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1. Introduction

It is well known that the lift to M-theory of a system of parallel D6-branes [1, 2] corresponds

to a purely geometric background, the Taub-NUT metric. When the position of N of these

D6-branes coincide, one gets an AN−1 singularity at a point in the multi Taub-NUT space.

In this paper, we would like to make a step forward in the relation between the physics of

D6-branes at strong coupling and purely gravitational backgrounds in eleven dimensional

supergravity by studying the lift of a system of coincident D6-D6 branes to M-theory.

We shall primarily be concerned with the geometry describing these configurations, its

evolution as branes and antibranes annihilate each other1 and some similarities between the

qualitative patterns that we find in this evolution and some recent results on the evolution

due to the condensation of localised closed string tachyons in non-supersymmetric orbifold

singularities [4]–[9].

In particular, we shall study the lift to M-theory of the generically non-BPS config-

urations found in [10, 11, 12] preserving ISO(1, 6) × SO(3). The latter depend on three

parameters. The subset of configurations in which we will be interested in corresponds to

setting one of them to zero. These particular geometrical configurations look like R1,6×M4,

for some curved four dimensional manifold. It turns out thatM4 has a bolt type singularity,

that is, a locus of conical singularities, whose conical defects depend on the mass and the

1See, for instance, [3].
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charge of the configuration. The brane-antibrane annihilation expected in the open string

description gives rise to a reduction in the size of the bolt and a desingularization of the

conical singularities, by which they become “less conical”. In the sector of non-vanishing

charge, the bolt becomes a nut, whereas in the vanishing charge sector, the bolt disappears.

Locally, when the size of the bolt is big, the system looks like M4 ∼ C× C/ZM . The

size of the bolt is proportional to the product of the number of branes, the number of

antibranes and (gsls)
2. Thus, big bolt limit means that g2sNN̄ is big, i.e. the number of

branes and antibranes should be large in order to keep a small string coupling. Thus, by

reducing along a trivial circle, the original D6-D6 system is related to a C/ZM orbifold in

the forementioned limit. Whenever M 6= 1, there are closed string tachyons in the twisted

sectors. Recent studies [5, 6, 7] suggest that this system evolves to flat space making the

cone “less conical” by a sequence of transitions

C/Z2l+1 → C/Z2l−1 . . .→ C/Z2l′−1 (l′ < l) .

Our qualitative comparison in the large bolt limit suggests a relation between brane-

antibrane annihilation and twisted tachyon evolution. And in particular, each transition

(l → l − 1), which reduces the order of the orbifold by two, is related to the annihilation

of a D6-D6 pair.

In the second part of the paper, and motivated by the previous relation, we start from

a non-supersymmetric orbifold acting on C2 in type IIA, lift the configuration to M-theory

using a trivial transverse circle and reduce it along a non-trivial circle in C2. One expects

such system to be the local description for an unstable system of branes. In particular,

we consider C2/ZN × ZM , where each abelian group preserves different supersymmetry,

so that the full orbifold is non-supersymmetric. The interpretation of the reduced system

is in terms of fractional D6-branes living on a C/ZM singularity. Here the closed string

tachyonic instabilities cannot be mapped to open string tachyons as in the previous case.

The organisation of the paper is as follows. In section 2, we revisit the construction

of supergravity solutions given in [10, 11], paying attention to the particular case of D6-

D6-branes. These solutions depend on three parameters. We discuss the scaling limits

leading to BPS configurations, generalising the discussion in [11]. We consider the lift of

such configurations to M-theory and argue why it is interesting for us to set one of the

parameters to zero. In this way, we get a two parameter family of solutions, where the

parameters can be mapped to the Ramond-Ramond (RR) charge and mass of the system.

In section 3, we analyse this solution in detail, both in the charged and uncharged sectors.

In section 4, we discuss the evolution of the system and we compare the open and closed

string descriptions. section 5 is devoted to the study of the inverse problem: going from a

non-supersymmetric orbifold to a local description of a system of D6-branes. In particular,

we consider a C2/ZN × ZM non-supersymmetric orbifold.

2. From brane-antibranes to M-theory

In [10], the most general solution to the supergravity equations of motion with ISO(1, p)×
SO(9− p) symmetry and carrying the appropriate Ramond-Ramond (RR) charge was in-
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tegrated. It was subsequently interpreted in [11] as a system of coincident Dp-Dp branes.

In this work, we shall concentrate on the D6-D6 system. In the Einstein frame, the con-

figuration is described by

gE = e2A(r)ds2(E1,6) + e2B(r)(dr2 + r2dΩ22)

Φ = Φ(r)

C(7) = eΛ(r) dvol(E1,6) , (2.1)

where gE is the ten dimensional metric, Φ is the dilaton and C(7) is the RR seven form

potential. The set of scalar functions characterising the above configuration is given by

A(r) = − 3

64
c1 h(r)−

1

16
log[cosh(kh(r)) − c2 sinh(kh(r))]

B(r) = log[f−(r)f+(r)]− 7A(r)

Φ(r) = c1 h(r) + 12A(r)

eΛ(r) = −
√

c22 − 1
sinh(kh(r))

cosh(kh(r)) − c2 sinh(kh(r))
, (2.2)

where

f± = 1± r0
r

h(r) = log

[

f−(r)

f+(r)

]

k =

√

4− 7

16
c21 ,

Thus, it depends on two dimensionless parameters {c1 , c2} defined in the ranges c2 ≥ 1,

− 8√
7
≤ c1 ≤ 0, and a third one r0, with dimensions of length satisfying r0 ≥ 0.

The charge (Q) and mass (M) of this solution were computed in [11] and we shall

follow their conventions. They are expressed in terms of {r0 , c1 , c2} as follows

Q = 2P · k r0
√

c22 − 1 (2.3)

M = P · r0
[

2c2 · k −
3

2
c1

]

, (2.4)

where P = 1
16

V6

GN10
, V6 being the spacelike volume spanned by the branes and GN

10 stands for

the ten dimensional Newton’s constant. Written in string units, P = π
(2π)7

V6

g2s l
8
s
, where gs is

the string coupling constant and ls is the string length l2s = α′.

Notice that in general the configuration is non-BPS (M 6= Q), as expected, and it is

useful to introduce the difference between these observables

δM ≡M −Q = P r0

[

2k

(

c2 −
√

c22 − 1

)

− 3

2
c1

]

. (2.5)
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2.1 BPS limits

The first natural question to address is how to recover the well-known BPS configurations

corresponding to N D6-branes (or D6-branes) from the general solution (2.1). At this

point, we would like to point out that there are more possibilities than the one discussed

in [11]. Indeed, the idea there was to take a certain scaling limit in the set of parameters

{r0 , c1 , c2}, or equivalently in {r0 , k , c2}, such that the charge Q remains finite while

δM → 0. As discussed in [11], one possibility is to consider

r0 → ε1/2 r0 , k → ε1/2k , c2 →
c2
ε

ε→ 0 (2.6)

which can also be formulated in terms of c1, by c1 → − 8√
7
+ ε k

2√
7
.

The previous scaling limit is certainly not the only possibility, and as it will turn out

important for us later on, we discuss a second possibility. Consider the following double

scaling limit

r0 → ε r0 , c2 →
c2
ε
, ε→ 0

[

c1 6= −
8√
7
fixed

]

. (2.7)

It is clear that the charge (2.3) remains finite in the limit (2.7) and that δM vanishes,

as required. As a further check, it is straightforward to analyse (2.2) in the above limit to

get back the BPS metric [13] from (2.1).

2.2 M-theory lift

By rescaling the Einstein metric to the string frame and using the standard Kaluza-Klein

ansatz, one derives a family of purely geometrical configurations in eleven dimensions

described by the metric

g =

(

f−(r)

f+(r)

)−c1/6
ds2(E1,6) +

+

(

f−(r)

f+(r)

)7c1/12

(f−(r)f+(r))
2 [cosh(kh(r)) − c2 sinh(kh(r))]

(

dre + 2 + r2dΩ22
)

+

+

(

f−(r)

f+(r)

)7c1/12

[cosh(kh(r)) − c2 sinh(kh(r))]−1 (dz + C1)
2 , (2.8)

where z stands for the spacelike coordinate along the M-theory circle with length at infinity

2πgsls and C(1) is the magnetic dual one form to the previous RR 7-form [dC(1) = ?10dC(7)].

Notice that whenever c1 6= 0, the eleven dimensional geometry is not that of seven

dimensional Minkowski spacetime times some curved manifold, but contains a warped

factor. In the limit r0 → 0 keeping c1 , c2 fixed, the geometry asymptotes to the maximally

supersymmetric Minkowski spacetime.

One non-trivial check [11] for the above family of solutions (2.8) concerns the zero

charge sector (Q = 0). Indeed, it has been known for a while the embedding in eleven di-

mensions [17] of the Kaluza-Klein dipole solution [18] describing a monopole-antimonopole
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pair separated by some distance. Studying such a solution in the limit of vanishing dipole

size, one gets the configuration

g = ds2(E1,6) + r2
(

∆−1(r)dr2 + dΩ22
)

+∆(r)r−2dx2 , (2.9)

where the scalar function ∆(r) is defined by ∆(r) = r(r − 2M), M being some constant

parameter.

It is clear that the matching between (2.8) and (2.9) requires setting

c1 = 0 , c2 = 1

to ensure the vanishing of the warped factor and charge, respectively. The same reasoning

applies for a system of more than two monopoles. If we want the solution to remain as a

seven dimensional Minkowski spacetime times some four dimensional manifold where the

monopoles are living, one needs c1 = 0. In this subspace , (2.8) becomes

g = ds2(E1,6) +
(

1 +
r0
r

)4
(dr2 + r2dΩ22) +

(

r − r0
r + r0

)2

dx2 . (2.10)

Notice that (2.9) and (2.10) are equivalent, as expected, under the coordinate trans-

formation:

r = r̂ (f+(r̂))
2 ,

where r̂ stands for the radial coordinate in (2.10), provided the two constant parameters

are identified as

M = 2r̂0 .

Notice that the right hand side of the above coordinate transformation is invariant

under the transformation r0/r̂ → r̂/r0. We shall see later that this symmetry is not

restricted to the vanishing charge sector (c2 = 1), but generalizes to Q 6= 0.

2.3 Two parameter solution in M-theory

In the following, we shall concentrate on the c1 = 0 [k = 2] subspace of solutions [12]

g = ds2(E1,6)+
[

1− c
2

f4− +
1 + c

2
f4+

]

(dr2+r2dΩ22)+
(f+f−)2

[

1−c
2 f4− + 1+c

2 f4+
](dz+C(1))

2 (2.11)

which includes (2.10) in the sector of zero charge [c2 ≡ c = 1]. We would like to emphasise

that such a subspace of configurations includes both the BPS ones, through the scaling

limit (2.7), and the zero distance monopole-antimonopole pair solution (2.9). Since it

contains a seven dimensional Minkowski spacetime, it allows us to concentrate on the

physics of the four dimensional curved manifold, which is rather natural if one is interested

in relating the physics of D6-D6 at strong coupling with tachyon condensation in orbifold

models in C2, whose local description close to the fixed point (singularity) consists of such

a seven dimensional Minkowski spacetime times some four dimensional manifold.

The two parameters {r0 , c} appearing in (2.11) can be mapped to the charge (2.3) and

mass (2.4) of the system, which satisfy the quadratic relation:

M2 = Q2 + (4P · r0)2 , (2.12)
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showing that the mass is bigger or equal to the charge. These parameters can be expressed

in a much more physical way in terms of the number of branes (N) and anti-branes (N) as

N − N̄ =
8

gsls
r0
√

c2 − 1

N + N̄ =
8

gsls
r0c , (2.13)

or equivalently, by

r20 =
(gsls)

2

16
NN̄

c =
N + N̄

2
√
NN̄

, (2.14)

As we can see from these formulae the radius of the bolt and the value of c are discrete,

as only an integer number of branes is allowed.

Notice that the measure for the non-BPS character of the configuration (2.5) is pro-

portional to the ratio

δM ∝ V6 ·
Rs · r0
l9p

, (2.15)

where Rs is the radius of the M-theory circle and lp is the eleven dimensional Planck

length. A natural way of measuring the non-BPS character of the configuration in terms

of D6-branes data is by the quotient

N + N̄

N − N̄ =
c√

c2 − 1
. (2.16)

If there are only branes or antibranes, the quotient equals ±1, which can only be

achieved if c→∞. Notice that to keep the charge (2.3) fixed in that limit, one must take

at the same time r0 → 0, which matches our discussion on BPS limits, in particular the

scaling limit (2.7).

As we shall discuss more extensively in the next section, there is a bolt type singularity

at r0, both in the charged and non-charged sectors, for non-zero values of r0. When

approaching the supersymmetric configuration, the fate of the bolt singularity depends on

the sector in which we are:

(i) If Q 6= 0, it gives rise to the usual nut singularity at r = 0 where the monopoles

(or antimonopoles) are sitting. This is the source for the naked singularity of the

D6-branes (or D6-branes) at the origin [15].

(ii) If Q = 0, it gives rise to flat space.

3. Geometry of the solution

Let us analyse the geometry of solution (2.11). First of all, it is exactly the Taub-bolt

singularity without imposing the absence of conical singularities [14, 12]. That can be seen

– 6 –
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explicitly by the change of radial coordinate [12]:

r′ =
1

2

(

r −m+
√

r2 − 2mr + l2
)

,

and identifying the parameters in both solutions as c = m/
√
m2 − l2 and r0 =

√
m2 − l2/2.

If we keep the charge fixed and take r0 → 0, or equivalently, we take the double scaling

limit (2.7), we end up with the Taub-NUT metric:

g4 = H(r)(dr2 + r2dΩ22) +H(r)−1(dz + C(1))
2 , (3.1)

where H(r) = 1 + 4r0c/r, as expected for the BPS configuration (M = Q). In the limit

close to the origin, the metric (3.1) reproduces the singularity of a ZN orbifold (AN−1
singularity), where N is the number of branes defined previously, i.e. in D-brane units

H(r) = 1 + 1
2gslsN/r. Indeed, close to the singularity located at r = 0, one can make the

coordinate transformation

r̂ = 2

(

1

2
gslsN · r

)1/2

,

which allows us to write the metric as

g4 = dr̂2 +
r̂2

4

[

dθ2 + (sin θ)2dϕ2 +

(

2dz

lsgN
+ (1− cos θ)dϕ

)2
]

. (3.2)

Taking into account that z has a period of 2πgsls one gets that the circle parametrised

by z has a conical behaviour like a ZN orbifold.

The solution (2.11) is defined for r ≥ r0, the interior of the sphere r = r0 not belonging

to the solution. However, it is interesting to point out the existence of an isometry, the

in&out symmetry, that relates r ¿ r0 with rÀ r0,

r0
r
→ r

r0
,

The geometry far away from r ∼ r0 has the same assymptotic behaviour as in the

supersymmetric configuration. Thus, any source of instability reflected in the geometry

has to be in the region r ∼ r0, at which we shall now look in detail.

Let us start our analysis in the charged sector (Q 6= 0). Whenever the configuration

is non-BPS, the metric has a bolt singularity at r = r0. The bolt is a sphere of radius

proportional to r0 with conical singularities on it. To study these singularities, we can

examine the metric (2.11) close to the bolt, by introducing the distance to the bolt as a

coordinate (y = r − r0) and concentrating on the region y ¿ r0. After a trivial rescaling

of the new radial coordinate, the four dimensional metric looks like

g4 = dy2 + 8(1 + c)r20dΩ
2
2 +

y2

16(1 + c)2r20
(dz + C(1))

2 , (3.3)

Thus, close to the bolt, the periodicity of the compact coordinate x = z/ls is reduced by a

factor
1

L
≡ lsgs

4(1 + c)r0
=

2

N + N̄ + 2
√
NN̄

, (3.4)
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which indeed points out to the existence of conical singularities whose angular deficit

is 2πL−1L . Notice that these singularities are located on a sphere of radius Rbolt =

2
√
2
√
1 + c r0, whose area is

A = 32π(1 + c)r20 = π(lsgs)
2(N + N̄ + 2

√

NN̄)
√

NN̄ . (3.5)

Notice that the area takes discrete values depending on the integer numbers representing

the number of branes and antibranes.

Even though the scalar curvature vanishes on the bolt, due to the existence of the

conical singularities, one might wonder about higher order corrections to the eleven dimen-

sional effective action close to the bolt. To clarify this issue, one can analyse the behaviour

of the square of the Riemann tensor. Such corrections would be suppressed whenever

l4p RMNPRR
MNPR ¿ 1 .

Working in the regime in which the number of branes is of the same order as the number

of antibranes (N ∼ N̄), the above constraint looks like

l4p RMNPRR
MNPR ∼

(

lp
r0

)4

∼
(

g2/3s ·N
)−4
¿ 1 ,

Therefore such corrections can be neglected when the size of the bolt is big in eleven

dimensional Planck units, or equivalently

g2/3s ·N À 1 , N ∼ N̄ . (3.6)

Notice that in order to keep the string coupling constant small, the number of branes

must be large. This is the approximation we would like to use.

When the size of the bolt is big (r0/lp À 1), the metric (3.3) close to the bolt is a

huge sphere times a cone. Furthermore, in the regime (3.6), the effect of C(1) is negligible.
2

Thus, locally, the four dimensional manifoldM4 looks like

M4 ∼ C× C/ZL .

That such a description allows an orbifold singularity C/ZL interpretation can be

further checked by using (3.4) in the regime (3.6), which ensures that L is an integer

number.

These orbifold singularities have always closed string tachyons in the twisted sectors.

In the next section, we shall compare the annihilation of brane-antibrane pairs expected in

the open string description, with the sequences of transitions for C/Z2l+1 orbifolds discussed
in [5], and we shall see that they are qualitatively the same.

2Globally the structure of the space can be undertood as a ZL vector bundle over a trivial ZL-space S
2.

That means that the ZL is acting trivially on the sphere while rotating the fibre C. The charge Q of the

system specifies the first Chern number as in the supersymmetric case.
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3.1 Same number of branes and antibranes

We shall now move to the vanishing charge sector, that is, the one with the same number of

branes and antibranes, i.e. N = N̄ . In this case, the metric reduces to (2.10) and depends

on a single parameter r0, which can be written in terms of the number N of D6-D6 pairs as

r0 =
1

4
gsls ·N .

Since C(1) vanishes, the surfaces r = constant are trivial fibrations S1 × S2. The

assymptotic geometries are R1,9×S1, whereas close to r ∼ r0, one can check, proceeding in

an analogous way to the previous discussion, that the bolt structure remains. In this case,

the deficit in the periodicity is 1/2N . That means that for an integer number of D6-branes

the system has an orbifold interpretation as a Z2N orbifold.

The scalar curvature vanishes everywhere, as it corresponds to a solution of Einstein

supergravity equations of motion with no matter, whereas the squared of the Riemann

tensor is given by

RMNPRR
MNPR = 192

r6r20
(r + r0)12

,

which has a maximum at r = r0. Once more, the gravity approximation is reliable in the

large bolt limit.

4. Evolution of the system

When one trivially reduces the previous M-theory configurations (2.11) by adding an extra

transverse compact circle, one finds a generically non supersymmetric purely gravitational

(geometrical) type-IIA configuration. Thus, the analysis of singularities discussed above

still applies to this geometry.

We are thus left with two different descriptions in type IIA of a single M-theory configu-

ration: first, the brane-antibrane system and on the other hand, geometrical configurations

with conical singularities located on a sphere. Furthermore, in the limit of big bolt (3.6), the

geometry of the conical singularities is locally given by that of an orbifold type, C×C/ZN .
Thus, it is clear that both systems contain tachyons; the brane-antibrane system in the

open string sector from strings stretching between a brane and antibrane, whereas in the

orbifold side, there are closed string tachyons in the twisted sectors. These tachyons can be

understood as localised on the bolt. Some properties of this kind of closed string twisted

sectors and their possible evolution have been analysed in [5, 6, 7, 8]. In the following,

we shall show that the expected annihilation of brane-antibrane pairs in the open string

side matches the reduction in the order of the non-supersymmetric orbifold observed in the

previous cited references.

We can consider the evolution of the system in the (M,Q) parameter space. In the

D6-brane picture, we expect branes to annihilate the antibranes so that the total charge is

preserved. The mass will decrease up to a supersymmetric system, M = Q, in which we are

left either with all branes or all antibranes. This process is expected to be a discontinuous
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Figure 1: Schematic representation of the D6 anti-D6-brane annihilation to the supersymmetric

configuration.

process: branes and antibranes are annihilated in pairs as closed string fields will be emitted

to the bulk. We expect a sequence3

(M,Q)→ (M − 2, Q)→ (M − 4, Q) . . .→ (Q,Q)

This process is represented schematically in figure 1.

When considered from the M-theory effective description in terms of a classical solution

of the supergravity equations of motion, the latter depends on two continuous parameters:

M and Q. Nevertheless, one can study the evolution in the geometry of the family of

configurations by moving in such a two dimensional parameter space. Indeed, we are

interested in studying the decrease in the mass M while keeping the charge Q fixed. It

is clear that such a motion requires a decrease of r0 while c increases “along the flow”.

Heuristically, we can think of M = N1 +2N̄ and Q = N1 as the starting point of the flow.

The value of r0 is thus determined to be

r0 =
gsls
4

√

N̄2 +N1 · N̄ ,

The motion along the flow we are interested in, is described by decreasing the parameter

N̄ → N̄ − 2, simulating the annihilation of a brane and antibrane. One can formally take

the limit N̄ → 0 and get the BPS configuration as expected. In the r0, c parameter space

this flow can be seen as a curve going to r0 → 0 and c→∞ (see figure 2).

This flow has two effects: the radius of the bolt goes to zero and the conical singularity

gets ’less’ conical with a factor 1/(M +
√

M2 −Q2). When the system arrives at the

supersymmetric configuration, the bolt disappears into a nut and a supersymmetric orbifold

singularity remains at the origin C2/ZQ. See figure 3.

One very interesting case is when the number of branes N is exactly the same as the

number of antibranes N̄ . In this case, the flow corresponds to a straight line at c = 1,

and the decrease in r0 is directly related to the decrease in M = 2N = r0. Then close

to the bolt there is an orbifold description as C/Z2N . The process of annihilating branes

and antibranes takes N → N − 2. From the orbifold point of view that corresponds to

a transition C/Z2N → C/Z2(N−1). Notice that this process is very similar to the one

found by [5] where the orbifold singularity is desingularising till reaches the flat space by

3We call now M the number of branes plus antibranes, and Q its difference.

– 10 –



J
H
E
P
0
5
(
2
0
0
2
)
0
4
5

r

c

0

SUSY

Q > 0

Q = 0

Figure 2: Flow in the r0 and c parameter space representing the annihilation of brane antibrane-

pairs.

Figure 3: M-theory lift of the brane anti-brane annihilation process. The two effects are the

reduction of the bolt to a point and the expanding of the cone to get a supersymmetric singularity

C2/ZN .

Figure 4: C/ZN orbifolds have always tachyons in the closed string spectrum. By turning on some

of this tachyons the cone expands till reaching flat space.

C/Z2N+1 → C/Z2N−1 (see figure 4). Notice that in the orbifold description in [5], the

order of the orbifold is odd while in our case is even. However as we have already said, the

correspondence between the two systems is expected to happen only at large N .

Notice that in both sides, brane-antibrane annihilation and the vev of the twisted

field are discontinuous, so our approximation of continuous mass variation has no meaning

between these points. When interpreted in terms of branes and antibranes, we have seen

that the radius of the bolt takes discrete values as well as the c parameter. Notice that,

as discussed in [5], the process of desingularising the cone is expected to be discontinuous.

So one expects sudden changes in the volume of the bolt from both sides. For example,

one can consider the emission of dilaton fields by the brane-antibrane annihilation into the
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bulk. That will correspond to a sudden change in the M-theory coordinate that looks like

the cone change in the twisted orbifold side as described in [5]. It will be very interesting

to relate these two discontinuous processes in detail. From the M-theory point of view, we

can see the bolt as emitting waves that change suddenly the shape of the cone till the bolt

disappear to a point.

It is important to notice that we are not mapping open string to closed string tachyons,

we are just comparing the behaviour and evolution of two different systems related by an

M-theory lift. If one naively tries to map one open to one closed string tachyon, one im-

mediately realises that things are not working. For large number of pairs of branes and

antibranes N the counting of open string tachyons goes like N 2 but the number of twisted

closed string tachyons grows like N . Also the perturbative masses of these states do not

match. However, the number of steps driving the system to the supersymmetric configu-

ration is the same, of order N . This is because when a pair brane-antibrane disappears

there are also N open string tachyons that decouple from the spectrum.

5. From orbifolds to branes

The relation among C/ZN orbifolds and D6-D6 systems in the large bolt limit leads us

to consider a non-supersymmetric orbifold of type IIA, perform its trivial lift to M-theory

and reduce it afterwards along a circle inside the orbifold. The configuration thus obtained

cannot be trusted far away from the origin, but it must correspond to the local description

of some D6-brane system.4 Notice that this is exactly what happens for the supersymmetric

orbifold C2/ZN(±1): this produces the familiar supersymmetric AN−1 orbifolds (for review

see [20, 21]), as reviewed at the beginning of section 3, which upon reduction along the

Hopf fibre, gives rise to the local description of a system of N coincident D6-branes located

at the fixed points of the S1 along which we performed the reduction.

We shall next consider some particular non-supersymmetric orbifold singularities of

the form C2/ (ZN × ZM ), where the action of each subgroup is defined in such a way that

the complete orbifold breaks supersymmetry completely. We will see that after reduction

along the Hopf fibre, the type-IIA configuration has a line of conical singularities with

some fractional D6-branes located at the origin whenever M 6= 0. It is important to stress,

once more, that the forthcoming analysis is only reliable close to where the D-Branes are

located.

5.1 C2/(ZN × ZM ) orbifolds

Let us define polar coordinates in C2 by

z1 = r cos
θ

2
ei(ψ+ϕ)/2

z2 = r sin
θ

2
ei(ψ−ϕ)/2 ,

4That is similar to what is happenning in flux-branes, see for instance, the discussion on ref [19].
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Figure 5: Reduction of a non-supersymmetric C2/(ZN × ZM ) orbifold. At a fix distance from

the origin where the fractional D6-brane is located the S2 presents two conical singularities that

represents the intersection of the two dimensional sphere with a line of C/ZM singularities.

where the range of the different angular variables is 0 ≤ θ < π, 0 ≤ ϕ < 2π and 0 ≤ ψ < 4π.

The action of the ZN × ZM group on C2 is of the form:

g1(z) =

(

e
2πi
N 0

0 e
2πi
N

)(

z1
z2

)

(5.1)

and

g2(z) =

(

e
2πi
M 0

0 e
−2πi
M

)(

z1
z2

)

, (5.2)

where gi are the generators of the group. The orbifold does not preserve supersymmetry

because each subgroup preserves supersymmetries of different chirality. Thus, whenever the

order of both subgroups (N,M) is different from 1, the total orbifold breaks supersymmetry

completely. Due to the identifications associated with the orbifold construction, there are

now two cones associated with each of the subgroups

0 ≤ ϕ < 2π

M
and 0 ≤ ψ < 4π

N
.

One can work with angular variables satisfying the standard periodicity conditions by

rescaling {ϕ ,ψ}. In this way, the periods are manifest in the metric

ds2 = ds2(E1,6) + dr2 +
r2

4

[

dθ2 + sin2θ
dϕ2

M2
+

(

dψ

N
+ cosθ

dϕ

M

)2
]

. (5.3)

There are many S1’s along which one could reduce, but we shall take the usual Hopf

fibering, i.e. reducing on ψ. Using the Kaluza-Klein ansatz, the ten dimensional metric in

the string frame looks like

ds2 =
r

2N

{

ds2(E1,6) + dr2 +
r2

4

(

dθ2 + (sin θ)2
dϕ2

M2

)}

, (5.4)

whereas the dilaton and RR one form are given by:

eΦ =
( r

2N

)3/2

C(1) =
N

M
cos θdϕ . (5.5)

Notice that if M = 1, the above configuration matches the local description of N

coincident D6-branes close to the naked singularity (r = 0), and half of the supersymmetry

is preserved.

– 13 –



J
H
E
P
0
5
(
2
0
0
2
)
0
4
5

Whenever M 6= 1, the naked singularity remains but there is an additional line of

conical singularities coming from a C/ZM orbifold. Indeed, after reducing along the Hopf

fibering, we are left with R3 in the subspace transverse to the D6-branes, but with one

angular coordinate of reduced period.5 The set of fixed points of the orbifold which reduced

the period of the angular variable is given by the line θ = 0, π ∀r. We can thus interpret

the ten dimensional configuration as the local description close to r = 0 of a set of D-branes

on a C/ZM orbifold carrying fractional charge N/M .

Notice that for the systems just discussed there is no open-closed string instability cor-

respondence like in previous sections, since the analysis in both sides implies the existence

of closed string tachyons in the twisted sectors.

6. Conclusions and perspectives

In this paper, we have analysed the geometry of the lift to M-theory of certain D6-D6

systems. For any non-BPS configuration, we find a bolt type singularity. The annihilation

of D6-D6 pairs in the open string description is realised, on the gravity side, by a reduction

on the size of the bolt and a desingularization of the conical singularities on it. In the

large bolt limit, the M-theory geometry is locally described by C × C/ZN . This allowed

us to qualitatively match the annihilation of D6-D6 pairs with the sequences of transitions

described in C/ZN non-supersymmetric orbifolds. As we have already said, the process is

discontinuous in both sides. It would be very interesting to analyse how the discrete evolu-

tion is produced. Having realised this connection, we considered the non-supersymmetric

orbifold C2/ZN × ZM and its relation with a local description of unstable branes, which

turned out to be fractional D6-branes on a C/ZM singularity.

There are several natural questions related with the results reported here. Due to

the relation among D6-brane systems and C/ZN orbifolds, it would be very interesting to

investigate if there is any brane realisation for the sequences of transitions found in [5]

regarding non-supersymmetric C2/ZN(k) orbifolds.
We would also like to point out that the brane-antibrane system discussed in this paper

can be interpreted as a particular case of a pair of D6-branes at generic angles, the one in

which they have opposite orientations. These more general systems do generically break

supersymmetry6 and in some regions of their moduli space, they are empty of tachyons. It

would be interesting to understand the M-theory dynamics in these cases [23].

Other physical systems which have recently been given a lot of attention and do also

have localised closed string tachyons are fluxbranes [24]. It would be interesting to under-

stand the stability and supersymmetry of some of them using similar local descriptions to

the ones appearing in this work.

On the other hand, the analysis in section 5 is just a local one, as can be seen from the

fact that the dilaton (string coupling) increases as we move away from the origin. It would

be nice to look for non-BPS configurations whose validity of description goes beyond the

region where the brane sits.

5Using ϕ′ = ϕ/M , the metric is flat but ϕ′ is defined over 0 ≤ ϕ′ < 2π/M .
6See, among others, [22].
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