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Influence of Geometrical Parameters on the Flexural
Rigidity of the LHC Dipole Cold Mass Assembly

M. Bajkó, R. Chamizo, and A. Pardons

Abstract—In order to predict the mechanical behavior of the
LHC dipole cold mass in situations such as handling, transport
and cool down, a number of important structural parameters are
required. The dipole’s flexural rigidity determines entirely the me-
chanical elastic behavior of the cold mass. Therefore, models of a
bent cold mass were created to calculate its rigidity. This paper
presents a simplified parametric finite element model, created to
study the deflection of the cold mass in different situations and sup-
porting conditions. The sensitivity of the models to the supporting
conditions is computed. To provide the finite element and the ana-
lytical models with input, the deflection of the cold mass under dis-
crete loads in normal condition and then 90-degrees rotated were
measured with a laser tracker. By comparing models with mea-
surements, the vertical and transversal rigidity of the cold mass
assembly are determined. Additionally, the paper reports on the
plastic behavior of the cold mass assembly in the range of the de-
formations that are needed to correct cold masses that result, after
final welding of the outer skin, with unacceptable sagitta.

Index Terms—Alignment, flexural rigidity, geometry, LHC
dipole cold mass assembly.

I. INTRODUCTION

T HE MECHANICAL behavior of the LHC dipole cold
mass (CM) in different conditions has to be known for

many reasons. The handling of the CM should be controlled
in order to assure that the correct geometry of the cold mass
be conserved until its installation in the tunnel. The large
beam size at the injection, put demands on the shape and the
positioning tolerances of the axes of the dipole cold bore tubes.
There are also strict requirements dictated by the mechanical
interconnections between adjacent magnets. In order to respect
the alignment requirements in the tunnel, tight tolerances are
imposed during the final assembling steps of the dipole CM,
as well as during cryostating and fiducialization. The total
tolerance “budget” is shared between these operations and there
is no room for extra errors coming from noncontrolled handling
or any other harmful operations. However, following the life
of the dipoles from assembly to installation in the tunnel,
several transport and handling operations are foreseen. For
these operations it is important to define a maximum permitted
deformation. Once a CM is installed and aligned in the tunnel,
it will be cycled between room temperature and 1.9 K several
times during the LHC lifetime. Mechanical models are needed
to describe the behavior of the dipole CM in these different
situations, allowing to define the conditions for transport,
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Fig. 1. Theoretical geometry of the dipole CM at room temperature.

Fig. 2. The natural shape of the dipole cold mass in the vertical plane.

handling and to predict the shape of the CM after thermal
cycling. In this paper it is given an estimation of the flexural
rigidity of the dipole CM, which can then be input to a 3-D
mechanical model describing the geometry variation during
transport and thermal cycle. In addition a “recipe” is provided
for the corrective action to be performed on the CM geometry,
if necessary, in a relatively early stage of the CM assembly.

II. SHORT DESCRIPTION OF THEDIPOLE COLD MASS

A. The Geometry of the Dipole Cold Mass

The shape of the two beam channels is identical. The cen-
ters of curvature of the apertures are 194 mm apart at nominal
working temperature (1.9 K), which correspond to 194.52 mm
at room temperature. In the vertical plane, the ideal shape of
each cold bore tube (CBT) axis is a straight line, but in reality
the CM has a finite bending stiffness, and is supported only in
three points [1].
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Fig. 3. The experimental set-up nr. 1.

Fig. 4. The axis of one of the CBT of the dipole CM under 4 different loads. Absolute deflection in the vertical plane (points). Simulated results from FEmodel
(continuous line).

B. The Main Components of the Dipole Cold Mass

The active part is made of:

1) Two dipole coils, each consisting of an upper and a lower
pole. Each pole combines two superconducting windings,
called the inner and outer layer, which are electrically
connected.

2) A common nonmagnetic, force-retaining laminated struc-
ture made up of austenitic steel collars. This structure
confines and pre-stresses the coils, strictly maintaining
their geometry in presence of the very high electromag-
netic forces occurring during magnet testing and oper-
ation. These common collars assure the distanceof
194.52 mm between the two dipole coils.

3) A laminated iron yoke split into two parts in the vertical
symmetry plane, providing the return path for the mag-
netic flux and conferring mechanical rigidity to the whole
structure.

4) Two laminated iron inserts placed across the vertical sym-
metry plane.

5) An austenitic steel shrinking cylinder, made of two
welded half-cylinders, surrounds the yoke. This cylinder

gives the CM assembly the stiffness needed to contain the
electromagnetic forces, it provides the inertia necessary
to maintain the geometry of the CM and it constitutes,
with the end covers, the superfluid helium vessel.

6) Two austenitic steel end plates, closing the active part at
both extremities, and absorbing the longitudinal electro-
magnetic forces. Items 1 and 2 together with the related
cold bore tubes constitute a sub-assembly that will be
hereafter referred to as the “collared coils” [2].

Fig. 6 shows items 1–5 in a cold mass cross-section.
The whole assembly has a weight of 275 kN and is, in nominal

conditions, on 3 supports. The support pads are 5.4 m apart. In
nominal supporting conditions, the dipole cold mass is deflected
in the vertical plane with a sagitta of 0.3 mm.

III. M ETHOD TODETERMINE THEFLEXURAL RIGIDITY OF THE

DIPOLE COLD MASS

In order to determine the flexural rigidity (bending stiffness)
of the dipole cold mass a number of measurements were per-
formed on different cold masses, in different supporting and
loading conditions. These loads and supporting conditions were
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Fig. 5. The shape of CM in the transversal plane when the vertical plane is charged with different loads.

introduced into a finite element model (FEM) of the cold mass.
By adapting the bending stiffness of the model in order to fit
the calculated deflection with the measurements allowed, after
a few iterations, to determine the magnet stiffness.

A. Experimental Set-Up

In order to avoid hyperstatic (statically indeterminate) cases
and to minimize the number of factors influencing the sensi-
tivity of the FE-model, the dipole cold mass was placed on two
supports and charged in the middle by various distributed loads.
Since an existing bench for the final CM assembly was used for
these measurements, the distance between the two supports was
fixed to approximately 8 m. The cold mass was placed symmet-
rically on the bench with respect to the supports. This simple
experimental set-up avoids the need of a rigid structure around
the cold mass for the loading. Loads are constituted by blocks
placed on the top of the cold mass, half way between the two
supports, as shown in Fig. 3.

For each loading case, the axis of a CBT was measured over
its whole length. The same measurement was repeated in order
to check for residual deformations, i.e., the start of a plastic be-
havior. A cold mass CBT was measured under and after four
different loads. The combination of the blocks permitted the fol-
lowing four cases: CM charged with 18 kN, with 27 kN, with
30.8 kN and with 36 kN. The deformations of the CM in the ver-
tical plane under these four loading cases are shown in Fig. 4.
As a reference, the natural sagitta with this support configura-
tion is 0.6 mm.

The deformations in the transversal plane are also recorded
to study a possible cross-talk between the loaded (vertical) and
transversal plane, i.e., the influence of the deformation in the
vertical plane on the deformation in the transversal plane and
vice versa. In the range of the applied loads, no cross-talk has
been observed. The shape of the CM in the transversal plane in
the different cases is shown in Fig. 5.

Fig. 6. The cross section of the cold mass.

Fig. 6 shows the CM cross-section and the main components
contributing to the magnet’s stiffness: the shrinking cylinder
with longitudinal welds, the coils, the half-yokes, the collars
with locking rods and the cold bore tubes. From this cross-sec-
tion, it is clear that the transversal stiffness (bending around axis
“A”) will be considerably different from the vertical stiffness
(bending around axis “B”). The position of the coils, locking
rods and cold bore tubes with respect to axes A and B suggests
that the horizontal rigidity is higher than the vertical rigidity.

In order to determine the transversal stiffness, the magnet
was turned 90 degrees from its nominal working position. Then
the magnet, with the sagitta facing down, was loaded with dis-
crete forces up to 130 kN. This test also allows to determine the
regime of plastic deformation of the cold mass. Three supports
are placed along the longitudinal axes. Two shims were placed
on the supports to follow the initial curvature of the CM. On the
two extremities of the CM, a local load was applied using the
rigid structure of the welding press (see Fig. 7).
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Fig. 7. The experimental setup nr. 2.

B. The Modeling

In order to determine the flexural rigidity, a simple 2-D finite
element model (FEM) is made. The cold mass is represented
by 2-D beam elements and is modeled as a cylinder with the
geometrical and mechanical characteristics of the shrinking
cylinder, and a weight of 275 kN. The geometrical and me-
chanical characteristics of the cylinder are listed in the Table I.

A factor “ ,” varying between 1 and 1.5, is introduced to scale
the inertia “ ” of the cylinder to the inertia of the whole CM as-
sembly, meaning . The distance between the sup-
ports (“ ”) and the length of the contact surface between each
support and the cold mass (“”) are important parameters of the
mechanical model. These two factors have a significant influ-
ence on the calculated deflection, comparable to that obtained
by the relative variation of the factor “.” Since the relation be-
tween the maximum deflection of the cold mass and the contact
length of the support can not be expressed analytically, a statis-
tical relation is given. Several cases are considered varying the
parameters , , and . The parameters and their range of vari-
ation are listed in Table II.

Combining the results from several models, all loaded with a
force of 36 kN but with different values for the factorand the
distance , the maximum deflection , can be expressed as
follows:

(1)

where , and result
from least square based fitting. In a similar way the maximum
deflection can be formulated as a function of the factorand of
the contact length:

(2)

with , , and
, where “ ,” “ ” and “ ” are expressed in millimeters.

The sensitivity of the model to the variation of the parameters
, , is given by the partial derivation of the functions:

(3)

This means that a variation of 0.1 mm of the maximum deflec-
tion can be caused by an error of 4 mm on the defined contact

TABLE I
CHARACTERISTICS OF THECYLINDER

TABLE II
INPUT PARAMETERS OF THEMODEL AND THEIR RANGE OFVARIATION

length, 30 mm error on the given distance between the supports
or by an error of 3.3%–3.8% on the factor, related to the es-
timation of the cold mass inertia and, consequently, the magnet
stiffness.

A FE model with contact elements confirmed that, under the
four load cases considered (Fig. 4) and for a support length in
the range 0.04 to 0.14 m, contact occurs over the entire sup-
port length. This means that the factor “” from Table II can
be determined by measuring the length of the actual supports.
Consequently, both “” and “ ” (the distance between the sup-
ports) can be known with an accuracy of1 mm, leaving only
the precision of the measurement device as a limit to determine
accurately “ ” or the magnet stiffness.

C. Results of Comparison. The Flexural Rigidity.

The model as defined above was run for different values of
the inertia factor “ ” for the same loading case. After several it-
erations, the resulting value of the factorwas 1, for the vertical
plane. The deflections calculated with the factor fit well
the measurements. Using the same value for, the other loading
cases were calculated and the results were superposed on the
measurements. As Fig. 4 shows, all cases confirmed that the
flexural rigidity of the dipole cold mass in its vertical plane can
be considered identical to that of the shrinking cylinder, being
142 MNm .

A similar FE model, representing the conditions of the second
set up (Fig. 7), allows to determine the horizontal stiffness of
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Fig. 8. Variation of the flexural rigidity of the cold mass in its transversal plane, during plastic deformation.

the CM. Varying the estimated magnet stiffness (i.e., the factor
“ ”), the results were fitted to the deflections measured on a
CM rotated 90 degrees with respect to its nominal position. This
results in a factor , meaning that the flexural rigidity of
the cold mass in the transversal plane exceeds the rigidity in the
vertical plane (as concluded from Fig. 6), by 30%.

IV. PLASTIC BEHAVIOR OF THEDIPOLE COLD MASS

The dipole cold mass curvature in the transversal plane (as
shown in Fig. 1) is obtained by placing the magnet on a curved
press table and, under press load, welding the two half-cylin-
ders to form a skin around the active part. When the load is
released after welding, the magnet loses a nonnegligible frac-
tion of the curvature due to elastic spring back. To compensate
the spring back, the press table is shaped to a slightly higher
curvature (smaller radius) than that of the CM nominal shape,
but several attempts were needed to determine the correct press
table shape. From those trials, some cold masses ended up being
insufficiently or too strongly curved. These cold masses were
re-shaped under the press table. A set-up to “decrease” the cur-
vature of the CM is shown in Fig. 7. Three cold masses were
measured in the same conditions, showing the same behavior.
For different values of the applied force, the deflection of the
CM extremity is measured, both under load and after unloading.
Fig. 8 shows the measured deformations measured on two cold
masses, and compares them with simulated deformations under
load with “ ” 1.3, 1.2 and 1.1. For loads up to 50 kN, the previ-

ously determined value of 1.3 for the stiffness factor “” in the
elastic range is confirmed, but once the plastic range reached,
the magnet stiffness decreases.

V. CONCLUSIONS

A finite element mechanical model has been used to deter-
mine the flexural rigidity of the cold mass via inverse calcula-
tion. A sensitivity study of the model shows the necessity of ac-
curate knowledge of the input parameters. Combining different
sets of deformation measurements with the finite element re-
sults, the rigidity of the cold mass is found equal to the rigidity
of the shrinking cylinder in the magnet’s vertical plane and 30%
higher in the transverse plane. During the various deformation
tests, no cross-talk between the vertical and transverse planes
was found.
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