matrix 

has to be performed. The response matrix can be written as A = USVT, where 

U and V are orthogonal matrices and where S is a diagonal matrix with non-

negative values. After this decomposition, the solution becomes 

H M = VS~lUT HT- The regularization of the solution is obtained by adding 

a term of the form ^/TCHM to the equation, where the matrix C is chosen such 

as to minimize the second derivative of the unfolded distribution and where the 

parameter T is the regularization parameter. A complete description of this 

method can be found in [83]. 

Ex t r ac t ion of the f ragmenta t ion p a r a m e t e r ep 

The response matrix A, necessary for the unfolding procedure has been extracted 

from MC simulations. Applying the unfolding method described above on the 

observed distribution for zß (Figure 4.13d) results in the distribution shown in 

Figure 4.20, which can be fit directly in a standard way by a parameterization 

for the fragmentation process. The solid curve in Figure 4.20 shows the best fit 

for the Peterson parameterization (Equation 2.13), with 

0.12 ±0.02 ±0.06. (4.8) 
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Figure 4.20: Unfolded 'true' z-distribution of charm events with a Peterson 
fragmentation model fit. 
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The first error is the statistical error and the second error is attributed to 

systematic uncertainties in the unfolding procedure estimated by varying the 

input distributions in the evaluation of the response matrix. 

Compar i son wi th resul ts from other exper iments 

In Table 4.4 the obtained result is compared with results from other neutrino 

experiments. While the results from CCFR and the CHORUS calorimeter anal

ysis are not compatible with the results of CHARM II and E531, our result 

agrees with all other measurements of tP within the error bars. 

Experiment ep Ref. 
CCFR 

CHARM II 
E531 

CHORUS calo 
this analysis 

0.20 ± 0.04 
0.072 ± 0.017 
0.076 ± 0.014 
0.28 ± 0.11 
0.12 ±0.06. 

[80] 
[84] 
[85] 
[82] 

CCFR 
CHARM II 

E531 
CHORUS calo 
this analysis 

0.20 ± 0.04 
0.072 ± 0.017 
0.076 ± 0.014 
0.28 ± 0.11 
0.12 ±0.06. 

[80] 
[84] 
[85] 
[82] 

CCFR 
CHARM II 

E531 
CHORUS calo 
this analysis 

0.20 ± 0.04 
0.072 ± 0.017 
0.076 ± 0.014 
0.28 ± 0.11 
0.12 ±0.06. 

[80] 
[84] 
[85] 
[82] 

, _ _ . „ CHORUS rain , 

CCFR 
CHARM II 

E531 
CHORUS calo 
this analysis 

0.20 ± 0.04 
0.072 ± 0.017 
0.076 ± 0.014 
0.28 ± 0.11 
0.12 ±0.06. 

[80] 
[84] 
[85] 
[82] 1— • _ — , 1 THIS ANALYSIS 

CCFR 
CHARM II 

E531 
CHORUS calo 
this analysis 

0.20 ± 0.04 
0.072 ± 0.017 
0.076 ± 0.014 
0.28 ± 0.11 
0.12 ±0.06. 

[80] 
[84] 
[85] 
[82] 

0 1 0 0.15 0.20 0.25 0.30 0.35 

Table 4.4: Comparison of the here obtained Peterson parameter (ep) with values 
from other neutrino experiments. 

4.2.7 Strange sea 

In deep inelastic scattering (DIS), the Bjorken-z value is a measure for the 

struck quark (longitudinal) momentum, where valence and sea quarks carry on 

average significantly different fractions of the nucléon momentum. In CC DIS 

charm production the interaction takes place either on a valence d quark or on 

a sea (s and d) quark. Following the CKM matrix, the c quark production on a 

s quark is Cabibbo-favoured whereas the production on a d quark is Cabibbo-

suppressed. 

Hence, because the Bjorken-x distribution is sensitive to the s and d quark 

component, we describe in this section two methods to extract the integrated 

strangeness component with respect to the d quark component. 

E531 parameterization 

To be able to compare our data with those of the other emulsion experiment 

E531, we follow their approach [85, 86, 87], where the valence d quark distribu

tion is parameterized as xd{x) oc 7^(1 - x)a and the sea quark distribution as 

xs{x) <x (1 - x)ß. Thus the total Bjorken-x quark distribution can be written 
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dN 

dx oc Nd V?d^x~{\ - x)a + NSVC
2
S(1 - xf 

x(l - x)a + ƒ ( ! - x) 
(4.9) 

with Ns and Nd as the fractional d quark and s quark normalizations and Vcd, 

Vcs the CKM matrix elements. The variable ƒ summarizes (Ns/Nd)(Vc
2JV2 ). 

The exponents are taken as Q = 3.5 ± 0.5 and ß = 7.0 ± 1.0 [85, 86, 87, 88, 89]. 

Figure 4.21: The corrected ('true') z-distribution (crosses) with fitted contribu
tions from d and s quarks. The solid line reflects the best fit to the data. Also 
shown are the fits assuming a strangeness contribution of 100% (dashed line) 
and 0% (dotted line). ; 

The best fit of Equation 4.9 to our data is shown in Figure 4.21 and com

pared with curves for the extreme cases where the s quark fraction is 0 % and 

100%. The best fit corresponds to 

ƒ = 0.27 ± 0.15 ±g;ï|, (4.10) 

where the first error is statistical and the second systematic. Using this value 
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for ƒ the sea quark component results in the integrated strangeness-down ratio 

s 
- 0.014 ± 0.007 to°]o- (4.11) 

In the systematic errors of ƒ and s/d the various contributions as summa

rized in Table 4.5 are added in quadrature. 

Varying the hadronic energy scale by 5% and the muon momentum scale 

by 2.5% results in systematic uncertainties in ARec reflected in a variation of 

the fit result A / . Systematic uncertainties in the reconstruction and scanning 

are evaluated by variations in the results for different scanning strategies. The 

dominant contribution in the systematic error results from the uncertainties in 

the exponents a and ß entering directly in the fit result. 

Source of systematic uncertainty +A/ - A / 
Hadronic energy scale (5%) 

Muon momentum scale (2.5%) 
Reconstruction & scanning 

Parameterization 

0.03 
0.06 
0.08 
0.34 

0.03 
0.05 
0.08 
0.16 

Table 4.5: Systematic uncertainties in the strangeness analysis using the E531 
parameterization. 

GRV94LO parameterization 

We can also interpret our strangeness data in terms of a parameterization for 

a QCD analysis of various data sets. For this purpose we choose the param

eterization of GRV94LO [75]. In this parameterization, the valence d quark 

distribution is written as 

xd(x, Q2) = Nxa(l + Axb +Bx + C:r3/2)(1 - x)D, 

and the strange sea parameterization is written as 

Sa 

(4.12) 

M ( X i Q2) = " (1 + AVÏ + Bx)(l - x)D • e ( - * + V ^ " » ( i / « ) ) ( 
(ln(l/x))a 

(4.13) 

where a, b, a, ß, N, A, B, C, D, E and E' are determined by a global fit to data, 

and where S is defined as 

5 = In 
/n(Q7(0.232 GeV)2) 

(4.14) 
m(j4 o / (0 .232 GeV)2) ' 

The distributions are evaluated at our < Q2 > = 12 GeV2 for ß2
LO = 0.232 

GeV2 [75]. 
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Fitting the GRV94LO parameterization to our data results in 

and thus 

ƒ = 0.47 ± 0.22 toll, 

3=o.o24 ± o.oii ±8-gg?. 
a 

(4.15) 

(4.16) 

The systematic errors summarized in Table 4.6 are added in quadrature. 

The systematic errors have been derived in a similar way as for the E531 pa

rameterization, but no uncertainties in GRV94LO parameters are taken into 

account. 

Source of systematic uncertainty +Af -A f 
Hadronic energy scale (5%) 

Muon momentum scale (2.5%) 
Reconstruction & scanning 

+0.06 
+0.10 
+0.09 

-0.05 
-0.08 
-0.09 

Table 4.6: Systematic uncertainties in the strangeness analysis using the 
GRV94LO parameterization. 

Comparison with results from other experiments 

The E531 result s/d = 0.042 ± 0.033 is consistent with our result, based on 

the same method. 

To be able to compare with other measurements that used neutrino and 

antineutrino data to evaluate the strangeness contribution, we follow the argu

mentation in Reference [85]. Our result can be converted to an other parameter 

value 

Vs = ~ ^ - J , (4.17) 

u + a 

by assuming equal up and down quark content. The result can also be expressed 

in the parameter 
K = 3 * (4.18) 

u + a 

by using the total quark/antiquark ratio measured by CCFR q/q = 0.153 as in 

reference [90]. 

In Table 4.7 and Table 4.8 the various experimental results on r?s and K are 

listed. 

Within the error bars, our result generally agrees only with the E531 ex

periment that was based on similar assumptions. The central values that we 
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obtain for the strangeness parameter values are systematically below the other 

measurements. 

Experiment Vs Ref 
CDHS 0.061 ± 0.005 [79] 

CHARM II 0.068 ± 0.014 [84] 
CHARM 0.050 ± 0.015 [861 

CCFR 0.064 ± 0.015 [80] 
E531 0.042 ± 0.033 [85] 

NOMAD 0.071 ± 0.023 [81] 
this analysis 0.024 ± 0.014 

L T D CDHS 

r m i CHARM II 

I 1 CHARM 

i » i CCFR 

» 1 E531 

! « i NOMAD 

I * 3 THIS ANALYSIS 

0.02 0.04 0.06 0.08 

Table 4.7: Comparison of ?7S values from different experiments. 

Experiment K Ref 
CDHS 0.47 ± 0.09 |79| 

CHARM II 0.39 ± 0.10 [84] 
CHARM 0.39 ± 0.12 [86] 

CCFR 0.44 ± 0.11 [801 
E531 0.32 ± 0.25 [851 

NOMAD 0.48 ±0.19 [81] 
CHORUS calo 0.26 ± 0.11 [82] 
this analysis 0.17 ±0.11 

I » I CDHS 

I » I CHARM II 

i « i CHARM 

i • i CCFR 

• I E531 

< « iNOMAD 

CHORUS CALO 

THIS ANALYSIS 

0.1 0.3 0.5 0.7 

Table 4.8: Comparison of K values from different experiments. 

4.2.8 Weak mixing Vcd 

Combining the measurements on Bc^ß | Vcd |
2 from CCFR [91] and CDHS [79] 

gives [17] 

0.50\ _ m - 3 Be-» | Vcd | 2 = (5.02^;&6
U

9) x 10 (4.19) 

The average muonic decay branching ratio (-BC->M) includes for every pro

ducible charmed particle type also the corresponding production fraction (ac-
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cording to Equation 2.17) 

(4.20) 

Our present CHORUS data set does not allow to determine the charged 

charm composition independently. Only the charged-over-neutral charm ratio 

is measured. This quantity can be incorporated in Equations 4.19 and 4.20 to 

extract Vcd-

Folding the E531 E„ dependent charged charm production fractions with 

the CHORUS neutrino beam spectrum results in contributions of (42 ± 10) % D+, 

(29 ± 21) % D+ and (29 ± 16) % A+ to the charged charmed hadron sample 

(see Section 2.2). 

The total charged-over-neutral charm production ratio QC as obtained in 

our analysis is 

gc = 0.90 ± 0.36. (4.21) 

From this result, the D° contribution to the overall sample can be obtained: 

PDo = — — = 0.53 ±0 .11 . (4.22) 
1 + Qc 

Using the branching ratios BD^ßX = (6.6±0.8)% [29], BD+^)lX = (17.2± 

1.9)%, BDt_>ßX = (5.0 ± 5.4)% [30] and B A +_^ X = (4.5 ± 1.7)% [31] (see 

Table 2.1) in Equation 4.20, yields a muonic branching ratio of 

Bc^ß = 0.082 ±0.015, (4.23) 

and in Equation 4.19 the CKM-element 

Vcd = 0.247 ±0.028. (4.24) 

Comparison with results from other experiments 

Our experimental value on VCd has been evaluated from direct measurements 

(including the charged charm production fractions from E531), identifying ex

plicitly the production and decay vertex. The direct measurement of Vcd from 

the E531 experiment yields Vcd = 0.232^;^g [17]. 

Our central value is like the E531 result (possibly due to the common 

use of the charged charm production fractions) slightly higher than the value 

Vcd = 0.221 ± 0.003 derived from the unitarity requirement of the CKM matrix, 

but within the error bars all obtained values are in agreement. 
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Chapter 5 

Diffractive charm 
production 

Thinking is more interesting than knowing, but 
less interesting than looking. 
Johan Wolfgang von Goethe 

In this chapter, our search for diffractive charm production by neutrinos is 

described, where the selection criteria and the analysis procedure are completely 

different from the analysis of deep inelastic charm production. A theoretical 

description of diffractive charm production is given in Section 2.3. The search 

resulted in finding one event that fulfills the requirements for diffractive charm 

production. The reconstruction, analysis and interpretation of the diffractive 

event are described in detail below. 

5.1 Selection of diffractive D*s events 

To find diffractively produced charmed mesons, the manual scanning load has to 

be constrained with a strong preselection and a powerful identification scheme. 

Therefore, the search for diffractive charm production concentrates on diffractive 

D* production with the decay cascade D* -> Ds -» r -» ß with a clearly 

recognizable double-kink signature in the emulsion. Such a signature has already 

been observed in a pion emulsion exposure experiment [92]. 

To preselect reactions like vß N -> fi~ D*+ (-» D+ 7) N, where 

D+ -» T+VT and r + -> ß+ vß vT, neutrino events with two muons in 

the detector are selected. Furthermore, to be sensitive to D*+ decays, only 

electromagnetic energy in the calorimeter is allowed, and hadronic showers are 
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vetoed. 

The data sample corresponds to data taken in the years 1994, 1996 and 

1997. In total 845 events with a reconstructed vertex in the emulsion are pres

elected. Prom these, 508 events are manually scanned in the emulsion to check 

in detail for double-kink signatures. 

5.2 Background study 

As a background for the diffractive production signature, deep inelastic charm 

production without charged fragments at the primary vertex is examined. Using 

the JETTA MC including the hadronization of light quarks at the primary 

vertex it is found - with a charm production ratio per CC of 5% and a relative 

fraction of Df mesons of 7% - that ~ 2% of the events produce no other charged 

particles at the primary vertex. In total we expect therefore a Ds production 

rate of less than 7 x 10~~5/CC from deep inelastic processes. 

Possible background scenarios for the decay chain with the emergence of a 

double-kink signature are: 

• A white kink (elastic scattering without visible nuclear recoil) of a Df or 

D+ charmed meson and a subsequent decay into ß+vßX°. White kinks 

of heavy mesons have never been observed and for quantitative estimates 

we rely on pion data [93]. 

• A Df or D+ meson with subsequent decays into K+X° and K+ —» fJ-+fß. 

The probabilities for the different decay scenarios to happen and being 

detected in a CHORUS emulsion stack have been quantitatively studied with 

a simulation of the beam, the interactions and the detector response. The 

expected probabilities are summarized in Table 5.1. 

It can be concluded that combining production signature and double-kink 

decay signature thus gives a background-free sample. 

5.3 Detector acceptance and reconstruction ef
ficiency 

Simulating the diffractive production of a D*s meson according to [27] with the 

entire decay chain (ASTRA), leads to a total detector efficiency for reconstruct

ing this type of events of 

ARec = 0.65 ±0.07. (5.1) 
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Possible double-kink Probability for the signature 
scenarios in a CHORUS emulsion stack 
Ds -*• r -> // - 0 . 9 6 
D -^ K ^f fi ~ 8 . 6 x KT 4 

D -> white kink —> ß ~ 4 . 3 x 10"3 

Ds —> white kink —>• /i ~ 4 . 3 x 10"3 

Ds -t K -ï ft ~ 1.9 x KT 4 

Table 5.1: Possible scenarios to detect a double-kink signature inside a stack of 
CHORUS emulsion. 

The uncertainty on the reconstruction efficiency of 10% is an ad-hoc esti

mate predominantly accounting for uncertainties in the theoretical description 

of the event kinematics in the simulation. 

Out of the preselected 845 detector events, 508 events have a located vertex 

thus giving an emulsion location efficiency of 

A AS 0.60 ±0.02. (5.2) 

The uncertainty on the scanning efficiency is calculated from the statistical error 

of the number of events used for the evaluation. 

Since there are two decays in the decay chain, the manual scanning effi

ciency is expected to be high, and has been evaluated by the MC simulation to 

be 

0.96 ±0.03. (5.3) 

5.4 Reconstruction of a candidate event 

Topological reconstruction 

In the sample of 508 manually scanned events, one event fulfills all requirements 

of the diffractive selection criteria of Section 5.1 with the unique decay chain. 

The detector display of this candidate event (Figure 5.1) shows two identified 

muons of opposite charge sign. The ß~ and fi+ have measured momenta of 

(19.6 ± 3.9) GeV and (1.6 ± 0.1) GeV, respectively. 

A visible electromagnetic activity, Eem — (0.27±0.09) GeV, observed in the 

electromagnetic section of the calorimeter, can be assigned to a secondary in

teraction vertex in the target region. Since the hits associated to this secondary 

vertex are strongly scattered, no clear track can be reconstructed in the fiber 

tracker. The secondary vertex most probably arises from photon conversion. 
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Figure 5.1: Global view of the double kink event in the detector. 
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Figure 5.2: Zoom into the target region. 
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J Primary Vertex | 

400um 400|jm 30pm 

Figure 5.3: The double-kink event with two tracks leaving from a single grain 
without nuclear break-up at the primary neutrino vertex. The data points 
represent the measured position of each emulsion grain with its error. Also 
indicated is the border line between two consecutive emulsion plates. 

Furthermore, one isolated hit is detected in a module of the hadronic 

calorimeter located at a distance of 380 cm downstream of the primary ver

tex, corresponding to about 1.45 interaction lengths (~ 24.5 radiation lengths). 

The isolated hit gives a signal of (0.53 ± 0.22) GeV. The signal is isolated and 

cannot be associated with a charged particle track coming from the primary 

vertex. In a full detector MC simulation for neutrons generated at the vertex 

position with momenta of 1 GeV, ~ 74% of the events show a similar signature 

in the detector. Together with other aspects of the interpretation of the event 

it is very probable that the isolated hit is due to the interaction of a neutron 

coming from the primary vertex. 

By tracing back the muon tracks into the emulsion target, a vertex topology 

is found as shown in Figure 5.3. Two tracks leave from a single grain (size 

~ 1 urn) without any charged nuclear fragments or recoil. 

Because the primary vertex of the event was close to a plate boundary (see 

Figure 5.3) the topology was difficult to measure. Therefore, the special treat

ment explained in Section 3.3.3 was applied in order to expand the thickness 

of the emulsion plates, and thus to increase the accuracy of the grain measure

ments. 

Furthermore, in order to get the highest possible precision on the track 

angles from the grain measurement, a specific high resolution microscope has 

been used, with a more stable mechanical support structure and a higher mag

nification (90x) than needed for standard microscopes. The grain position mea-
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surements were taken at night, because closing doors or walking people during 

the day caused shocks in the building, visible as movement ( 1 - 2 fim) of the 

microscope table. To increase the sensitivity even further it has been taken into 

account that the microscope light source heats up the emulsion slightly. To 

establish a stable situation, the emulsion plate was exposed to the light source 

an hour before the actual measurement. 

After corrections for global shrinkage and local distortion of the emulsion, 

the grain-by-grain measurement provides a three dimensional view of the vertex, 

the tracks and the decay angles. The decay angles are found to be (39.5 ± 2.4) 

mrad for the first and (87.3 ± 1.2) mrad for the second kink. The distance from 

the primary vertex to the first decay is 68 /an and from the first to the second 

kink 147pm. The first decay is located close to the surface of an emulsion plate 

(~ 16/im distance). 

In view of the short flight lengths with the measured momenta and decay 

angles, we postulate that it represents the neutrino induced production of a 

charmed particle (D or Ds meson) at the primary vertex. 

Following the background studies from the previous paragraph the decay 

chain Ds —> r —> n hypothesis is clearly favoured compared with other decays 

that could produce a double kink. Furthermore, the measured decay angles and 

momenta of the candidate event are consistent with this hypothesis. 

Taking all observations together, the most probable explanation is that 

the observed double kink signature originates from the decays Df —¥ T+VT, 

Then, given that the decay of a D+ is at the origin of the double kink 

event, it is plausible that the energy measured in the electromagnetic part of 

the calorimeter can be associated with the conversion of a photon seen as the 

secondary interaction vertex in the target region. These two observations lead 

to the hypothesis of a D*s
+ production with a radiative decay D*+ -> Dfj. 

Kinematical reconstruction 

In addition to the ß~ and the D*+ observed at the primary vertex, we as

sume that a recoil neutron escapes from the target nucleus and interacts in 

the calorimeter, leaving a visible energy of (0.53 ± 0.22) GeV. This energy de

position, the topology of the event and the kinematics constrain the neutron 

momentum to 0.7 GeV < pn < 1.8 GeV. 

Conservation of transverse momentum at the primary vertex then allows 
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the determination of the momentum pD.+ = (1.7 ± 0.6) GeV. Taking into ac

count the kinematic constraints in this event, we reconstruct the neutrino energy 

Ev = (24.9±2.2) GeV and the transferred Q2 = (0.8±0.1) GeV2. The assump

tion that the neutron is at rest before the interaction, yields a four-momentum 

transfer squared \t\ = (1.1 ± 0.4) GeV2. The Fermi motion of nucléons is 

small compared with the measured neutron momentum. Even if the neutron is 

completely neglected in the kinematic reconstruction, these values of Q2 and t 

remain of the same order. 

In conclusion, given the observed Q2 and t values, the interaction of a 

neutral particle in the calorimeter and the absence of any visible nuclear break

up at the primary vertex, we interpret this event as diffractive production of 

a D*s
+ meson on a nucléon. Topological and kinematic reconstruction for the 

complete event are consistent with the production and decay chain 

\n —- v-~Kn 

D+y 

T V. 

v> V T 

5.5 Limit on the vT mass 

An interesting property of the decay Ds —> rvT is the rather small mass differ

ence between the Ds meson ( m ^ =1968.5 MeV) and the r lepton (m r=1777.1 

MeV). Reconstruction of the transverse momentum relative to the Ds flight 

direction gives for every single event an upper limit for the r-neutrino mass. 

Starting with energy and momentum conservation 

(P?)2 = ( P ^ - P ? ) 2 > (5.4) 

one obtains 

ml = mD, +m2
T -2{ED,ET -PD.PT)- (5.5) 

In the Ds rest frame p5 , =0, therefore 

ED.Er = Jm2
Dfl2 + m2

TmDt. (5.6) 
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With a lower limit of the transverse r momentum p^ one obtains an upper limit 

for the vT mass: 

ml < m2
Di + m\ - 2mD, ̂ jpj2 +m2

T. (5.7) 

Unfortunately, with the topology of our observed event, the derived limit on 

the vT mass can be set at 90% CL only at the kinematical limit ofm„T < 191 MeV 

compared with the presently best measured limit [5] of m„T < 18.2 MeV at 

95% CL. 

5.6 Cross section 

The diffractive D* production can be derived by evaluating 

„lift N, ob s 

o'cc NCCBD,^>TVTBT-

1 
(5.8) 

With the quantities 

Ncc = 544683 corresponding number of CC events 

BD^TVT = 0.07 ± 0.04 branching ratio Ds -> r [29] 

BT^HV^T = 0.174 ± 0.001 branching ratio r ->• p. [29] 

ARec ~ 0.65 ± 0.07 finding efficiency in the electronic detector 

AFrac ~ 0.55 fraction of emulsion analyzed 

AAS ~ 0.60 ± 0.02 location efficiency in emulsion 

A ~ 0.96 ± 0.03 manual scanning efficiency 
(5.9) 

Associating with the observed event a poisson error and with the branching 

ratios and correction factors a gaussian error, we can calculate with our single 

event an upper limit for the diffractive D*s production 

aD, 
diff 

< 4.6 x 10"3 at 90% CL. (5.10) 
ace 

Comparison with results of other experiments 

All data from the bubble chamber experiments WA21, WA25, WA59 and E180 

were combined in a search for diffractive D* and Ds meson production [41], 
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which could not be unambiguously distinguished. Six candidates lead to a 

diffractive production ratio (for Ds and D* together) of 

- ^ - B D ^ * , = (1.03 ± 0.27) x 1(T4. (5.11) 
ace y ' 

With B D ^ 4 l = (3.6 ± 0.9) x 10~2 [29], the cross section ratio becomes 

diff 

- ^ - = (2.86 ± 1.46) x 10"3 . (5.12) 
occ 

Recently, the NuTeV collaboration published evidence for diffractive charm 

production [42], they also could not distinguish D* from Ds. The calculated 

cross section is 

adiff 
D'+D' = (3.2 ± 0.6) x 10"3. (5.13) 
occ 

The 90% CL upper limit (Equation 5.10) on the basis of our single event 

is in agreement with the other measurements. For the upcoming CHORUS 

Phase II scanning data, more diffractive events are expected. Then we will be 

able to measure the cross section ratio - rather than to put an upper limit - and 

to make a comparison with the other measurements. 
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Summary 

The neutrino is one of the known fundamental particles. It is only very weakly-

interacting with matter, hence it is difficult to detect. Since decades, in experi

ments all around the world, neutrinos are used as a probe and they are subject 

of research to reveal their properties. 

The CHORUS experiment at CERN has been designed to search for neu

trino oscillation of the type vß —> vT. It uses 720 kg of nuclear emulsion simulta

neously as a target and as a tracker in three dimensions with sub-ßm resolution. 

The emulsion information is combined with electronic detector information, e.g. 

energy and momentum measurements. 

In this thesis charm production by neutrinos is studied. Although not 

directly concerned with the main purpose of the CHORUS experiment, this 

work could be included in the CHORUS programme. It could make use of— 

and possibly contribute to—the measurements and techniques developed for the 

neutrino oscillation search. CHORUS and E531 at Fermilab (USA) are the only 

experiments where charmed particles can be directly observed in the emulsion, 

both at the production and at the decay vertex. 

Two different production mechanisms of charmed particles by neutrinos are 

analyzed: deep-inelastic and diffractive charm production. 

To suppress any background, the deep-inelastic charm production study 

concentrates on the muonic decay channels of the charmed hadrons. This re

sults in a data sample of 132 observed charm decays. With this sample the 

fractional charm production (with muonic decay) per charged-current interac

tion is measured to be (4.6 ± 0.4 ± 0.7) x 10~3. This charm production as 

a function of the neutrino energy is in agreement with other experiments. The 

cross section ratio of neutral and charged charmed hadrons as a function of the 

neutrino energy shows at low energies a tendency of enhanced production of 

charged with respect to the neutral charmed hadrons. 

Describing the charm production cross section with the slow rescaling model, 
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results in a charm quark mass of mc = (1.6 ± 0.8) GeV. Parameterizing the 

charm hadronization with the Peterson fragmentation model gives for the frag

mentation parameter tp — 0.12 ± 0.02 ± 0.06. The integrated strangeness-

down ratio in the nucléon is measured to be s/d = 0.024 ± 0.011 ± 0.008. 

Combining information of charged charm production from E531 with our ob

served neutral over charged charm ratio leads to a weak mixing angle value 

Vcd = 0.247 ± 0.028. 

The diffractive production search focuses on D* mesons with subsequent 

decays D* —> Ds -+ T -4 /U. In this thesis we present the first observation of 

a neutrino induced charged-current charm production event showing this unique 

decay signature. A complete analysis of this single event is possible thanks to 

the exceptional tracking capabilities of the CHORUS hybrid emulsion detector. 

At the primary vertex no nuclear break-up is observed. The structure of the 

whole event, the measured Q2 = (0.8 ± 0.1) GeV2 and \t\ = (1.1 ± 0.4) GeV2 

point to diffractive D* production on a nucléon. The observation of one event is 

expressed in an upper limit of the cross section per charged-current interaction 

of 4.6 x 10"3 at 90% CL. 

Our results show that the CHORUS data can contribute significantly to 

the knowledge of charm production by neutrinos. They motivate a dedicated 

charm study, including the hadronic decay channels. This can lead to a ten 

times bigger charm sample using the emulsion data from the Phase II CHORUS 

emulsion scanning and analysis. For the first time, it then may also become 

possible to study simultaneously deep-inelastic and diffractive charm production 

by neutrinos in detail. 



Samenvatting 

Het neutrino is een van de bekende fundamentele deeltjes. Het ondergaat 

alleen zwakke wisselwerking met materie, daarom is het moeilijk waar te nemen. 

Sedert tientallen jaren worden in experimenten over de hele wereld neutrino's 

gebruikt voor onderzoeken en ze worden zelf onderzocht op hun eigenschappen. 

Het CHORUS experiment in CERN is ontworpen voor het zoeken naar 

neutrino oscillaties van het type v^ ~> uT. Het gebruikt 720 kg kern-emulsie 

zowel als trefplaat als voor het meten van deeltjessporen in drie dimensies met 

sub-/xm oplossend vermogen. De emulsiegegevens worden gecombineerd met de 

informatie afkomstig van de electronische detectoren, bijvoorbeeld de energie-

en impulsmeting. 

Dit proefschrift beschrijft een studie van charmproductie door neutrino's. 

Hoewel niet direct samenhangend met het hoofddoel van het CHORUS exper

iment, kon dit werk worden opgenomen in het CHORUS programma. Het 

kon gebruik maken—en mogelijk bijdragen aan—de metingen en technieken 

ontwikkeld ten behoeve van het zoeken naar neutrino oscillaties. CHORUS en 

E531 in het Fermilab (VS) zijn de enige experimenten waarbij gecharmeerde 

deeltjes direct in emulsie kunnen worden waargenomen zowel bij de productie 

vertex als bij het hadronische verval. 

Twee verschillende productiemechanismen van gecharmeerde deeltjes door 

neutrino's worden geanalyseerd: deep-inelastische en diffractieve productie. 

Om alle achtergrond te onderdrukken concentreert de studie van diep-

inelastische charmproductie zich op de kanalen met muonisch verval van ge

charmeerde hadronen. Dit resulteert in een verzameling meetgegevens voor 

132 waargenomen gevallen van charm verval. Met deze verzameling wordt de 

fractionele charmproductie (met muonisch verval) per geladen-stroom interactie 

gemeten als (4.6 ± 0.4 ± 0.7) x 10"3. De charmproductie als functie van de 

neutrino energie is in overeenstemming met andere experimenten. De verhoud

ing van reactiedoorsneden voor neutrale en geladen gecharmeerde hadronen als 
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functie van de neutrino-energie vertoont bij lage energie de tendens van een 

toegenomen productie van geladen t.o.v. neutrale gecharmeerde hadronen. 

Het beschrijven van de reactiedoorsnede voor charmproductie met het 'slow 

rescaling' model, resulteert in een charm-quark-massa van mc = (1.6 ± 0.8) 

GeV. Parametrisering van de charmhadronisatie met het fragmentatiemodel van 

Peterson geeft voor de fragmentatieparameter ep = 0.12 ± 0.02 ± 0.06. De 

geïntegreerde strangeness-down verhouding in het nucléon wordt gemeten als 

s/d = 0.024 ± 0.011 ± 0.008. Het combineren van gegevens van E531 betref

fende geladen charmproductie met onze gevonden verhouding voor neutrale en 

geladen charmproductie leidt tot een waarde voor de menghoek van de zwakke 

wisselwerking Vcd = 0.247 ± 0.028. 

Het zoeken naar diffractieve productie richt zich op £>* mesonen met ver

val Dl —> Ds —> T —» (i. In dit proefschrift geven we voor het eerst een 

waargenomen gebeurtenis weer van charmproductie in een geladen-stroom inter

actie van een neutrino, waarbij deze unieke vervals-signatuur zichtbaar is. Een 

volledige analyse van deze enkele gebeurtenis is mogelijk dankzij de uitzonder

lijke mogelijkheden van de CHORUS hybride emulsiedetector om deeltjessporen 

te bepalen. Bij de primaire vertex wordt geen kern-breakup waargenomen. De 

structuur van het geheel aan waarnemingen bij de gebeurtenis, de gemeten 

Q2 = (0.8 ± 0.1) GeV2 en \t\ = (1.1 ± 0.4) GeV2 wijzen op diffractieve 

productie aan een nucléon. De waarneming van een enkele gebeurtenis wordt 

uitgedrukt in een bovengrens voor de reactiedoorsnede per geladen-stroom in

teractie van 4.6 x 10"3 bij 90% CL. 

Onze resultaten tonen aan dat de CHORUS meetgegevens significant kun

nen bijdragen aan de kennis van charmproductie door neutrino's. Zij motiveren 

een op charm toegesneden studie, inclusief de kanalen van hadronisch verval. Dit 

kan leiden tot een tienmaal grotere verzameling charm gegevens gebruikmakend 

van de Phase II CHORUS emulsie-scanning en analyse. Voor het eerst wordt 

het dan ook mogelijk tegelijk diep-inelastische en diffractieve charmproductie 

door neutrino's in detail te bestuderen. 
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