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A.C. Loss in a Stack of Flat Superconducting Cables

Alexander A. Akhmetov

Abstract—An equation has been derived which describes the
current distribution in a flat cable subjected to a time-dependent Kk
magnetic field directed perpendicular to the cable wide face. So-
lutions of this equation obtained in the case when all parameters
are uniform along the cable allow us to obtain the time constant k=
spectrum, magnetic moment of the cable and A.C. loss. For a stack
of cables with height much larger than the cable width, the con-
tribution of the self-screening is calculated analytically. Numerical
examples are provided based on geometrical characteristics and
interstrand contact resistance of a typical LHC cable and the in-
ductance of the LHC dipole.

Index Terms—A.C. loss, coupling currents, superconducting ca- o1k
bles.
|. INTRODUCTION
OR THE last decade lumped circuit models [1]-[6] have
been developed to describe eddy currents in a flat super- k=1

conductingK -strand cable subjected to background magnetic
field variations. These models divide each strand of the cable k=0
into M > 1 finite elements. The elements belonging to dif- =
ferent strands are connected via lumped resistances. The mag n-1 n n+l

netic field density in the vicinity of these elements is discretized o \
and represented in the calculations by the finite array of nurfg- 1. Aschematic view of a flat two-layer cable. Contacts makednd®

. . are fictional.
bers of rank}, where@ > K, @ > M. Due to its size, the

resulting set ofy Faraday equations often has to be written in ) ) )
matrix form [2], [3]. edges symbolize the contacts which are absent in the real cables.

As an alternative, the cable strands are considered as cbigfead, strands go around the edge from one layer to the other
tinuous entities X differential one-dimensional equations deWithout any resistance. However, for the following it is conve-
scribe currents in the strands as functions of time and po8j€nt to assume that there are contacts, which carry no current
tion along the cable [7], [8] while inter-strand resistances afgl- o _
smeared along the cable. These equations are also treated in mgther fictional contacts marked have no connection to the
trix form, sometimes in combination with FEM [8]. The preserﬁtra”ds- They are placed in the center of elementary cells cre-
paper attempts to show that the transition to a totally continuo@d by two adjacent strands of the front layer placed over two
model is possible. It results in a single 2-D equation describidgliacent strands of the rear layer. Indexes & < K — 1 and
the current distribution in a flat cable subjected to a time-dé-< 7 < N, N > 1 are used to identify the cell position

pendent magnetic field directed perpendicular to the cable wigross and along the cable correspondingly. The same indexes
face. are used to refer to the contact resistances and the strand portions

located between two adjacent contacts. The cell matked)

Il. BASIC EQUATION is bounded by strand fragmelﬁt§—1, k), (n—1, k+1), (n, k)

. . ) . and(n, k 4+ 1) and contact resistances — 1, k), (n, k — 1),
Fig. 1 shows a schematic rendgrmg of a flat cable. Solid |In%ﬁ’ k-+1) and(n+1, k) of the types or o. The fictional contact
ascending from the left to the right represent the strands gfig placed in the center of the cell with the same indexes.

one (say, the front) layer. The other strands form the rear layery ot s apply the Faraday equation to the cell. We obtain
The filled circles represent physically present electrical contacts

with the resistanc& between layers. The other types of CiI’C|eSR(Jn_1 k=20 1+ Jng1 )= R(Jn, g1 =20 1 4 T, 1)

show fictional contacts. The nonfilled circles placed at the cable d
+L 7 (In—1 641 — L1k + In k1 — Lo i)
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is the time,/ is the current in the strand portiok,is the cable  Let us consider not a single cable but a high stack of electri-
twist pitch length,w is the cable width and is the average cally insulated cables. In this case, a magnetic field created by
magnetic field in the cell. The curredt,  across the fictional screening currents in the positigris
contact® is both added and deducted twice and is, therefore, ’
cancelled. B, = 2p0 K
Now, assumingK > 1, the scale of the spatial variations wh J_,
across the cable iAy = w/K <« w. Since the strand goes
from one edge of the cable to the other one over the len
l,,/2, the scale of the spatial variations along the cabl&is=
l,/(2K) < [,. Inthe limit Az — 0, Ay — 0, (1) becomes

I(y) dy, (7

V\ﬁwereuo is the magnetic permeability of vacuum ahds the
gHlstance between the cables in the vertical direction
Combining (6) and (7), we have

2 g2 ) y &I 2LK? 9%I LK 0 B, + 2uo K /y Id
I S oIy +61,) = 1 0B (2 9v* Rw? Oyot T T Rw? ot \° wh J_, Y]

4w? 9x2  Oy? + Ruw? E(

where the magnetic field is due to both an external source
(B.) and the strand current8,), B = B. + B;, thez axis
and they axis are directed along and across the cable cor
spondinglyé!; andél, are the variations of the currents in the Bo | dp y .

front and rear layers with the ordinate increase/y. Equa- Fr iwd W + 'Lw’V/ pdy = —iwd, )
tion (2) should be complimented by the boundary conditions oF

J(x, £s) =0,1;(£l, y) = L.(£l, y) = 0, where the origin of where
the coordinate is placed in the cable centet, w/2 and! is the

Last, in the harmonic case whd®. = Byexp(iwt) it is
I%cgssible to separate the variables. Let ¢ - exp(iwt). Then

2LK? 20 K21 Kl,B
half of the sample length. 5= — ot b g 2P0 10
Ruw? Rush ' Ru? (10)
[ll. EDDY CURRENT OSCILLATIONS The relation between parametérand~ underline the physics

> . )
Oscillations of eddy currents under stationary conditions aP&the process. 1§ < yw” then the influence of screening cur-

already well described [3], [5], [6]. Let us show that (2) provideEe”tS is prevailing over the irde(_:tance influence and_vice versa.
a solution in a much simpler way. In stationary conditions it Once the current distribution is found, the magnetic moment
becomes of a cable per twist pitch is

duw? 922 9y?  Rw dt

2K s
1127 g 2 _ lp dB. M, =— Ly exp(iwt) | yedy, (12)
(3) w 0

Let us assume thatB. /dt = constant, uniform across andand the loss per cycle per twist pitch is

along the cable. Solution of (3) satisfying symmetric boundary 2rRK? [*
conditions.J (z, +s) = 0, J(—1, y) = J(+1, v) is G=—u ; Jg dy, (12)
l, dB.

_ 2,2 2m 7r where.Jy = (w/K)(dye/dy) is the amplitude of the oscillating
= Shu @t (s —y)—i—Dcos(—a: COS(Ey)’ (4) 0 £

I, current.J.

where D is the constant. To find it, let us use the fact that in

linear systems the correct current distribution should provide a

minimum energy dissipation [3], [6]. As a result, we have Instead of solving (9) for arbitrary, let us consider two
limits; w — 0 andw — oc. In the first case an influence of both

V. LOSSVERSUSFREQUENCY DEPENDENCE

wl? aB strand inductances and screenin t b lected and
B P . . _1dB. g currents can be neglected an
3 sin(2ml /Ly )[4l + 1 sin(drl /1 )] dt -’ ) the strand currents are given by [4], [9]
The coefficientD of the eddy current oscillations is zero when LK dB. . , 3
2l = ml,, wherem is an integer, and reaches local maximums = 6Rw? dt 357y —y), (13)
at2l = (m + 1/2)l,,. With m increasing these maximums de- .
crease. providing a magnetic moment
w?K*I2 dB,
IV. UNIFORM CURRENT DISTRIBUTION My =— (14)

120R  dt -~

At the high frequency limit except for the narrow region at
e cable edges [9], resistive terms in (9) can be neglected and
we have

If { > [,, the inter-strand currents become uniform along
the cable/; = .. = I so that except for the case of extremely,
slow ramp rate,/ = (dI/dy)Ay, and (2) takes the form [9]

9°J 2LK?9J 1, OB
— = 6 Ll - S
oy? Rw? dt Rw 0Ot ©) dez P 0, (15)
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wherea? = 4§71, Its solution satisfying the boundary condi- - 1 ‘
tions is < 0 ¥ 2 4 6 8
l,By shiay) S 0.1 1
o= % : (16) 7 —_
2LK « ch(ws) 5
_ _ O 001 - - _
from which we get a magnetic momentat— oo as °E’ —_—
12Bo sh(as) F 0.001 — T
M,—- —F (s .ch(as)— exp(iwt).
P wLa? ch(as) < (as) « ) ( ()17) Time Constant Number

The values gi\/en by (14) and (17) can be fitted by the geneﬁjg. 2. Time constants,, (—) versus numbern for the screening prevailing.
Ther, =~ 7, (#), the otherr,,, are much smaller. Correspondingly, the coupling

expression currents given by (24) decay fast and can be important at high frequencies only.
ingTswBy .
M, = ——— exp(iwt), 18 .
r po(1 + dwry) xp(iwt) (18) and, viavs = w /2, 3w /2, 5w /2..., Of vy, = w(2m — 1)/w,
we define the discrete values allowed fQr as
where
I i th(as) po K2 1yw? « Tm = W26n*(2m — 1)* + yw'lr 2(2m —1)7%,  (26)
Ny = p't T Ts =

o ~ 120Rh  sa — th(as)’ , _ ,
(19) wherem = 1, 2. ... Formally, in the continuous model there is

no upper limit form. However, (2) is correct only if the spatial
Now, following arguments of [10], let us write loss versus frevariations governed by (24) occur on a length much longer than

quency dependence in the form Ay. Hence, only a limited number of time constants has to be
taken into account.
_ ns7s 7w B3 (20) Let us consider the first time constant of the spectrynn
po(l + w?72)’ the limit of screening prevailing. Below; is shown in com-

ggison with the time constant, defining the maximum of
the loss curve. The last one is given in the same limit when
th(as) < as:

Equation (20) indicates that at low frequencies the loss increa
linearly with frequency, reaches the maximumvat 1/7, and
decreases afterwards.

_ 2u0l,wK? _ polpwk?
VI. TIME CONSTANT SPECTRUM = Rh Ts = 60RA

is seen that these values are quite close.

(27)

It is known that in nonuniform conditions the time constantg
of the flat cable can be very large [6]-[8], [11]. This is not the
case when both the cable and applied magnetic field are uniform
along the cable length. To find the time constants, let us analyze
the decay of currents induced in the cable up to the moment_et us estimate the time constant for the high stack composed
t = toif dB./dt = 0 att > t. The correspondingly reducedof the LHC dipole inner cables with’ = 28,w = 15 mm,/,, =

VII. LHC INNER CABLE TIME CONSTANT ESTIMATION

(2) has the form 11.5 mm and the mid-thickness equal to 1.9 mm. Allowing for
951 021 5 v the inter-cable insulation let us take= 2 mm. For thel value
il v _/ Idy=0. (21) let us take first the lowest estimation based on the magnetic
dy  oyot ot ), energy associated with one strand [11]I4f= 18 mm is the

strand twist pitchd = 1.07 mm is the strand diameter as#\d=

Let us separate variables by usin
P y g 0.65 mm is the average diameter of the multi-filamentary area

I(y, t) = x(y) exp(—t/7m), (22) in the Alstom-made strand [12] then
which leads to the following equation 1o /gg + 42 w21 d
2 , L=———r— |5+ —-In|—||. (28)
d°x dx Y 4K 27w d,
de—yg'i‘éd—y_')// xdy=0 (23)
] ) _ - Putting the above values in (28) we haves 2.1- 10710 H.
with the evident solution The average contact resistance in the inner windings of pre-se-
X = Ay - sin(vy), (24) ries dipoles isk == 50 12 [13], which give us parameter ==

4800 n L. Now, it is possible to estimate a time constant, which

whereA,, is the coefficient depending on the current distributiol$ 7> = 0.3 S (see Fig. 2). The valuew ~ 70> 1 corresponds
att = to andv is the coefficient, which must satisfy boundary© & case where the contribution from the screening to the time

conditions. Substituting this solution in (23) and using the abo$@nstants is much higher than the inductance contribution. Cal-
boundary conditions we have culations using (28) can be thought of as an underestimation of

L. However, even fol. being two orders of magnitude higher,
Tt — 62— =0 (25) i.e., forL =2.10°8 H, the time constant is stilt, ~ 0.4 s.
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50 1 netic field has been developed. In the uniform case, solutions of

this equation allow us to find the magnetic moment of the cable

40 - subjected to harmonic magnetic field variations, the a.c. loss and

&
[0]
°
E
= 20 -
z 0
10 -
(1
0 . . | | II
0 20 40 60 [2]

millimeters

[3]
Fig. 3. The upper right quarter of the dipole winding. Together with other
quarters it creates the irregular and bent stacks.

[4]
Let us now qualitatively consider a winding of the main LHC
dipole shown in Fig. 3. Certainly, there is significant difference
between its geometry and that of the high stack of cables. How-{5]
ever, all blocks are stacks of cables by themselves and both innetg]
and outer windings create a kind of high but irregular and bent
stack. This means that (27) should provide a rough estimate of
the time constant for the inner and outer windings. In this con-1]
nection, it can be worthwhile to estimate another limit for the
strand inductance. One can assume that the total dipole induds]
tance 0.003 H per meter per aperture can be in equal parts as-
cribed to 5280 strands composing one aperture. Since the lengtjy,
of the strand between two neighboring contacts for the inner
cableis 2.1 mmitresults ib ~ 1.2- 10~° H. As it was shown [10]
in the previous paragraph, this value is insufficient to change
substantially. [11]

VIIl. CONCLUSIONS [12]

An equation describing coupling currents in a flat supercon-[lB]

ducting cable subjected to the time-dependent background mag-

the main characteristic time constant of the high stack of cables.
30 A A related estimation of the time constant for the inner winding
of the main LHC dipole provides a value approximately equal
to 0.3 s for typical contact resistances around.50
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