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1. Introduction

The low energy effective action of many N = 1 supersymmetric string vacua
is described by a standard four-dimensional supergravity action defined by the two
functions

f(φ), G = K(φ, φ̄) + ln W (φ) + ln W̄ (φ̄),

where φ denotes a chiral N = 1 multiplet. The Kähler potential K is a real function,
whereas the superpotential W (φ) and the field dependent gauge coupling f(φ) are
holomorphic in the chiral multiplets. The computation and interpretation of instanton
corrections to the physical amplitudes in these phenomenologically relevant string
vacua has experienced a remarkable development over the last few years. The non-
perturbative N = 1 superpotential from genus zero world-sheet instantons can be
determined by now for quite a few classes of N = 1 supersymmetric backgrounds by
generalizations of the idea of mirror symmetry. These include type II closed string
backgrounds with fluxes [1][2][3] and type II backgrounds with open string sectors
from background D-branes.

In this paper we study the open string case with an focus on the other holomorphic
coupling, the gauge kinetic function f(φ), as well as some natural generalizations.
The open string vacua that we consider are type II compactifications on Calabi–Yau
manifolds with additional background D-branes. In this case, a powerful framework
for couplings other then the superpotential exists. In fact it has been known for quite
some time [4][5][6][3] that an infinite number of physical N = 1 amplitudes in these
vacua are computed by the topological version [7] of open type II strings. These are
the holomorphic F-terms:

∫
d2θhN Fg,h(φ) W2gSh−1. (1.1)

Here g and h denote the genus and number of boundaries of the string world-sheet,
respectively, W is the superfield for the graviphoton field strength and S = trWαWα

is the chiral superfield for the gauge field on N coinciding D-branes. In particular the
superpotential W and the f -function are related to the genus zero partition functions
Fg=0,h=1 and Fg=0,h=2 with one and two boundaries, respectively. Other world-sheet
topologies may contribute to W and f in the presence of vev’s for the graviphoton
field strength and the gaugino bilinear.

The all genus partition function is related in a beautiful way to a 1-loop Schwinger
integral of a dual M-theory compactification [8][6]. In this context the partition func-
tion is the weighted counting function of M-theory BPS states. As the number of BPS
states is clearly integer, eq.(1.1) leads to the intriguing prediction that the coefficients
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of the instanton expansion of the holomorphic terms in the N = 1 four-dimensional
string effective action are essentially integral. The unraveling of this structure involves
a careful treatment of multiple wrappings and their bound states, studied in [6][9][10].

Despite the remarkable progress in open string mirror symmetry, there are still
many open problems. The computation of the superpotential F0,1 involves a gener-
alization of mirror symmetry to open strings [11][12][6], which has been a subject of
intense studies over the last two years [13] -[25]. For other topologies, an explicit open
string recursion relation in g and h for the partition functions Fg,h along the lines of
[4] would be desirable1.

There is another way to compute the partition functions Fg,h, proposed origi-
nally by Kontsevich [26] and generalized recently to world-sheets with boundaries in
[15][16][20]. The purpose of this note is to explore further the structure of the holo-
morphic N = 1 string amplitudes by an explicit computation of topological partition
functions Fg,h in this framework. One of the basic hopes is that the knowledge of the
instanton expansions, apart from being an important physical quantity, will serve as
a starting point to develop more general principles that provide a closed form of the
amplitudes and apply more globally in the space of perturbative moduli.

The organization of this note is as follows. In sect. 2 we review the relation
of the physical couplings in the string effective action to the partition functions of
the topologial string and recall the interpretation of the latter as weighted counting
functions of BPS states in type IIA/M-theory. In sect. 3 we describe the D-brane
geometry in terms of a linear sigma model (LSM). We discuss an ambiguity in the
definition of the non-perturbative D-brane geometry which amounts to a choice of a
U(1) direction in the U(1)2 global symmetry of the LSM. An geometric interpretation
is given that is directly related to the framing in Chern-Simons theory and predicts
a specific dependence of the A-model computation on the integral parameter ν that
labels the U(1) direction. This is the A-model version of the ambiguity discovered in
the mirror B-model in [14] and studied in the context of framings in [10]. In sect. 4
we describe the localization computation in the A-model for the two basic one-moduli
cases and compute some partition functions Fg,h for various phases of D-branes. In
particular we compute the superpotential W (φ) and the gauge kinetic functions f(φ)
of the string effective N = 1 action, as well as some higher genus generalizations
thereof. Re-summing the fractional coefficients of the instanton expansions Fg,h as
predicted by M-theory, leads to an integral expansion in an extremely non-trivial way,
giving a further verification on the ideas of [6], as well as the techniques proposed

1 An explicit expression for the holomorphic anomaly is known for g = 0, h = 2 [4].
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in [15][16][20]. In sect. 5 we discuss closed string vacua with the same amount of
supersymmetry, obtained from a Calabi–Yau 4-fold compactification. We describe the
localization computation for the 4-fold, which is slightly different due to the different
ghost number of the vacuum, and compute the genus zero and genus one partition
functions for the basic one-modulus case. The genus zero result is in agreement with a
computation by local mirror symmetry for the 4-fold. Some results on the open string
amplitudes are collected in the appendix, an expanded version of which can be found
at [27].

2. Open topological strings and counting of BPS domain walls

In this section we review a few facts and describe the setup used in the following
sections. We will mainly consider four-dimensional string vacua with N = 1 super-
symmetry obtained from type IIA compactification on Calabi–Yau 3-folds X with
background D-branes wrapping a 3-cycle L in X and filling space-time. If L is a
special Lagrangian (sL) 3-cycle, the effective four-dimensional theory on the brane
preserves perturbatively N = 1 supersymmetry. Instanton effects may generate a
non-zero superpotential [7][4][28][6][13].

To avoid questions of global flux conservation, we consider non-compact models
which describe the local neighborhood of a D-brane in a compact manifold X . The
non-compact manifolds will be defined by a linear sigma model [29], which allows also
for a simple description of a class of sL 3-cycles found in [12].

The type II D-brane configuration alluded to above is compatible with a topo-
logical twist of the world-sheet theory of the type IIA string, the so-called A-model
[30]. The correlation functions of the topological A-model on X receive contributions
from holomorphic maps from the world-sheet Σ to X , with the boundary ∂Σ mapped
to L [7]. The topological partition functions Fg,h for world-sheets with genus g and h
boundaries, are related to physical amplitudes in the four-dimensional type IIA theory
by (1.1)[4][5][3][6].

The partition functions Fg,h of the A-model may be computed by “counting” the
holomorphic maps from Σ to X [30][7]. A single world-sheet instanton that maps Σ to
a holomorphic curve C in X contributes a term exp(−V ol(C)) times a phase factor.
More precisely, there are often families of maps and the “number” of maps is replaced
by the virtual Euler number of the appropriately compactified moduli space. This has
been made precise for world-sheets without boundaries in [26][31]:

Fg,0 =
∑
g,β

Fg,β q(β), Fg,β =
∫
Mvir

g,0 (β,X)

ctop(Uβ). (2.1)
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Here Mvir

g,k(β,X) is the virtual moduli cycle for stable maps from genus g curves
with k marked points into X , β ∈ H2(X,Z) the class of the image and q(β) its
complexified Kähler volume. Moreover ctop(Uβ) is the Euler class of the relevant
obstruction bundle Uβ . The fractional coefficients Fg,β are the Gromov–Witten (GW)
invariants. A, somewhat preliminary, generalization of these definitions to world-sheets
with boundaries has been developed recently in the papers [15][16][20]. It will be used
in the following to determine the partition functions Fg,h. The highly non-trivial
consistency of the results may serve as a further verification of these generalizations.

A strong consistency condition arises from the interpretation of Fg,h as a type
IIA/M-theory 1-loop amplitude that computes the effective couplings (1.1) in a con-
stant self-dual graviphoton background in two dimensions [8][6]. The amplitude re-
ceives contributions only from short BPS multiplets and predicts a re-summation of
Fg,h into a weighted counting function of integral degeneracies of BPS super-multiplets
in a given representation2. For a single stack of N D-branes on a sL 3-cycle L with
h1(L) = 1, the instanton expansion of the partition function (for a fixed number of
boundaries) is of the form

Fh(ti, r′, V ) =
∑
g;wα

g2g−2+h
s

1
h!
Fg;wα

(qi)e−2πr′w
h∏

α=1

TrV wα , (2.2)

where gs is the string coupling constant. Moreover the qi = exp(2πiti) are the expo-
nentials of the closed string moduli, r′ is the Kähler volume of the primitive disc with
boundary on L and V is a diagonal N ×N matrix with entries Vaa = eiφa , where φa
is the holonomy in the a-th U(1) factor along the non-trivial cycle in L. Moreover
the integer wα is the winding number of the α-th boundary along the S1 ⊂ L and
w =

∑
αwα.

The re-summation of the partition function Fg,h in terms of multiplicities of BPS
states has the form [9][10]:

∞∑
g=0

g2g−2+h
s Fg,β =

(−1)h∏
αwα

∑
β′=β/d

ng,β′ d
h−1

(
2 sin

dgs
2

)2g−2
∏
α

(2 sin
wαgs

2
) q(β), (2.3)

where q(β) is again the exponentiated complex Kähler volume of the class β ∈
H2(X,L). The class β is specified by the winding numbers wα of the boundaries
of disc components and h1,1(X) degrees ni for a basis of holomorphic 2-cycles Ci for
H2(X,Z). The coefficients ng,β are integral linear combinations of the number of

2 For earlier work along these lines, see [32].
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N = 1 supersymmetric BPS multiplets of a given bulk charge determined by the class
β. The terms with d > 1 in the above formula are the contributions from multiply
wrapped branes, which have an interpretation as the momentum states along the extra
circle in the M-theory compactification [32][8]3.

The partition function Fh as written in (2.2) is the specialization Im t′a = r′ ∀ a
of a holomorphic section Fh(t′i, t′a), where ti and t′a are the bottom components of the
moduli superfields from the closed and open string sector, respectively. It comprises
amplitudes from various types of world-sheets that involveN ′ ≤ N branes. To extract
these different sectors and to make the relation to the results obtained from the fol-
lowing A-model computations explicit4, it is useful to restore the dependence on the
complex open string moduli t′a. The moduli ti and t′a are defined classically by the
action of the primitive world-sheet instantons [30][11]:

ti =
∫
Ci

b+ iJ, i = 1, ..., h1,1(X), t′a =
∫
γa

A+
∫
Da

iJ, a = 1, ..., N. (2.4)

Here J is the Kählerform, b the anti-symmetric 2-form and A the gauge field on the
D-brane. Moreover the Da are N discs ending at the N D-branes on the 1-cycles γa.
The imaginary parts Im t′a parametrize the N independent positions of the D-branes
that determine also the size of the discs Da. The dependence of the sections Fg,h on
the complex moduli is determined by holomorphicity:

Fg,h(ti, t′a) =
∑
g;wα

g2g−2+h
s

1
h!
Fg;wa

(qi)
∑
~a

h∏
α=1

(vaα
)wα . (2.5)

In the above va = exp(2πit′a) and the last sum is over N ·h choices aα ∈ {1, ..., N}. The
partition functions Fg,h for N ′ ≤ h branes can be obtained by moving N −N ′ of the
branes to infinity. This is the limit va = 0, a = N ′+1, ..., N . From the above it is clear
that the independent GW invariants are related to world-sheets with h distinguished
boundaries landing on N = h different branes. This is the siutation which we will
consider in the A-model computation. The multi-cover structure will be extracted
from the specialized form (2.3) for a stack of h = N D-branes. Partition functions
Fg,h and their invariants for less then h branes are obtained from those for N = h

branes by the appropriate identifications amongst the open string moduli.

3 The class β′ = β/d ∈ H2(X, L;Z) exists, if all the degrees ni and windings wα specifying the

class β are are divisible by d.
4 This has been also studied by M. Mariño and E. Zaslow [33].
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3. A-type D-branes and torus actions

In the following we discuss the definition of the A-model D-brane geometry and
its moduli space in terms of a gauged LSM. An important detail is the existence of an
integral parameter ν that enters the non-perturbative definition of the string vacuum.
This is the A-model version of the framing ambiguity in the Chern-Simons theory
[10], and the dependence of the B-model on a certain boundary condition [14]. Here
we propose a simple geometric interpretation of the ambiguity in the A-model which
implies the specific dependence of the partition function on this parameter.

The classical D-brane geometry for the A-model will be defined as follows. We
consider Calabi–Yau 3-foldsX defined as a direct sum of concave line bundles5 over Pn.
Much of the following discussion holds generally for D-branes of the same topology. In
concrete we will study the two one-moduli cases KP2 , the canonical bundle of P2 and
the bundle O(−1)⊕2

P1 that describes the local geometry of the blow up of the conifold.
The manifoldX may be defined as a 2d linear sigma model [29], a (2,2) supersymmetric
U(1) theory with four matter fields Zi of charges (1, 1, 1,−3) for KP2 and (1, 1,−1,−1)
for O(−1)⊕2

P1 , respectively. The solution to the D-term vacuum equations in the scalar
components zi

KP2 : |z1|2 + |z2|2 + |z3|2 − 3|z4|2 − r = 0,

O(−1)⊕2
P1 : |z1|2 + |z2|2 − |z3|2 − |z4|2 − r = 0.

describe a smooth Calabi–Yau 3-fold X for large positive values of the real FI param-
eter r. The single complex Kähler modulus of X is t = b + ir with b the value of the
B-field on the fundamental sphere in X .

In addition the type II string vacuum includes D-branes on sL 3-cycles L in X .
As in [12] we consider 3-cycles of topology S1 ×C ' S1 × S̃1 ×R≥0, defined by the
equations

|z3|2 − |z2|2 = c1, |z3|2 − |z4|2 = c2, Arg(z1z2z3z4) = 0. (3.1)

Here ca are two complex constants that are chosen such that one of the S1 factors
(representing S̃1 ⊂ C) shrinks over some edge zi = zj = 0. In the relevant patch of
X , let za, zb denote the two gauge invariant coordinates that vanish at the origin of
C ⊂ L and zD the third gauge invariant coordinate on the 3-fold X . The primitive
disc in this geometry, that enters the classical definition of the open string modulus
(2.4) is defined as

D : za = zb = 0, |zD|2 ≤ c. (3.2)

with c some complex constant.

5 For a discussion and classification of more general bundles, see [34].
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The sL cycle L is a cone over T 2, where the 1-cycle S̃1 ∈ C shrinks at the tip
of the cone. The complex torus base can be identified with an U(1)2 subgroup of the
global symmetry group U(1)3 of the gauged LSM. The latter acts by the rotations
(za, zb, zD) → (za eiλaϕ, zb e

iλbϕ, zD e
iλDϕ) on the inhomogeneous coordinates. The sL

condition (3.1) selects the U(1)2 subgroup,

λa + λb + λD = 0, (3.3)

which is the same as the condition of anomaly freedom for a gauged U(1) symmetry.

There is an inherent ambiguity in the definition of the non-perturbative D-brane
geometry which amounts to the choice of a U(1) subgroup of the global symmetry
group. We choose coordinates za and arg(zD) on L ⊂ X and denote by (γ0, γ1) a basis
of H1(T 2) parametrized by the phases (θa, θD). Although γ0 is homologically trivial, it
will become relevant when defining a pair of non-trivial loops in L. E.g. the geometry
of a single world-sheet instanton ending on the D-brane wrapped on L is defined by
two maps f : (Σ, ∂Σ) → (Σ, L) and g : W → L, where Σ is the world-sheet and W

the part of the D-brane world-volume mapping into X . In the definition of the pair of
maps f and g one has to specify how often the image of a fixed generator in H1(W ),
defined by the non-trivial Wilson line, wraps around the image of ∂Σ. The image of
the boundary ∂Σ of a minimal volume world-sheet is in the class [γ1] and the image
of H1(W ) is in the class

[γ(ν)] = 1 · [γ1] + ν · [γ0], ν ∈ Z, (3.4)

where the coefficient ν of the trivial cycle γ0 is well-defined in the presence of the
world-sheet instanton. The shifts of the origin of the 1-cycle γ(ν) ' S1 define a U(1)
subgroup of the global U(1)2 symmetry with weights

λa = νλD, λb = −(ν + 1)λD. (3.5)

The above geometric picture is closely related to the definition of a framing in the
context of Chern-Simons theory. The latter is a choice of UV regularization for the
product of Wilson line operators on the same knot k which preserves general covariance.
It is specified by a choice of a normal vector to k and the inequivalent choices are labeled
by an integer ν that counts how often the first knot wraps the second one in transverse
space. In the above, the transverse space (within W ) to the non-trivial homology cycle
γ1 is C and thus the integer ν indeed defines a framing for a Wilson loop on it.

The following A-model computations of the partition functions Fg,h are based on
counting the “number” of discs with boundary on L. More precisely this number is
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defined as an Euler number of the appropriately defined moduli space of discs. The
phases of the open string moduli (2.4) are the Wilson lines along H1(W ) and the
definition of the instanton corrected moduli space depends on the invariant ν for the
maps f and g described above6. On the other hand the computation is technically
performed by localizing to the fixed points of the torus action on the moduli space
induced by an U(1) ⊂ U(1)2 action on X . The deformations for a given choice of non-
perturbative D-brane geometry are consistent with the specific torus action (3.5). Thus
the A-model computation with torus action (3.5) computes the partition function of
the D-brane geometry defined by ν, which in turn is directly identified with a framing
in CS theory. The existence of an integral ambiguity in the A-model computation had
been already verified in [16], guided by the B-model result of [14].

The previous geometric interpretation of the parameter ν in the A-model is similar
to the one discussed in [14] for a dual type IIB compactification on a web of (p, q) 5-
branes. It is likely that the geometry of the A-model can be used to derive also the
functional form of the ν dependence of the special coordinate t′, obtained in [14] in
the mirror B-model.

4. Localization in the open string A-model and graph sums

The method for the computation of Fg proposed in [26] uses a group T of torus
actions on the target space X to localize the integrals (2.1) to the fixed points of T.
The toric manifolds arising from the linear sigma model have, by definition, a sufficient
number of torus actions. Specifically, the torus T ' (C∗)4 acts on the bundle X → Pn

by phase rotations of the homogeneous coordinates zi.

Let M denote some moduli space of stable maps involved in the integral (2.1), φ
the relevant top form on it and MT the fixed locus of the induced action of T on M .
An application of the Atiyah-Bott fixed point theorem yields the formula (derived for
g > 0 and h = 0 in [31])

K =
∫
M

φ =
∑
MΓ

∫
MΓ

i∗φ
e(Nvir)

. (4.1)

It localizes the integral (2.1) to the components MΓ of the fixed set MT of the torus
action. In the above, i : MΓ ↪→M is the embedding map and e(Nvir) the Euler class
of the virtual normal bundle NMΓ/M .

6 A similar comment applies to several loops arising from world-sheet instantons with more

boundaries. One may think of the topological instantons as the BPS limit of non-minimal world-

sheet wrappings with boundary in the class γ.
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The space of maps fixed under the torus action has the following structure
[26][16][20]. Let pi denote the fixed points zk = 0, k 6= i in the base Pn of the
bundle X . Consider a domain curve Σ which is a union of irreducible components
(∪αCα) ∪ (∪αDα), where Cα is a genus gα Riemann surface with nα marked points
and Dα are disc components with one marked point in the interior. The irreducible
components attach to each other at marked points to form the nodal domain curve
Σ. An invariant map contracts all components of Σ to the fixed points pi with two
exceptions: i) a genus zero component Cα with two marked points maps to the line
lij : zk = 0, k 6= i, j connecting the fixed points pi and pj with the marked points
mapped to the fixed points; ii) at generic moduli of X , the map f restricted to a disc
component is non-constant and has as its image the disc l̃ia : zk = 0, k 6= i, a; |za|2 ≤ 1.
Here za may be either a coordinate zi on the base Pn, so l̃ij lies on the line lij for some
j, or a coordinate on the fiber of the bundle X over Pn. The circle γa,I at |za|2 = 1
parametrized by the phase of za carries a label I that specifies the I-th D-brane on
which the boundary of the disc lands. Note that the Dα are the only components of
Σ which may map outside the compact base of the bundle X . The above discussion
slightly generalizes the set of fixed loci with respect to [16][20].

The irreducible components MΓ of the fixed locus MT may be characterized by
decorated graphs Γ for world-sheets without boundaries [26] and a generalization that
includes disc components has been proposed in [20]. A graph Γ will be defined by
three sets, the vertices V , connected by edges e ∈ E and in addition a set of legs l ∈ L
originating at the vertices. A vertex v ∈ V represents a contracted component or a
pole of a P1 component and carries two labels i(v) and g(v) that specify its image in
X , namely the fixed point pi, and the genus of a contracted component. An edge e
represents a non-constant mapping from a genus zero component Cα and carries the
labels i(e), j(e) and ~n that specify the image of the south and north poles in X and
the class βe in H2(X,Z) of the image. The legs represent the disc components and
carry labels i(l) and ~w specifying the image of the disc center in X and the class of
the image as an element of the relative homology H2(X,L). In particular ~w specifies
the D-brane label I and the circle γa,I .

According to the above discussion, we consider the following graphs for the com-
putation of the Gromov–Witten invariant Fg,β. A graph Γ represents a component of
the moduli space of maps from world-sheets of genus g, with k marked points and h

disc components Dα with image in the class β if:

1) 1 + |E|+
∑

V (g(v)− 1) = g; 4)
∑
e∈E βe +

∑
l∈L βL = β;

2) e ∈ E ⇒ i(e) 6= j(e); 5) ∪v S(v) = {1, ..., k}.
3) l ∈ L ⇒ ∃ l̃i(l)a; (4.2)
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Here S(v) is the set of marked points on the component Cv and βe and βl are the
classes in H2(X,L) of the images of the components Ce and Cl, respectively.

The moduli space MΓ is the quotient
∏
v∈V Mg(v),val(v)/Aut(Γ) of the product

of moduli spaces of Riemann surfaces of genus g and with val(v) marked points. Here
val(v) is the number of marked points of the component Cv associated to the vertex
v, including the points of intersection with the edge and leg components. As described
in the following section, the integrand in (4.1) is a formal sum in the classes ci and ψi
in H∗(Mg(v),val(v),Q). Here ci are the Chern classes of the dual of the Hodge bundle
and the ψi the first Chern classes of the line bundles associated to the marked points
xi, with fiber the cotangent space at xi. The integrals over this sum are computable by
Faber’s algorithm [35]. The result has to be divided by a symmetry factor AΓ that takes
into account the quotient structure ofMΓ. It is AΓ =

∏
l∈L w

−1
l ×

∏
e∈E n

−1
e ×aΓ where

aΓ is the order of the automorphism group of Γ as a dressed graph with distinguished
legs7 and ne = gcd(~n(e)).

4.1. The integrand on MΓ

It remains to determine the T equivariant class of the integrand in the integrals
of the graph sum (4.1). The obstruction sequence is

0 → Ext0(ΩΣ(E),OΣ) →H0(Σ, ∂Σ; f∗TX, f∗TL) → T 1 →
Ext1(ΩΣ(E),OΣ) →H1(Σ, ∂Σ; f∗TX, f∗TL) → T 2 → 0,

where E is the divisor of marked points on Σ. The equivariant class of the integrand
i∗φ/e(NMΓ/M ) is equal to the class T 2/T 1 [31][15][16][20]. For an explicit computation
one may use the normalization of Σ in terms of its irreducible components

0 → OΣ → ⊕αOCα
⊕α ODα

→ ⊕iTX |f(xi) → 0,

where xi are the nodes on Σ. The case without boundaries has been considered in
[26][31], and the contribution from the disc components in [15][16][20]. In particular the
leg contribution to the integrand of a specific sL 3-cycle L in the conifold [6] has been
derived in [15][16], and for a phase of a D-brane on KP2 in [20]. The integrands needed
in the following computations are obtained by a straightforward though somewhat
lengthy variation of the arguments in [31][15][16][20] and we refer to these references
for more details on the computation. Here we limit ourselves to point out the universal

7 Note that aΓ is not equal to the symmetry factor for the graph Γ with the distinguished legs

deleted.
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form of the disc contributions which leads to a quick way to determine the open string
integrand for any D-brane phase in any toric Calabi–Yau 3-fold.

Indeed it is straightforward to see that the addition of disc components to Σ leads
to an essentially universal modification of the closed string computation. Adding discs
to Σ is very similar to adding marked points (as discs can not concatenate), up to some
extra contributions from the characteristic classes related to the disc components8.
However the latter modifications are essentially fixed by the degree zero result ~n(e) =
0 ∀ e ∈ E, which is universal. This is because in the limit of large Kähler moduli of X ,
any D-brane configuration reduces to that in C3 and this is what is described by the
partition function of X at degree zero.

The contribution to the closed string integrand from the normal bundle is [31]9

1
e(Nvir)

=
∏
e∈E

((−)d

d!2
(

d

λi − λj
)2d

a=d∏
k 6=i,j
a=0

(
a

d
λi +

d− a

d
λj − λk)−1

)
×

∏
v∈V

( ∏
k 6=i

λi − λk
)val−1 ×




(
∑
F3v w

−1
F )val−3

∏
F3v w

−1
F g = 0∏

k 6=i
Pg(λi−λk)∏

F3v
wF−ψF

g > 0

(4.3)

The weights λi specify the torus action zi → eiλiαzi on the homogeneous coordinates
of the Pn base. The polynomial Pg(λ) =

∑g
k=0 λ

kcg−k is the equivariant top Chern
class of the dual of the Hodge bundle, twisted by U(1) with weight λ. Moreover a flag
F : (v, e) is defined as an oriented edge e with origin i(e) = i(v) and its weight under
the torus action is defined as wF = (λi(e) − λj(e))/ne. A similar expression describes
the pull-back i∗φ of the Euler class of the obstruction bundle, which depends however
on X and will thus be stated later.

Adding disc components to the world-sheet amounts to replacing a closed string
graph Γ by a related graph Γ′ with some legs added. The modified integrand that
includes the contributions from the disc components can be conveniently written in
two factors. The first one is identical to i∗φ · (4.3), with val(v) counting the marked
points, edges and legs at the vertex v ∈ V of the graph Γ′ and similarly the set
{F 3 v} of flags runs over flags associated with both, edges and legs, attached to v.10

8 This was used in [20] to derive a mirror identity for g = 0, h = 1.
9 Below it is understood that a subscript i refers to an edge label i(e) under the first product

and a vertex label i(v) under the second product. A similar convention will be used in the following

formulae.
10 The weight of a disc flag F : (v, l) is defined as wF = −λD/w(l), where λD is the weight of

the gauge invariant coordinate zD on the disc in X.
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This is the result of [20] for KP2 , which holds generally for toric 3-folds by the previous
universality argument. The second factor of the open string integrand is the following
product of universal disc contributions

∏
L

(−1
w!

(
w

λD
)w

)
×

(w−1∏
k=1

λ⊥ +
k

w
λD

)

= (−1)h
∏
L

1
λD

w−1∏
k=1

1 +
w

k

λ⊥
λD

,

(4.4)

and it describes the contribution from Hk(Dα(l), f
∗TX), k = 0, 1. The above expres-

sion summarizes the results of [15][16][20] in a universal form, the important point
being that the contribution from the cohomology groups that contribute to (4.4) de-
pends only on the local disc geometry and is therefore universal, that is independent
of the bundle V .

The weight λD in (4.4) is the weight of the coordinate zD on the primitive disc
in X defined as in (3.2). It remains to specify the weight λ⊥. First note that on
dimensional grounds, the integral in (4.1) is of total degree zero in the torus weights
λi. The partition function Fg,h depends therefore only on ratios of the λi. The
definition of the sL cycle L requires the sum of the weights to be zero and reduces the
free parameter to a single ratio of weights.11

As discussed in sect. 3 , the relevant ratio originates in the definition of the
geometry of the world-sheet instantons, where we have to specify how often the image
of H1(W ) wraps around the origin of C ⊂ L when it wraps once around the non-
trivial S1 ⊂ L. With the coordinates za, zb defined as in (3.2), the geometry with
fixed winding ν leads to two possible choices for the U(1) action, depending on the
orientation of the D-brane:

λ⊥ = λza
= νλD, λ⊥ = λzb

= ν′λD, ν ∈ Z.

The two choices are related by the invariance condition as in (3.5). There will be a
symmetry of the invariants ng,β(ν) for the moduli spaces (not the partition functions)
under the exchange ν → −(ν + 1), if the exchange of coordinates za ↔ zb induces also
a symmetry transformation of the closed string background.

11 The closed string partition functions Fg,h=0 are in fact completely independent of a choice of

torus action, essentially since the closed string observables are related to the ordinary cohomology

of X.
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4.2. Case I: The blow up of the conifold O(−1)⊕2
P1

The first one modulus case we consider is the blow up of the conifold. The
degree zero contribution to Fg,h has been studied in [16][15]; the same result had been
previously obtained in [6] by a Chern-Simons computation for the unknot. Substantial
generalizations of the CS computation to other world-sheet topologies and other knots
and links have appeared in [36][9][10][37]. The partition function F0,1 has also been
obtained in [12] by mirror symmetry.

In the patch z1 6= 0, the gauge invariant coordinates are z = z2/z1 for the P1

and two coordinates a = z3z1 and b = z4z1 on the O(−1) fibers. With the above
conventions, the weight of z is λz = λ2 − λ1. The weights λa,i, λb,i of the torus
action on the fiber can be chosen arbitrary at the fixed point p1 and are related by
the projective action on P1 to the weights at the second fixed point. Specifically
λa,2 = λa,1 + λz, and similarly for b.

The class of the pull back i∗φ of the Euler class of the obstruction bundle computes
to

i∗φ =
∏
v∈V

Pg(−λa,i)Pg(−λb,i)(λa,i · λb,i)val(v)−1

×
∏
e∈E

d−1∏
m=1

(
λa,i −

m

d
(λi − λj)

)(
λb,i −

m

d
(λi − λj)

)
.

(4.5)

The open string integrand is the product (4.3)· (4.4)· (4.5). The invariance condition
for the sL cycle (3.1) reads λa,1 + λb,1 + λz = 0. There are two different phases of
D-branes, depending on whether the center of C ⊂ L maps to a point on the compact
P1 or not. In the first case, the primitive disc is D : a = b = 0, |z|2 ≤ c and
thus zD = z, z⊥ = a, ν = λa,1

λz
. In the second case, D : b = z = 0, |a|2 ≤ c and

zD = a, z⊥ = z, ν = λz

λa,1
. Although the invariants are significantly different in the

two phases12, the the general structure is similar and the following discussion will be
limited to the second phase. Results for the first phase can be found in the appendix.

12 The two phases are related to the two sides of a flop transition in a Calabi–Yau 4-fold by an

open/closed string duality [18].
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4.2.1. The superpotential and higher genus generalizations

We consider first the superpotential W = F0,1 on X and its higher genus gener-
alizations described in (1.1). The topological partition functions Fg,h=1 are obtained
by evaluating the graph sum (4.1) for graphs with one leg. Let q = exp(2πit) denote
the exponential of the complexified Kähler volume of the primitive sphere in X and
v1 = exp(2πit′) the exponential of the single open string modulus. The first terms of
the instanton expansion of the partition functions Fg,1 for g < 5 are:

F0,1 =(v1 + 1
4 (1−2ν)v2

1 + 1
18 ((−1+3ν)(−2+3ν))v3

1 + 1
48 (−(−1+2ν)(−1+4ν)(−3+4ν))v4

1)+

q1(−v1 + νv2
1 + 1

2 (−(−1+3ν)ν)v3
1 + 1

3 ((−1+2ν)(−1+4ν)ν)v4
1)+

q21( 1
4 (−2ν−1)v2

1 + 1
2 (ν(3ν+1))v3

1 + 1
4 (−(−1+4ν)ν(4ν+1))v4

1) + ...

F1,1 =( 1
24v1 + 1

24 ((ν2−ν−1)(−1+2ν))v2
1 + 1

48 (−(2ν2−2ν−1)(−1+3ν)(−2+3ν))v3
1)+

q1(− 1
24v1 + 1

12 (−(−1+2ν2)ν)v2
1 + 1

48 ((−5−6ν+18ν2)(−1+3ν)ν)v3
1)+

q21( 1
24 ((2ν+1)(ν2+ν−1))v2

1 + 1
48 (−ν(3ν+1)(18ν2+6ν−5))v3

1)

F2,1 =( 7
5760v1 + 1

1440 (−(3ν4+11ν−6ν3−8ν2+7)(−1+2ν))v2
1)+

q1(− 7
5760v1 + 1

720 ((−10ν2+3+6ν4)ν)v2
1 + 1

3840 (−(108ν−276ν2+53−288ν3+432ν4)(−1+3ν)ν)v3
1)+

q21( 1
1440 (−(2ν+1)(3ν4+6ν3−8ν2−11ν+7))v2

1 + 1
3840 (ν(3ν+1)(432ν4+288ν3−276ν2−108ν+53))v3

1) + ...

F3,1 =( 31
967680v1 + 1

60480 ((−57ν−9ν5−31+45ν3+3ν6−15ν4+33ν2)(− 1+2ν))v2
1)+

q1(− 31
967680v1 + 1

30240 (−(21ν2−5−21ν4+6ν6)ν)v2
1)+

q21( 1
60480 ((2ν+1)(3ν6+9ν5−15ν4−45ν3+33ν2+57ν−31))v2

1) + ...

F4,1 =( 127
154828800v1 + 1

7257600 (−(741ν+190ν5+381−656ν3−20ν7−40ν6+158ν4+5ν8−378ν2)(−1+2ν))v2
1)+

q1(− 127
154828800v1 + 1

3628800 ((126ν4−100ν2+21−60ν6+10ν8)ν)v2
1)+

q21(0v1 + 1
7257600 (−(2ν+1)(5ν8+20ν7−40ν6−190ν5+158ν4+656ν3−378ν2−741ν+381))v2

1) + ...,

(4.6)
The prediction of [6] is that the above expansions in q1 and v1 are integral when
rewritten in the form (2.3) for any choice of an integer ν ∈ Z. The invariants nh=1

g,n,w

for general framing ν are collected in the appendix. As expected on general grounds,
these invariants are independent of the framing ν for w = 1, except for a phase factor
ε = (−1)ν . For w > 1 the ng,n,w are polynomials pδ(ν, ε) of degree δ = 2g + w − 1
in ν. A closed proof of integrality of all the polynomials pδ(ν, ε) would be formidable.
We contented ourselves to a verification of the integrality of the ph=1

δ (ν, ε) for a large
number of values of ν. For framing ν = 0, the only nonzero invariants are n0,0,1 = −1

14



and n0,1,1 = 113. The result for framing ν = ±1 is:

g=0

1−1 1 −2 5 −13 35 −100

−1 1−2 5 −14 42 −132 429

0 0 1 −4 14 −52 198 −752

0 0 0 1 −6 31 −150 693

g=1

0 0−1 6 −32 156 −718 3220

0 0 1 −10 70 −420 2310 −12012

0 0 0 4 −49 406 −2838 17840

0 0 0 0 11 −166 1650 −13398

g=2

0 0 0 −5 76 −772 6356 −45990

0 0 0 6−133 1743 −17556 150150

0 0 0 −1 63−1300 17655 −189260

0 0 0 0 −6 351 −7785 115269

g=3

0 0 0 1 −85 2059 −32037 386484

0 0 0 −1 121−3926 76571−1111682

0 0 0 0 −37 2241 −63063 1191808

0 0 0 0 1 −382 20825 −586146

g=4

0 0 0 0 45−3225 102243−2138540

0 0 0 0 −55 5291 −213785 5460026

0 0 0 0 10−2297 144430−4992704

0 0 0 0 0 232 −35221 1974995

g=0

1 0 0 0 0 0 0 0

−1 −1−1 −1 −1 −1 −1 −1

0 1 2 4 6 9 12 16

0 0−1 −5−14 −31 −60 −105

g=1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0−1 −4−11 −24 −46 −80

0 0 1 10 49 166 450 1050

g=2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 6 22 62 148

0 0 0 −6−63−351 −1392 −4431

g=3

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 −1 −8 −37 −128

0 0 0 1 37 382 2333 10424

g=4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 10 56

0 0 0 0−10−232 −2343−15233

Table 1 : Low degree Ooguri–Vafa (OV) invariants nh=1
g,n,w for framing ν = 1 (left)

and ν = −1 (right). The degree n ≥ 0 (winding w ≥ 1) corresponds to the vertical

(horizontal) direction.

The integrality of the above invariants provides a highly non-trivial verification
on the M-theory predictions of [6][9], and the localization methods proposed in
refs.[15][16][20].

4.2.2. The gauge kinetic function and higher genus generalizations

The other holomorphic coupling in the standard N = 1 supergravity is the gauge
kinetic f -function related to the partition function F0,2. Higher genus partition func-
tions contribute to f with a coefficient proportional to the 2g-th power of the vev of
the graviphoton field strength.

To compute Fg,2 we consider the sum over graphs with two distinguished legs
which computes the Gromov-Witten invariants Fg,n;w1,w2 , associated to world-sheets
with two boundaries landing on two distinguished parallel branes. As discussed in

13 Here and in the following tables there is a factor (−1)h in our conventions relative to [12][20].
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sect. 2 these GW invariants are the coefficients of the monomial vw1
1 vw2

2 . Restricting
to the terms with w1 ≤ w2, the first terms in the instanton expansion of the partition
function F0,2 are

F∗0,2 = 1
2 (−n(−1+n))v1v2 + 1

3 (n(−1+n)(−1+2n))v1v2
2 + 1

4 (−n(−1+n)(−1+2n)2)v2
1v

2
2+

q1(n2v1v2 + −n2(−1+2n)v1v
2
2 + n2(−1+2n)2v2

1v
2
2)+

q21( 1
2 (−(1+n)n)v1v2 + n2(2n+1)v1v

2
2 + 1

2 (−n2(12n2−1))v2
1v

2
2)+

q31( 1
3 (−n(1+n)(2n+1))v1v2

2 + n2(2n+1)2v2
1v

2
2)+

q41( 1
4 (−n(1+n)(2n+1)2)v2

1v
2
2) + ... ,

(4.7)

where the star is to remind that there are other terms in F0,2 following from the general
form (2.2). The partition function F0,2 for a single brane is obtained by setting v1 = v2
in the above. Similar statements apply to the partition functions Fg,2 for g > 0, which
can be found in the appendix.

Taking into account the multi-coverings leads to the integral invariants ng,β. We
restrict to quote the low degree invariants for two particular choices of framings and
refer to the appendix for more detailed results. The partition functions Fg,2 are iden-
tically zero for zero framing

ν = 0 : nh=2
g,n,w1,w2

= 0, ∀ g, n, w1, w2.

This extends the findings of [15][16] for degree zero, n = 0 to all other degrees. For
framing ν = −1 we find
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g=0

0 0 0 0 1 1 1 1 −1 −3 −6 −10 0 2 10 30

0 0 0 0 1 1 1 1 −3 −6 −9 −14 2 9 26 60

0 0 0 0 1 1 1 1 −6 −9 − 13 −18 10 26 57 112

0 0 0 0 1 1 1 1 −10 −14 −18 −24 30 60 112 195

g=1

0 0 0 0 0 0 0 0 0 1 5 15 0 −1 −15 −85

0 0 0 0 0 0 0 0 1 4 12 28 −1 −12 −65 −240

0 0 0 0 0 0 0 0 5 12 26 51 −15 −65 −220 −616

0 0 0 0 0 0 0 0 15 28 51 88 −85 − 240 −616 −1430

g=2

0 0 0 0 0 0 0 0 0 0 −1 −7 0 0 7 91

0 0 0 0 0 0 0 0 0 −1 −6 −23 0 6 70 427

0 0 0 0 0 0 0 0 −1 −6 −22 −63 7 70 395 1622

0 0 0 0 0 0 0 0 −7 −23 −63 −150 91 427 1622 5159

g=3

0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 −46

0 0 0 0 0 0 0 0 0 0 1 8 0 −1 −38 −421

0 0 0 0 0 0 0 0 0 1 8 37 − 1 −38 −398 −2501

0 0 0 0 0 0 0 0 1 8 37 128 −46 −421 −2501 −11192

g=4

0 0 0 0 0 0 0 0 0 0 0 0 w1→
0 0 0 0 0 0 0 0 0 0 0 −1 w2

0 0 0 0 0 0 0 0 0 0 − 1 −10 ↓
0 0 0 0 0 0 0 0 0 −1 −10 −56

Table 2 : Low degree OV invariants nh=2
g,n,w1,w2 for degree n ≥ 0 (increasing to the

right) and framing ν = −1.

Again these and the other results reported in the appendix are in impressive agreement
with the integrality prediction.

4.2.3. More boundaries and general structures

It is interesting to study also the general structure of the partition functions with
more boundaries, which describe higher dimension operators in the D-brane gauge the-
ory and couplings involving powers of the graviphoton superfield14. The computation
of the graph sums with h distinguished legs results in the following expression for the

14 See [3] for an interpretation of these couplings in the D-brane gauge theory.
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leading terms in the expansion of the genus zero partition functions F0,h:

F∗0,3 =−ν3(−2+3ν)q1v1v2v3 + ν3(−1+2ν)(−3+4ν)q1v1v2v
2
3 + −ν3(−4+5ν)(−1+2ν)2q1v1v

2
2v

2
3+

ν3(−5+6ν)(−1+2ν)3q1v
2
1v

2
2v

2
3 + (2+3ν)ν3q21v1v2v3 + −2ν3(6ν2−1)q21v1v2v

2
3+

2ν3(−1+2ν)(10ν2−ν−1)q21v1v
2
2v

2
3 + −(−1+2ν)2ν3(30ν2−5ν−2)q21v

2
1v

2
2v

2
3 + ...

F∗1,3 = 1
24 ((10−9ν−24ν2+24ν3)ν3)q1v1v2v3 + 1

12 (−(15−65ν2+52ν3)ν3(−1+2ν))q1v1v2v2
3+

1
24 ((68+51ν−392ν2+280ν3)ν3(−1+2ν)2)q1v1v2

2v
2
3+

1
12 (−5(13+18ν−90ν2+60ν3)ν3(−1+2ν)3)q1v2

1v
2
2v

2
3 + ...

F∗0,4 =ν4(−3+4ν)2q1v1v2v3v4 + −ν4(−4+5ν)2(−1+2ν)q1v1v2v3v
2
4+

ν4(−5+6ν)2(−1+2ν)2q1v1v2v
2
3v

2
4 + −ν4(−6+7ν)2(−1+2ν)3q1v1v

2
2v

2
3v

2
4+

ν4(−7+8ν)2(−1+2ν)4q1v
2
1v

2
2v

2
3v

2
4 + ...

The polynomial dependence of the GW invariants on the framing ν is described by
the simple relation15

ng,n,~w = p(ν, ε), degν(p) = 2g − 2 + h+ w, (4.8)

with w =
∑
α wα. The above expansions vanish again at ν = 0, as do all partition

functions Fg,h considered so far, except for the two non-zero instantons contributing to
F0,1. As for non-zero framing, subtracting the multi-cover contributions one obtains
the invariants defined in [6]; for all classes and framings we have considered they are
integral. Some low degree invariants for framing ν = −1 are:

h=3 g=0

0 0 0 0 0 0 0 0 0 0

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1

5 10 17 16 24 33 24 32 42 53

−4 −21 −66 −60 −141 −276 − 130 −258 −453 −729

0 12 90 81 328 964 292 881 2136 4502

h=3 g=1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

−1 −6 −20 −17 −41 −80 −36 −73 −128 −205

1 22 145 119 462 1302 394 1148 2718 5598

0 −16 −275 −222 −1536 −6602 −1282 −5692 −18792 − 50951

Table 3 : Low degree OV invariants nh=3
g,n, ~w for framing ν = −1. The degree n ≥

0 corresponds to the vertical direction and the windings wa ≤ 3 to the horizontal

direction with 3-tuples sorted in increasing numerical order.

15 The degree in ν coincides with the dimension of the moduli space Mrel
g (P1, β) defined in

[15].
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h=4 g=0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−18 −30 −46 −44 −62 −82 −60 −80 −102 −126 −80 −100 −124 −150 −178

49 152 375 346 708 1269 662 1200 1980 3051 1135 1890 2934 4320 6102

−32 −243−1060−960 −2993−7512− 2736−6936 −15131 −29580−6368−14104 −27808−50409−85584

Table 4 : Low degree OV invariants nh=4
g,n, ~w for framing ν = −1. The degree n ≥

0 corresponds to the vertical direction and the windings wa ≤ 3 to the horizontal

direction with 4-tuples sorted in increasing numerical order.

4.3. Case II: The canonical bundle KP2

A similar computation leads to the open string partition functions Fg,h for the
two phases of D-branes on the second one moduli case, the canonical bundle on P2.
One phase was already considered in the paper of Graber and Zaslow [20] and the one
boundary partition functions Fg,1 contributing to the superpotential were discussed
in detail. The extension of these computation to other world-sheet topologies and D-
brane phases is a straightforward elaboration on their work. Moreover the arguments
and computations are similar to those in the discussion of O(−1)⊕2

P1 and we can thus
be brief in the following.

The equivariant class of the pull-back i∗φ computes to [38]

∏
e∈E

3d−1∏
a=1

(Λi +
a

d
(λi − λj))×

∏
v∈V

(
Λval−1
i Pg(Λi)

)
(4.9)

where Λi =
∑3
a=1 λa − 3λi serves as one possible linearization. There are essentially

again two distinguished phases for the D-branes, depending on whether the center of
C lands on the compact divisor P2 (I) or not (II). The primitive disc D : za = zb =
0, |zD|2 ≤ c and the choice of a direction in the charge lattice of U(1)2 for these two
phases are:

I : zD = z1/z3 , za = z2/z3 , zb = z4z
3
3 ν = λ2−λ3

λ1−λ3
,

II : zD = z4z
3
3 , za = z1/z3 , zb = z2/z3 ν = λ1−λ3

−Λ3
, (4.10)

The open string integrand for the integrals in (4.1) is given by the product
(4.3)·(4.4)·(4.9). Results for the partition functions and OV invariants are collected in
the appendix.
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5. The A-model and local mirror symmetry on a Calabi–Yau 4-fold

It is for several reasons interesting to study the topological closed string on Calabi–
Yau 4-folds Z. The type II string compactified on Z has the same number of super-
charges as the type II theory on a Calabi–Yau 3-fold with supersymmetric branes. A
much stronger connection exists for the class of open string theories considered above:
there is a proposal for an open/closed string duality [18] which associates to a D-brane
geometry on a chosen Calabi–Yau 3-fold X a closed string theory on a specific Calabi–
Yau 4-fold Z such that the superpotential of the 2d closed string is identical to that of
the four-dimensional N = 1 supersymmetric open string theory. The superpotential of
the two-dimensional closed string is proportional to the genus zero partition function
and the equality of the superpotentials amounts to the relation F0,0(Z) = F0,1(X),
which has been shown on the level of the full world-sheet instanton expansion. This
is a very strong indication for a deeper relation between the two theories and possi-
bly a true string duality, perhaps involving F-theory compactified on Z. It would be
interesting to study this relation further on the level of other world-sheet genera.

Whereas the genus zero partition function can be computed by mirror symme-
try for Calabi–Yau 4-folds [39][40], and can be interpreted in terms of “numbers” of
holomorphic curves in Z, the higher genus case has not been considered so far. In
the following we outline the use of localization techniques for the computation of the
genus zero and one partition functions for the basic non-compact Calabi–Yau 4-fold
O(−4)P2 with h1,1 = 1. It would be interesting to extend these computations to the
moderately more complicated Calabi–Yau 4-folds relevant for the open/closed string
duality of [18].

Genus zero computation and comparison with local mirror symmetry

The basic genus zero GW invariants on a Calabi–Yau d-fold Z are defined as the
coefficients in the expansion of the topological 3-point amplitude

〈O(1)O(1)O(d−2)〉, (5.1)

where the operators O(k) are associated to elements γ(d−k) in H∗(Z) of complex codi-
mension k [30]. The new aspect of the 4-fold is that the last operator in (5.1) has
codimension two in Z and thus the generic holomorphic curve does not intersect the
class γ(d−k). The genus zero partition function for the basic GW invariants has the
formal instanton expansion [41]

F0 =
∑
β 6=0

∑
a

γ̃(2)
a F0,a,β q(β)
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where β denotes again a class in H2(Z,Z), q(β) its complexified Kähler volume and
moreover the last sum runs over a basis of formal coordinates γ̃(2)

a dual to the homology
classes of codimension two. The genus zero GW invariants F0,a,β can be interpreted as
the “number” of holomorphic curves that intersect the 4-cycle γ(2)

a . The multi-cover
structure that exposes the integral invariants n0,a,β associated to the virtual Euler
number of moduli spaces of such curves is [40][39]

F0,a,β =
∑

β′·d=β
d−2 n0,a,β′. (5.2)

Note that the multi-cover structure of the closed string theory compactification to two
dimensions is identical to that of the open string theory (2.3), at (g, h) = (0, 1).16 For
the relation between the open/closed string duals considered in [18] this amounts to
the statement that the integral open string disc invariants nh=1

0,β map 1-1 to the closed
string integral invariants n0,a,β̂, after an appropriate identification of the classes in
β ∈ Hrel

2 (X,L;Z) with classes in β̂ ∈ H(Z,Z).

What makes it necessary to impose an condition on the location of the curves in
the A-model computation is the dimension of the moduli space of curves in general
position, which is too large to find an appropriate form on it. To obtain a moduli
space of the right dimension with a top form that can be integrated over it, one may
add one marked point x on the domain curve Σ and requires the image f(x) in Z to
lie within γ

(2)
a . The computation of the weights of the Euler class of the obstruction

bundle and the virtual normal bundle leads to the result

∏
e∈E

[(−)d

d!2
(

d

λi − λj
)2d

a=d∏
k 6=i,j
a=0

(
a

d
λi +

d− a

d
λj − λk)−1

4d−1∏
a=1

(Λi +
a

d
(λi − λj))

]
×

∏
v∈V

[(
Λi

∏
k 6=i

(λi − λk)
)val−1(λi)2p × {(

∑
F3v

w−1
F )val+p−3

∏
F3v

w−1
F }

]
,

(5.3)

where p(v) is the number of marked points at a vertex p and the indices of the weights
run over the four fixed points pi on P3. Moreover, in a particular linearization, Λi =∑4
k=1 λk − λi. The graph sum (2.1) leads to the GW invariants collected in the genus

zero partition function

F0 = −20q1 − 825q21 −
612560

9
q31 −

29946585
4

q41 −
4825194504

5
q51 −

412709577260
3

q61+...

(5.4)

16 In fact also the open string result is derived in [6] using a two-dimensional variant of the

open string background.
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Here q1 is the exponentiated Kähler volume of the single primitive class β ∈ H2(Z,Z)
and we have omitted the label for the single class γ(2) in H4(Z). From the genus zero
multi-cover formula (5.2) for the 4-fold one obtains the invariants n0,n·β

−20, −820, −68060, −7486440, −965038900, −137569841980, ...

which are indeed all integers.

The above result agrees with the one obtained from mirror symmetry for Calabi–
Yau 4-folds. The GW invariants associated to the compact divisor P3 in O(−4)P2

can be computed from an application of local mirror symmetry as in [42]. The non-
compact toric 4-fold Z may be defined as the gauged U(1) linear sigma model with five
matter fields of charges l = (−4, 1, 1, 1, 1). The periods of the local mirror manifold
are the solutions to the (GKZ) system of differential equations associated to the vector
l:

L = θ4 − 8zθ(4θ + 1)(2θ + 1)(4θ + 3),

where z is the single complex structure modulus of the mirror and θ = z d
dz

. Apart
from the constant solution ω0 =const., the solutions ωk of the differential operator L
are of the form ωk = ln(z)k + Sk(z), k = 1, 2, 3, where Sk(z) are power series in z.
The single logarithmic solution describes the mirror map

2πit = ω1(z) = ln(z) + 24z + 1260z2 + 123200z3 + 15765750z4 + ...

relating the Kähler modulus t of O(−4)P2 and the complex structure modulus z of its
mirror. The partition function F0 is given by the double logarithmic solution ω2(z)
[40]. Inverting the mirror map and inserting the result z(t) into ω2 leads to a power
series in q1 = exp(2πit) that agrees with the result from the localization computation
(5.4).

Genus one

At genus one, the moduli space of generic curves is of the right dimension for any di-
mension d of the Calabi–Yau target space and the computation involves maps without
extra marked points. The genus one integrand is obtained from that at genus zero by
replacing the expression {(

∑
F3v w

−1
F )val+p−3

∏
F3v w

−1
F } in the last line of (5.3) by

the class

{
P1(Λi) ·

∏
i6=k P1(λi − λk)∏

F3v wF − ψF
} (5.5)

The graph sum (2.1) leads to the following expansion of the genus one partition func-
tion:

F1 = −25
3
q1−

2425
6

q21−
204700

9
q31+

688375
12

q41+492685322q51+
1433052348850

9
q61+... (5.6)

It would be interesting to relate this partition function to the number of elliptic curves
in Z.

22



6. Discussion

The improved techniques for N = 1 open strings developped over the last years
have put the study of non-perturbative properties of N = 1 string vacua on a new
level. Important non-perturbative aspects, such as supersymmetry breaking and a lift
of the vacuum degeneracy, have been discussed in a plethora of papers in the past,
mainly based on qualitative arguments and some reasonable working hypotheses. It
will be interesting to check some of these ideas now and to redo the analysis with the
new quantitative techniques that emerged from the D-brane techniques.

The computations in the previous sections provide the instanton expansions of the
basic holomorphic couplings W (φ) and f(φ) in the low energy string effective action
and are thus a modest first step into this direction. One of the primary motivations of
the computation of the explicit instanton expansions in this paper has been the wish
to use them as a starting point for the development of methods that govern also the
global structure on the N = 1 “moduli space”. This is the parameter space of scalar
vev’s which are flat directions in the perturbative sense. The instanton expansions
do not lead immediately to information about the global behavior of the couplings.
One promising approach to uncover the principles that govern this global structure
would be a generalization of mirror symmetry arguments along the lines of [4][11][12].
Another possible strategy would be to derive a system of differential equations satisfied
by the instanton expansions for Fg,h, such as (4.6) and (4.7) for the conifold. For the
superpotential W = F0,1, such equations are known [18][22].
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Faber for providing the Maple implementation of the work [35]. I am grateful to
Wolfgang Lerche for valuable discussions.

Appendix A. Integral invariants for general framings

In the following we restrict to describe the low degree OV invariants for general
framing in the phase of D-branes on O(−1)⊕2

P1 studied in sect. 4 . An extended
appendix including results for other phases and D-branes on the Calabi–Yau 3-fold
KP2 can be found at [27].

The results will be presented in terms of generating functions Ag,h similar to the
partition functions Fg,h, but with the coefficients being the integral OV invariants
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ng,h,β instead of the fractional GW invariants Fg,h,β. The first terms in the generating
functions for world-sheets with h = 1 boundary are:

A0,1 =−εv1 + 1
4 (−2ν−1+ε)v2

1 + 1
2 (−εν(1+ν))v3

1 + 1
3 (−ν(1+2ν)(1+ν))v4

1+

q1(εv1 + νv2
1 + 1

2 (εν(1+3ν))v3
1 + 1

3 (ν(1+2ν)(1+4ν))v4
1)+

q21( 1
4 (−2ν+1−ε)v2

1 + 1
2 (−εν(−1+3ν))v3

1 + −4ν3v4
1)+

q31( 1
2 (εν(−1+ν))v3

1 + 1
3 ((−1+4ν)(−1+2ν)ν)v4

1) + ...

A1,1 =
1
48 (−4ν−3+6ν2+4ν3+3ε)v2

1 + 1
8 (εν(1+ν)(3ν2+3ν−2))v3

1 + 1
3 (ν(1+2ν)(1+ν)(2ν2+2ν−1))v4

1+

q1( 1
6 (−ν(−1+ν)(1+ν))v2

1 + 1
8 (−εν(1+3ν)(−2+3ν)(1+ν))v3

1 + 1
3 (−ν(1+4ν)(1+2ν)(−1+2ν)(1+ν))v4

1)+

q21( 1
48 (−4ν+3−6ν2+4ν3−3ε)v2

1 + 1
8 (εν(−1+ν)(3ν+2)(−1+3ν))v3

1 + 4ν3(−1+2ν2)v4
1)+

q31( 1
8 (−εν(−1+ν)(3ν2−3ν−2))v3

1 + 1
3 (−ν(−1+ν)(1+2ν)(−1+2ν)(−1+4ν))v4

1) + ...

A2,1 =
1

960 (−16ν−15+40ν2+20ν3−10ν4−4ν5+15ε)v2
1 + 1

80 (−εν(−1+ν)(−1+3ν)(3ν+4)(2+ν)(1+ν))v3
1+

q1( 1
120 (ν(−1+ν)(ν−2)(2+ν)(1+ν))v2

1 + 1
80 (εν(−1+ν)(3ν+4)(1+3ν)(−2+3ν)(1+ν))v3

1)+

q21( 1
960 (−16ν+15−40ν2+20ν3+10ν4−4ν5−15ε)v2

1 + 1
80 (−εν(−1+ν)(3ν+2)(−1+3ν)(3ν−4)(1+ν))v3

1)+

q31( 1
80 (εν(−1+ν)(ν−2)(3ν−4)(1+3ν)(1+ν))v3

1) + ...

A3,1 =
1

80640 (28ν6+8ν7−288ν−315+952ν2+392ν3−350ν4−112ν5+315ε)v2
1+

q1( 1
5040 (−ν(−1+ν)(ν−2)(−3+ν)(3+ν)(2+ν)(1+ν))v2

1)+

q21( 1
80640 (−28ν6+8ν7−288ν+315−952ν2+392ν3+350ν4−112ν5−315ε)v2

1) + ...

A4,1 =
1

2903040 (504ν6+120ν7−2304ν−2835−18ν8−4ν9+9216ν2+3280ν3−4032ν4−1092ν5+2835ε)v2
1+

q1( 1
362880 (ν(−1+ν)(ν−2)(−3+ν)(−4+ν)(4+ν)(3+ν)(2+ν)(1+ν))v2

1)+

q21( 1
2903040 (−504ν6+120ν7−2304ν+2835+18ν8−4ν9−9216ν2+3280ν3+4032ν4−1092ν5−2835ε)v2

1) + ...

The predicted integrality of all coefficients in the above expansions for any choice of
ν ∈ Z is quite impressive given the complicated denominators. The expansions of the
generating functions for h = 2 are:

A0,2 = 1
2 (−ν(ν+1))v1v2 + 1

3 (−εν(ν+1)(2ν+1))v1v2
2−ν2(ν+1)2v2

1v
2
2+

q1(ν2v1v2 + εν2(2ν+1)v1v
2
2 + ν2(2ν+1)2v2

1v
2
2)+

q21( 1
2 (−ν(−1+ν))v1v2−εν2(−1+2ν)v1v

2
2−6ν4v2

1v
2
2)+

q31(0v1v2 + 1
3 (εν(−1+2ν)(−1+ν))v1v2

2 + ν2(−1+2ν)2v2
1v

2
2) + ...
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A1,2 =
1
24 (ν(−1+ν)(ν+2)(ν+1))v1v2 + 1

6 (εν(ν+1)(2ν+1)(ν2+ν−1))v1v2
2 + 1

3 (2ν2(2ν2+2ν−1)(ν+1)2)v2
1v

2
2+

q1( 1
12 (−ν2(−1+ν)(ν+1))v1v2 + 1

6 (−εν2(2ν+1)(3ν−2)(ν+1))v1v2
2 + 1

3 (−2ν2(ν+1)(−1+2ν)(2ν+1)2)v2
1v

2
2)+

q21( 1
24 (ν(−1+ν)(ν−2)(ν+1))v1v2 + 1

6 (εν2(−1+ν)(3ν+2)(−1+2ν))v1v2
2 + 4ν4(−1+2ν2)v2

1v
2
2)+

q31( 1
6 (−εν(−1+2ν)(−1+ν)(ν2−ν−1))v1v2

2 + 1
3 (−2ν2(2ν+1)(−1+ν)(−1+2ν)2)v2

1v
2
2) + ...

A2,2 =
1

720 (−ν(−1+ν)(ν−2)(ν+3)(ν+2)(ν+1))v1v2 + 1
360 (−εν(−1+ν)(2ν+1)(ν+2)(ν+1)(13ν2+13ν−12))v1v2

2+

q1( 1
360 (ν2(−1+ν)(ν−2)(ν+2)(ν+1))v1v2 + 1

360 (εν2(−1+ν)(2ν+1)(ν+1)(39ν2+26ν−34))v1v2
2)+

q21( 1
720 (−ν(−1+ν)(ν−2)(ν−3)(ν+2)(ν+1))v1v2 + 1

360 (−εν2(−1+ν)(−1+2ν)(ν+1)(39ν2−26ν−34))v1v2
2)+

q31( 1
360 (εν(−1+ν)(ν−2)(−1+2ν)(ν+1)(13ν2−13ν−12))v1v2

2) + ...

A3,2 =
1

40320 (ν(−1+ν)(ν−2)(ν−3)(ν+4)(ν+3)(ν+2)(ν+1))v1v2+

q1( 1
20160 (−ν2(−1+ν)(ν−2)(ν−3)(ν+3)(ν+2)(ν+1))v1v2)+

q21( 1
40320 (ν(−1+ν)(ν−2)(ν−3)(ν−4)(ν+3)(ν+2)(ν+1))v1v2)+

q31( 1
45360 (−εν(−1+ν)(ν−2)(−1+2ν)(ν+1)(205ν4−410ν3−614ν2+819ν+558))v1v2

2) + ...

A4,2 =
1

3628800 (−ν(−1+ν)(ν−2)(ν−3)(ν−4)(ν+5)(ν+4)(ν+3)(ν+2)(ν+1))v1v2+

q1( 1
1814400 (ν2(−1+ν)(ν−2)(ν−3)(ν−4)(ν+4)(ν+3)(ν+2)(ν+1))v1v2)+

q21( 1
3628800 (−ν(−1+ν)(ν−2)(ν−3)(ν−4)(ν−5)(ν+4)(ν+3)(ν+2)(ν+1))v1v2) + ...
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