
CERN-TH/2002-059

Foam: A General Purpose Cellular
Monte Carlo Event Generator†

S. Jadach†

Institute of Nuclear Physics, ul. Kawiory 26a, Kraków, Poland
and

CERN Theory Division, CH-1211 Geneva 23, Switzerland

Abstract
A general purpose, self-adapting, Monte Carlo (MC) event generator (simula-

tor) is described. The high efficiency of the MC, that is small maximum weight
or variance of the MC weight is achieved by means of dividing the integration do-
main into small cells. The cells can be n-dimensional simplices, hyperrectangles or
Cartesian product of them. The grid of cells, called “foam”, is produced in the
process of the binary split of the cells. The choice of the next cell to be divided and
the position/direction of the division hyper-plane is driven by the algorithm which
optimizes the ratio of the maximum weight to the average weight or (optionally) the
total variance. The algorithm is able to deal, in principle, with an arbitrary pattern
of the singularities in the distribution. As any MC generator, it can also be used
for the MC integration. With the typical personal computer CPU, the program is
able to perform adaptive integration/simulation at relatively small number of di-
mensions (≤ 16). With the continuing progress in the CPU power, this limit will get
inevitably shifted to ever higher dimensions. Foam is aimed (and already tested) as
a component in the MC event generators for the high energy physics experiments.
A few simple examples of the related applications are presented. Foam is written in
fully object-oriented style, in the C++ language. Two other versions with a slightly
limited functionality, are available in the Fortran77 language. The source codes are
available from http://jadach.home.cern.ch/jadach/.

Submitted to Comput. Phys. Commun.

† ”Work supported in part by the European Community’s Human Potential Programme under con-
tract HPRN-CT-2000-00149 Physics at Colliders”, by Polish Government grant KBN 5P03B09320,
and by NATO grant PST.CLG.977751.

CERN-TH/2002-059
March 2002

Contents

1 Introduction 3

2 The Foam algorithm 6
2.1 Cellular exploration of the distribution . 6
2.2 Variance reduction versus maximum weight reduction 7
2.3 Hyperrectangles or simplices? . 7
2.4 Build up of the foam and data organization 9
2.5 Monte Carlo generation . 10
2.6 Economic use of the computer memory . 11
2.7 CPU time saving solution . 12
2.8 Inhibited variables – flat dependence . 13
2.9 Predefined split points – provision for very narrow peaks 13
2.10 Mapping of variables . 14
2.11 Provisions for the multibranching . 15

2.11.1 Single discrete variable . 15
2.11.2 Discrete and continuous variables 15
2.11.3 Multi-layer method . 17
2.11.4 Multibranching and mapping . 18

3 Cell split algorithm and geometry 20
3.1 Rules governing binary split of a cell . 21
3.2 Geometry of binary split of a cell . 22
3.3 Projecting points into an edge . 23
3.4 Determination of an optimal division edge and of λdiv 24

3.4.1 Optimization of the maximum weight – choosing λdiv 25
3.4.2 Optimization of the variance – choosing λdiv 27
3.4.3 Concluding remarks on the cell division algorithm 30

3.5 Limitations . 30

4 The Foam code 31
4.1 Description of C++ classes . 32
4.2 TFOAM class . 32

4.2.1 Procedures for Foam initialization and foam build-up 35
4.2.2 Procedures for MC generation . 36
4.2.3 Procedures for finalization and debug 36

4.3 TFCELL class . 38
4.4 Persistency with help of ROOT . 38
4.5 Fortran77 version and its limitations . 39
4.6 Future development . 39

1

5 Usage of the Foam 40
5.1 Foam distribution directory of the C++ version 40
5.2 Simple example of an application . 41
5.3 Configuring the Foam . 41

5.3.1 Principal configuration parameters 42
5.3.2 Inhibiting cell division in certain directions 43
5.3.3 Setting predefined cell division geometry 43

5.4 Persistency . 43
5.5 Fortran77 versions . 44

6 Numerical studies and example applications 44
6.1 Dependence of the Foam efficiency on the configuration parameters 46
6.2 Comparison with Foam 1.x and classic VEGAS 48
6.3 Example of sharply peaked distribution . 48
6.4 Decay of τ lepton into 3 pions . 49
6.5 Beamstrahlung spectrum . 52

7 Conclusions 53

8 Acknowledgements 53

A Variance optimization 54

B Output of the demonstration program in C++ 56

2

PROGRAM SUMMARY

Title of the program: Foam, version 2.05.
Computer: any computer with the C++ or Fortran 77 compilers and the UNIX operating
system
Operating system: UNIX, program was tested under Linux 6.x.
Programming languages used: ANSI C++ and FORTRAN 77 with popular extensions
such as long names, etc.
High-speed storage required: < 50 MB
No. of lines in combined program and test deck: 4235 lines of C++ code and 9826 lines
of F77 code.
Keywords: Monte Carlo (MC) simulation and generation, particle physics, phase space.
Nature of the physical problem: Monte Carlo simulation or generation of unweighted
(weight equal one) events is a standard problem in many areas of research. It is highly
desirable to have in the program library a general-purpose numerical tool (program) with
a MC generation algorithm featuring built-in capability of adjusting automatically the
generation procedure to an arbitrary pattern of singularities in the probability distribu-
tion.
Method of solution: In the algorithm a grid (foam) of cells is built in the process of the
binary split of the cells. The resulting foam is adapted automatically to the shape of the
integrand in such a way that the resulting ratio of average weight to maximum weight
or variance to average weight is arbitrarily good. The above algorithm a substantial
improvement of the previous version in Ref. [1]. The division of the cell is improved and,
in addition to simplical cells, a hyperrectangular cell shape is also available.
Restrictions on the complexity of the problem: The program is memory-hungry and
therefore presently limited to relatively small dimensions ≤ 16. (In Foam 1.x of Ref. [1]
the dimension was limited to n ≤ 6.)
Typical running time: The CPU time necessary to build up a foam of cells depends
strongly on the number of dimensions and the requested size of the grid. On the PC with
the 550MHz Intel chip it takes about 30 seconds to build a hyperrectangular grid of 10000
cells for a simple 3-dimensional distribution.
[1] S. Jadach, Comput. Phys. Commun. 130, 244 (2000).

3

1 Introduction

This work describe a new version of an algorithm for producing random points according
to an arbitrary, user defined, distribution in the n-dimensional space – much improved
with respect to the original version of Ref. [1]. A new implementation is realized in the
C++ programming language in a fully object-oriented manner1. Since the changes both
in the algorithm and in the implementation with respect to Ref. [1] are quite essential,
a complete description of the method and the new code is provided, instead of only an
update with respect to Ref. [1].

For the problem of function minimization, integration (quadrature) there are plenty
of general purpose programs which can be applied to an arbitrary user-defined function.
“general-purpose” means that all these tools work, in principle, for a very wide range
of user-functions. For multi-dimensional Monte Carlo simulation problem, that is for
the problem of generating randomly points according to a given n-dimensional distribu-
tion, there is precious little examples of the General Purpose Monte Carlo Simulators
(GPMCS), that is programs which work (in principle) for arbitrary distribution [3–6], In
this work we are concerned mainly with the MC applications of the high energy physics
An example of the work on GPMCS applied in other fields see an interesting works2 of
Refs. [7–9].

GPMCS is essentially a random number generator which generates points in multi-
dimensional space with non-uniform user-define probability distribution. Two essential
reasons for scarcity of GPMCS’s are the lack of novel ideas about an efficient algorithm
and the need of much CPU power and memory – only recently available or affordable.

Inevitably the GPMCS works in two stages: exploration and generation3. During
an exploration phase the GPMCS is “digesting” the entire shape of the n-dimensional
distribution ρ(~x) to be generated, memorizing its shape as efficiently as possible, using all
available CPU processing power and memory4. In Foam, the exploration phase is the phase
of the build-up of the system of cells covering entirely the integration space, which will be
called “foam”, produced in the process of the binary split of the cells. In the generation
phase, GPMCS provides a method of the MC generation of the points ~x exactly according
to ρ(~x). The vector x = ~x = (x1, x2, ...xn) will also be called in the following a Monte
Carlo event. In Foam, the MC generation is very simple: a cell is chosen randomly, and
next, a point is generated within the cell with uniform distribution, see below for more
details. The value of the integrand is already estimated in the exploration; it can be
calculated with an arbitrary precision in the generation phase.

During the exploration Foam constructs a distribution ρ′(x), which is uniform within

1The early C++ version of the Foam was coded by M. Ciesla and M. Slusarczyk [2]. It was a translation
of a version 1.x from Fortran77 to C++. The analogous translation to JAVA language was also done.

2In these works there is far more emphasis on the parallel computing aspects of the integration (not
simulation) than on the cell geometry, as compared with our work.

3Exploration and generation could be done simultaneously, at the expense of complications in the
algorithm and the code.

4The procedure of memorizing multidimensional distribution ρ(~x) ≥ 0 is a kind of interpolation, in
which the grid of cells is denser in places where the distribution peaks and/or varies strongly.

4

each cell, and is used for the MC generation. Events are weighted with the weight
w = ρ/ρ′. The quality of the distribution of this weight, measured in terms of the
weight distribution parameters like small variance, good ratio of maximum to average, is
determined by the quality of the exploration. The basic principle of the Foam algorithm is
that the parameters of the anticipated “target weight distribution” in the MC generation
phase are used as a driving force guiding the cell build-up (exploration). In the case of
a successful exploration, weighted MC events can be turned efficiently into unweighted
ones with the usual rejection method, that is with a small rejection rate.

Since the exploration phase may be CPU-time consuming, it is a natural to expect
that GPMCS has a built-in mechanism of persistency, that is, there is a mechanism of
writing into a mass-storage (computer disk) the whole information on the memorized
shape of the distribution obtained from the exploration phase, such that the generation
of the MC events can be (re)started at any later time, without any need of repeating the
time consuming exploration. One small step further is to require that the generation of
events with GPMCS can be stopped at any time, the entire status of the GPMCS can be
written on the disk, and the generation of the next event can be resumed at any later time
upon reading the stored information; the next generated event will be such as if there was
no any break in the generation process. In fact, this is what we shall really mean in the
following as a persistency mechanism for GPMCS, and what is actually implemented in
the Foam. In Foam the persistency is realized using ROOT5 package [10].

The GPMCS programs will be always limited to “small dimensions”. With presently
available computers “small” means in practice n ≤ 10, up to n ≤ 16 for a “mildly”
singular distributions. This is already quite satisfactory, especially if we remember that
this limit will pushed higher, as the available hardware gets more powerful, without any
need of modifying the existing code6. – twelve years from now, with 100GHz processor
and 1TByte disk portable computers the same version of Foam will work for even higher
dimensions.

Foam has been developed having in mind that it will be used as a part of a bigger
MC program; typically, to generate a subset of variables in which a model distribution
is the most singular (has strong peaks). This is why we are not so much concerned by
the fact the the cellular Foam algorithm is inefficient for, say, 150 variables. The user is
supposed to select n ≤ 16 “wild variables” [4] and apply Foam to them. For the remaining
“mild variables” Foam may merely serve a role of a uniform random number generator,
if the user of Foam wants to exploit that option. On the other hand, for smaller MC
problems, Foam may play a role of a “standalone MC generator” or “standalone MC
integrator”. Also, from the following description of the various modes of the use of Foam
it will be clear that the subprogram providing the model distribution to Foam can have
a quite complicated structure. Nevertheless, this user-provided part of the program will
be smaller as compared to a solution without Foam, because Foam provides for essential

5The use of ROOT is optional in Foam. However, version of Foam without ROOT does not feature
any kind of persistency.

6The present implementation of Foam is fully based on the dynamic allocation of the memory and the
space dimension is a user defined parameter.

5

functionalities concerning weight optimisation. This remark is especially true for the case
of implementation of the multibranching with help of Foam.

Let us also note that the two-dimensional cellular MC sampler VESKO2 with the
primitive binary split was already included in the program LESKO-F of Ref. [11] long
time ago.

It is worth to mention that Foam is not based on the “principle of factorizability” of the
integrand distribution, ρ(~x) =

∏n
1 ρi(xi), on which VEGAS-family programs are built [3–5].

The outline of the paper is the following: In Section 2 we describe the cellular Foam

algorithm, delegating the description of the cell division procedure to Section 3. Section 4
is devoted to description of the Foam code in C++. Usage of the Foam is described in
Section 5 and examples of the numerical results (MC efficiency) are given in Section 6.
Conclusions and Appendix on the variance minimization finalize the paper.

MC exploration of the cell

Choose best direction (division edge)

Find out best division ratio (division plane)

Generate series of MC events inside cell

Split root cell if necessary

Choose next cell for the split

Choose randomly a cell

Choose randomly a point inside cell

Buil−up of the foam of cells

Generate MC event

Figure 1: Two stages in the cellular algorithm of the Foam.

6

2 The Foam algorithm

As already mentioned, the execution of the Foam algorithm is clearly separated into the
first stage of the “distribution exploration” consisting of the “build-up of the foam of
the cell”, which in a sense memorizes the n-dimensional shape of the distribution, and
the second stage of the actual “MC generation”, see Fig. 1. The most essential part of
the present Foam algorithm is the procedure of the binary split of the cell, in which it
is decided which cell is picked up for the next split and the necessary parameters of the
geometry of the cell split are determined. This part of the Foam algorithm description
is delegated to the next Section. In the present section we describe other, more general,
aspects of the Foam algorithm.

2.1 Cellular exploration of the distribution

The most obvious method to minimize the variance or maximum weight of the target
weight distribution in generation, proposed already some 40 years ago, is to split the
integration domain into many cells, such that the distribution ρ(~x) is approximated by
ρ′(~x), which is constant within each cell7. This is a cellular class of the general-purpose
MC algorithms8.

The immediate questions are: what kind or shapes of the cells to use and how to cover
the integration domain with cells? The reader may find in Ref. [6] an example of rather
general discussion of these questions. In the Foam program the user may opt for one of
the three geometries of the cells: (1) simplices, (2) hyperrectangles and (3) Cartesian
products of simplices and hyperrectangles. For these particular types of cells there exist
an efficient method of parametrizing them in the computer memory and handling their
geometry.

The system of many cells can be created and reorganized all at once, like in VEGAS-type
programs [3–5], or in a more evolutionary way, like the cell split process of this work. In
the Foam algorithm we rely on the binary split of cells. Starting from the entire integration
domain (unit hyperrectangle or simplex) cells are split into two daughter cells, step by
step, until the user-defined memory limit is reached. A choice of a next cell to be split
and the geometry of the split in the exploration phase is driven by the “target weight
distribution” of the generation process, see Section 3. The important advantage of any
cell split algorithm is that it assures automatically the full coverage of the integration
domain – simply because the primary root cell is identical with the entire integration
domain and the two daughter cells always cover entirely the parent cell. The problem of
blind spots discussed in Ref. [6] is avoided by construction.

In the early version of the Foam of Ref. [1], there was a possibility in the algorithm that
“unsuccessful” branch in the tree of all cells can be erased and rebuild. This was called

7For the MC simulation, our main aim, more sophisticated interpolation of ρ(~x) within a cell does not
seem to be worth an effort – it would be interesting if our main aim was the integration of ρ(~x).

8The term “stratified sampling”, used in the literature, has in my opinion a narrower meaning than
“cellular class”.

7

“collapse” and “rebuild”. In the present version this option was removed9, because the
experience with many testing functions has shown that the algorithm of the cell build-up
is rather “deterministic” and the “rebuild” procedure was usually leading to a new branch
of foam with about the same features, as the old one.

Let us finally remark, that the version of the cellular algorithm presented in this
paper is, in fact, a result of many experiments in the constructing different variants of the
algorithm. The presented version is the best one out of several development versions. In
the code one may still see some “hooks” and unused features (class members or methods)
related to these alternative variants. We have left them just in case if some new idea of
improving the algorithm emerges, or for certain kinds of debugging/testing.

2.2 Variance reduction versus maximum weight reduction

In the construction of the Foam algorithm most effort was invested into a minimization
of the ratio of the maximum weight to the average weight wmax/〈w〉. This parameter is
essential, if we want to transform variable-weight events into w = 1 events, at the latter
stage of the MC generation10.

Minimizing the maximum weight wmax is not the same as minimizing the variance
σ =

√〈w2〉 − 〈w〉2. Usually, minimizing wmax is more difficult – but it is worth an
effort because Foam is really meant to be a part of a bigger MC program, where it is
usually essential that the “inner part” of the program provides events with an excellent
weight distribution, or even w = 1 events. Nevertheless, minimizing the variance is also
implemented in Foam and available optionally. It can be useful if one is satisfied with the
variable-weight events, and/or if the main aim is evaluation of the integral and not the
MC simulation.

The difference between the above two options is well illustrated in Fig. 2, which shows
two examples of the evolution of the MC weight distribution due to gradual increase of
the number of cells. For the default configuration, Foam is optimising the ratio wmax/〈w〉.
This case is shown in plots (a-c) in Fig. 2. Here, the weight distribution features sharper
and sharper drop of the weight distribution at w = 1, with the increasing number of cells.
Also, the average weight increases gradually and the weight distribution gets narrower.
The optional case of the optimization of σ/〈w〉 is shown in plots (d-f) of Fig. 2. In this
case the variance is decreasing with the growing numbers of the cells. On the other hand,
the maximum weight is much higher than before. All weight distributions were obtained
for the same 2-dimensional testing function ρb(x), used also in Section 6.

2.3 Hyperrectangles or simplices?

In Ref. [1] simplical cells have been chosen instead of simpler hyperrectangles, mainly be-
cause of the author’s “prejudice” that simplices may adapt more efficiently to complicated

9A “flush method” which erases the entire foam of cells from the computer memory and allows for its
reinitialization is, however, available.

10We provide optionaly in the Foam for the rejection leading to w = 1 events.

8

(a) (b) (c)

0:50 1:00 1:50 2:00
0:00 � 10

4

2:00 � 10
4

4:00 � 10
4

6:00 � 10
4

8:00 � 10
4

0:50 1:00 1:50 2:00
0:00 � 10

5

0:50 � 10
5

1:00 � 10
5

1:50 � 10
5

0:50 1:00 1:50 2:00
0:00 � 10

5

0:50 � 10
5

1:00 � 10
5

1:50 � 10
5

2:00 � 10
5

2:50 � 10
5

(d) (e) (f)

0:50 1:00 1:50 2:00
0:00 � 10

4

1:00 � 10
4

2:00 � 10
4

3:00 � 10
4

4:00 � 10
4

0:50 1:00 1:50 2:00
0:00 � 10

5

0:50 � 10
5

1:00 � 10
5

1:50 � 10
5

0:50 1:00 1:50 2:00
0:00 � 10

5

1:00 � 10
5

2:00 � 10
5

3:00 � 10
5

Figure 2: Weight distribution of the Foam for the default option with the maximum weight optimiza-
tion (a-c) compared to analogous distributions obtained for an option with the variance optimization
(d-f). Number of cells is 200, 2000 and 20000 for (a-c) and (d-f), correspondingly.

singularities in the distribution ρ(x) spanned along subspaces, not necessarily parallel to
axes of the global reference frame. Hyperrectangles tend to remember orientation of the
parent hyperrectangle, while simplices feature, in principle, a kind of “angular mobility”,
i.e. they may forget orientation of grand-grand-parents, and adapt to orientation of the
singularity in ρ(x). An experience with tens of testing functions has shown that in many
cases hyperrectangles provide the same or even better final MC efficiency than simplices,
for the same number of cells. Moreover, simplices have certain additional disadvantages.
Presently, Foam with simplices is practically limited to rather low dimensions n ≤ 5, be-
cause in most cases the starting integration domain is a unit hyperrectangle, which has to
be divided into n! simplices, where n! becomes quickly a large number11. This limitation
is, of course, not valid, if the integration domain is actually a simplex of the high dimen-
sionality instead of hyperrectangle. (Foam can be configured to start cell evolution from a
simplex or Cartesian product of a simplex and a hyperrectangle.) Furthermore, geometry
manipulations in the simplical case require calculation of many determinants – this slows

11Mapping of the hyperrectangle into simplex is possible, but it usually introduces nasty singularities
in ρ(x) located at the vertices, edges and walls of the simplex.

9

down the program execution at higher dimensions. In addition, in the present implemen-
tation, the memory consumption in a simplical foam build-up is ∼ 16 × n Bytes/Cell,
while for hyperrectangles we have found a method which limits memory consumption to
below ∼ 80 Bytes/Cell independently of n, see Section 2.6. We can therefore reach easily
the level 106 hyperrectangular cells at any dimension (in practice n ≤ 16) and about
50000 simplical cells, for n ≤ 5. As we see, hyperrectangular foam seems to win on many
fronts. Nevertheless, we keep simplical foam as an option, because in certain application
one encounters distributions for which it turns out to be more efficient to use simplices,
in spite of all their limitations, at least for a subset of the integration variables.

2.4 Build up of the foam and data organization

The foam of cell is built-up starting form the root cell, which is the entire integration
domain, through process of binary split of a parent cell into two daughter cell. The root
cell is either a unit hypercube 0 ≤ xi ≤ 1 (default) or a simplex 0 ≤ x1 ≤ x2 ≤ x3 ≤
· · · ≤ xn ≤ 1. Also a Cartesian product of these two shapes is optionally available. Any
cell being a product of the cell split can be also a hyperrectangle, a simplex or Cartesian
product of the k-dimensional hyperrectangle and n-dimensional simplex, with the total
dimensionality k + n. If the starting root cell is a hypercube and cells are simplical (or
mixed type) then root cell is immediately divided into n! simplical (or mixed type) cells.

Each cell is explored immediately after its creation. In the exploration of the cell about
100 − 1000 MC events (user may reset this number) are generated inside the cell with
flat (uniform) distribution and using MC weight equal ρ(x); certain averages and certain
integrals over the cell are estimated. Also, the best geometry of the binary split of the
cell is established and recorded for the future use. In this way, every created cell is ready
for an immediate split. The determination of the best split is described in a fine detail in
Section 3. In the exploration the estimate of the integral RI =

∫
ωI

ρ(x)dxn is calculated

for each cell ωI . Far more important is another functional Rloss|I =
∫

ωI
ρloss(x)dxn, see

Section 3 for its definition, which determines the evolution of the foam and the split of the
cell. Next cell to be divided into two is a cell chosen randomly, according to probability
proportional to Rloss|I or, optionally, a cell with the biggest Rloss|I .

The process of the division of the cells continues until the user defined maximum
number Nc of the cells is reached. Nc includes also all cells which has been split, that
is all parent and grand-grand-parent cells, which we shall call inactive cells contrary to
normal ones called active. Usually, when we refer to a cells, we mean both active and
inactive ones. Keeping inactive cells in the record may look like a waste of the memory,
but due to the binary character of the cell split, the loss is only a mere factor of two
and it is profitable to keep all inactive cells (including the root cell) for many reasons,
in particular, as we shall see in Section 2.6, keeping all cells in the record will help us to
encode cells in memory in an economic way, such that at higher dimensions we finally gain
in terms of total consumption of a memory. Furthermore, for certain quantities which
are the integrals over the cell like RI we do the following: just after the split, when a
new more precise value of RI is known for the daughter cells – the value of the RI of the

10

parent cell is updated with the sum of the contributions from two daughter cells. This
correcting procedure is repeated for all grand-parent cell up to the root cell. In this way,
the root cell (and any other inactive cell) always keeps track of the actual value of the
total RI during the whole foam build-up process. This can be done for any other integral
quantity as well, and can be exploited for various purposes.

Since maximum number of the cells Nc is defined in the beginning of the foam build-up,
all the cell objects and/or other related objects (vertices) are allocated in the computer
memory at once, in the very beginning of the cell build-up. On the other hand, the
cell objects are organized as multiply linked list, with pointers pointing to parents and
daughters. In addition, an array of pointers to all active cells is created at the end of the
foam build-up.

Let us now explain briefly how the geometry of an individual cell is parametrized and
stored in the memory. It is relatively easy to parametrize n-dimensional hyperrectangle
or simplex in a way which does not require much computer memory. An n-dimensional
simplex is fully determined by its n+1 vertices. Since most of vertices are common to two
or more adjacent simplices, the most efficient method is to build an array of all vertices
~VK , K = 1, 2, ..., NV , each of them being n-component vector and to define every simplex
as a list n + 1 vertex indices (integers or pointers) K1, K2, ..., Kn+1. For Nc simplical cells
resulting from the binary split of a single “root” simplex cell the number of vertices is
n + 1 + Nc, because each binary split adds one new vertex. (We include in Nc also cells
which has got split). The interior points of the simplex are parametrized as follows

~x =
n∑

i6=p

λi(~VKi
− ~VKp), λi > 0,

∑
i6=p

λi < 1, i = 1, 2, . . . , n, (1)

using basis vectors relative to the p-th vertex. The above method would be inefficient
for n-dimensional hyperrectangles, because memorizing all 2n vertices would require too
much memory at higher dimensions. Instead, we use another way of parametrization: each
hyperrectangle is defined by the n-dimensional vector ~q defining the origin of the cell and
another vector ~h = (h1, h2, ..., hn), where each component hi is the length of the hyper-
rectangle along the i-th direction. This is even clearer from the explicit parametrization
of the interior of the hyperrectangle:

xi = qi + λihi, 0 < λi < 1 i = 1, 2, . . . , k. (2)

For cells with mixed topology, we apply eq. (2) for i = 1, 2, . . . , k and eq. (1) for
i = k + 1, k + 2, . . . , k + n. In Section 2.6 we describe an optional method of storing
hyperrectangular cell, in which just two integer numbers are recorded instead of two vec-
tors ~q and h (two of 2-Byte integers instead of 2n of 8-Byte floating-point numbers). This
method is implemented for hyperrectangular part of the space only.

2.5 Monte Carlo generation

Once the build-up of the cells is finished, the Monte Carlo generation takes place. There
is no need for any reorganization of the cells. MC generation can be started immediately.

11

The only one thing done at the very end of the foam build-up is preparation of the list of
pointers to active cells and the array of the corresponding R′

I .
The MC point is generated in two steps. First, a cell is chosen with a probability

proportional to R′
I =

∫
x∈CellI

ρ′(x) and next a MC point x is chosen with the uniform

probability inside the cell. The MC weight w = ρ′(x)/ρ(x) is associated with the event.
For a successful foam of the cells the MC weight is close to one and the user may turn
weighted events into w = 1 event by means of rejection method (with the acceptance rate
∼ 〈w〉/wmax). Foam can do this for the user. However, the user can sometimes organize
better the calculation of the 〈w〉 and bookkeeping of other parameters of the weight, in
a way which fits the best his own aims. This is why the mode of variable weights MC
events is also available. The total integral, usually necessary for the proper normalization
of the MC sample is calculated using R = R′〈w〉. Foam provides both, the exact value of
the R′ and the MC estimate of the integral R.

2.6 Economic use of the computer memory

The actual implementation of the single cell object occupies about 80 Bytes (it could be
reduced to about 40 Bytes if necessary) of various integer and double precision attributes,
plus the dimension-dependent part. In the case of a simplical cell, each new cell adds
one n-component double-precision vector (vertex) and the total memory consumption is
therefore (80 + 8× n) Bytes/cell. For n = 5 and 100k cells it is therefore ∼15MB of the
memory, still an affordable amount. For the hyperrectangle cells we have to count two
n-component double-precision vectors per cell, that is (100 + 16× n) Bytes/cell. For the
106 cells and n = 15 that would mean ∼340MB for the entire foam of cells and this could
be annoying. Fortunately, we have found a method of reducing substantially the memory
consumption for a hyperrectangular foam. As discussed in the Section 3 the geometry of
the division of the cell is fully determined in terms of two integers, one of them is the
index of an edge to which the division plane is perpendicular and another one defines the
position of a division plane. The position parameter is a rational number, and only the
integer numerator has to be remembered, while the denominator is common to all cells.
The above two integers define uniquely the position of the two daughter cells relative to
a parent cell. With this method the memory consumption is down to about 80 Bytes/cell
independently of n in the present implementation12. There is, however, a price to be
payed in terms of CPU time. For generation of the point inside cell, or even evaluation
of the weight, we need the “absolute” components of x, that is in the reference frame
of the root cell, not relative to vertices of the cell. It is, therefore, necessary to use a
procedure (a method in the class of cells) which is able to construct the absolute position
of a given cell “in flight”. This is done by means of tracing all grand-parents of a given
cell up to the root cell and translating position and size with respect to its parent into
absolute ones, relative to the root cell. It is implemented by means of exploiting the fact,
that cell objects are organized into a linked binary tree. The average number of the cells

12In fact, it can be reduced below 40 Bytes/cell, if really necessary.

12

to be traced back from a given active cell up to the root cell for Nc = 106 cells is on the
average about ln2 Nc ∼ 20. This may cause ∼ 20% increase in the CPU time of the MC
generation – an affordable price, if we remember that the MC efficiency increases mainly
with the number of cells. In principle, this kind of the memory saving arrangement is also
possible for simplical cells, however, in this case the CPU time overhead would be bigger,
because of the necessity of the full linear transformation for each step, on the way from
a given cell up to the root cell. In the case of hyperrectangular cells the transformation
is much simpler (and faster); it is the translation and/or dilatation along a single spatial
direction at each step.

7078

83

88

94

97 98

99

102

104

105

106

107

109

113

115

117

121

123

124

126

127

130

131

132

133

135

136

137 138

139 140

142

143

144

145146

148

150

151 152 153
154

157

160

161162
163 164

165

168

170

171 172

173

174

175

176

177

179

182

183
184

185186

187
188

189

191
192

194

195

196

197198

199 200

201
202

203 204

205 206

207
208

209 210

211212

213 214

215

216

217 218

219

220

221 222

223

224

225

226

227
228

229

230

231 232

233

234

235 236

237

238

239

240

241

242

243244
245

246

247 248

60 7175 77 8184 8791 939899 104 107109111 114115118119 121123 125127129 130 132134 136 137138139141142 143144 145148 149150151 153154155 157 158159161 164 165166167168 169172 173174 175176177178 179180181 183184185186187188 189190191192193195196197198199 201202203204205206 207208210 211212213214215216 217218219 221222 223224225226 227228229230231232 233234 235236237238 239240241242243244 245246247248

Figure 3: Inhibited cell division for first variable, that is for x1 (right). Foam with 250 cells.

2.7 CPU time saving solution

Final MC efficiency is improved mainly by means of increasing the number of cells Nc.
The CPU time of the cell build-up is T ∼ n × Nc × Nsamp, where Nsamp is the number
of MC events used in the exploration of each newly created cell. The important practical
question is: can one somehow reduce Nsamp without much loss of the final MC efficiency,
in order to be able to increase Nc, within the same CPU time budget?

A simple solution is the following: during the MC exploration of a new cell we con-
tinuously monitor an accumulated “number of effective events with w = 1” defined as
Neff = (

∑
wi)

2/
∑

w2
i , and terminate cell exploration when13 Neff/nbin > 25, where nbin

is the number of bins in each histogram, which is used to estimate the best division di-
rection/edge parameters. This method helps to cut total CPU time, because the increase

13The actual limit of equivalent events per bin is the user defined parameter, not necessarily equal 25.

13

of Nsamp is not wasted for cells, in which the distribution ρ(x) is already varying very
little. At the later stage of the foam evolution this happens quite often. In this method
the user may set Nsamp to a very high value and the program will distribute economically
the total CPU time (in terms of Nsamp) among all cells, giving more CPU time to these
cells which really need it, that is to cells with the stronger variation of ρ(x).

2.8 Inhibited variables – flat dependence

In some cases the user may not want Foam to intervene into certain variables in the
distribution ρ(x), simply because there is little or no dependence on them in ρ(x). The
user may draw, of course, these variables directly from any uniform random number
generator. He may, however, find it more convenient to get them from the Foam program.
This is easily implemented in Foam: any variable xi may be “inhibited” for the purpose
of cell splitting procedure. In the Foam code it is actually done in such a way that Foam is
excluding this variable (edge) from the procedure of determining the best binary division
of the cell. This provision makes practical sense mainly for the hyperrectangular part of
the variable subspace.

In Fig. 3 we show two 2-dimensional foam (250 cells) for the same testing distribution
ρ(x) (two Gaussian peaks on the diagonal). In one of them (right plot) we have inhibited
split in the first variable, that is for x1.

2.9 Predefined split points – provision for very narrow peaks

In the practical applications (see refs. [12, 13]) one may encounter in certain variables
extremely narrow spikes (narrow resonances). Foam exploration algorithm may find it
difficult to locate these spikes with the usual method of the MC sampling in the cells,
at the early stage of the Foam build-up. For very narrow spikes, or low number of the
requested cells, it may not find them at all! The user usually knows in advance the
position of these spikes and the Foam should have a build in mechanism to exploit this
knowledge. The solution is very simple. (It applies for the hyperrectangular subspace of
the parameter space only.) The user of Foam has a possibility to provide Foam, for each
variable, with the list of a number of predefined values the first splitting positions of the
root cell. In the Foam algorithm, it is checked if the list of predefined division points is
not empty. If it is the case, then instead adopting the division parameter from the usual
procedure described in Section 3, Foam takes the division parameter from the list, and
removes it from the list. In this way the first few division points are taken from the “user
defined menu”, if available, and the next ones are chosen with the usual methods. For
narrow spikes this method helps Foam to locate them and surround with as dense group
of cells as necessary.

In fig. 4 we show an example with two Gaussian peaks in which we requested the Foam

program to use the three predefined division points for the x1 variable. They are clearly
seen as three vertical division lines dividing the entire root cell. In this case peaks are
not so narrow and there is no real need for a predefined division. The example is just

14

Figure 4: Predefined division points at x1 = 0.30, 0.40, and 0.65, for 2000 cells.

illustrating the principle of the method.

2.10 Mapping of variables

If the structure of the singularities is known and/or Foam is unable get a reasonable
weight distribution for a reasonable number of cells, then it is worth to perform an ad-
ditional change of variables, such that the transformation Jacobian compensates for the
singularities, at least partly. In such a case the user subprogram provides Foam with the
distribution

ρ?(y) =
dρ

dy1 . . . dyn

= ρ(x1(y), x2(y), . . . ,n (y))

∣∣∣∣∂x(j)(y)

∂y

∣∣∣∣ , (3)

instead of the original ρ(x) = dnρ/dxn. For each vector y generated by Foam, the image
vector x is well known in the subprogram calculating ρ?(y). A mechanism for exporting
x to the outside world has to be usually provided, because Foam itself does not know
anything about x; it only knows y.

Note that in the limiting case of the of the “ideal mapping” we have∣∣∣∣∂x(y)

∂y

∣∣∣∣ ≡ R

ρ(x)
, (4)

15

consequently ρ?(y) = R and this case Foam would play merely a role of a provider of the
random numbers for y.

The user of Foam may also need to apply mapping in the case of a “weak” integrable
singularity in the distribution ρ like log(x) or

√
x. Foam can deal with them by brute

force, at the expense of a larger number of cells. However, a wiser approach is to apply
mapping, in order to remove such a singularities from the distribution.

In the next section we shall describe how to combine mapping method with the multi-
branching. Such a mixture is well known as the most powerful method of improving the
efficiency of the Monte Carlo method.

2.11 Provisions for the multibranching

In the following we elaborate on the various methods of implementing multibranching [14]
with help of Foam.

2.11.1 Single discrete variable

As a warm-up exercise let us consider the question: Is Foam capable to generate (and
sum-up) a discrete variable i = 1, 2, . . . , N according to the (unnormalised) distribution
r1, . . . , rN? Of course it can. The simplest way is to define an auxiliary 1-dimensional
distribution

ρ(x) = ri, for
i− 1

N
≤ xi ≤ i

N
, i = 1, 2, . . .N. (5)

The user subprogram providing the above ρ(x) is trivial. If plotted, this ρ(x) would
look like histogram with N equal-width bins. Foam will build up its own grid of cells
(intervals), and if we request enough number of cells (that is Nc > N), it will approximate
the above ρ(x) very well, with its own “histogram-like” distribution ρ′(x). However, the
Foam approximation will be never ideal, because Foam is not able to detect the exact
position of the discontinuities in ρ(x). (Nevertheless, this will be a workable solution with
a very good weight distribution.) The present Foam algorithm provides for an essential
improvement: one may predefine the division points as xi = i/N , i = 1, . . .N , and set
the number of cells to be Nc ≥ N . In such a case Foam will define its cells matching
exactly the shape of ρ(x). It will generate points with w ≡ 1 and provide the exact sum
R = R′ =

∑
ri, already at the end of the foam build-up. During the generation, Foam

will generate continuous variable x, which is easily translated into discrete index i.

2.11.2 Discrete and continuous variables

How the above extends to the case of the distribution ρ depending on one discrete variable
and the usual n continuous variables? For such a distribution ρ(y1, . . . , yn, i) we define

ρ(x1, x2, . . . , xn+1) = ρ(x1, . . . , xn, i), for
i− 1

N
≤ xn+1 ≤ i

N
, i = 1, 2, . . .N, (6)

16

in a completely analogy to Eq. (5). As previously, we provide for the variable xn+1 a list of

predefined division points x
(i)
n+1 = i/N, i = 1, 2, . . . N and, of course, we request for Nc >>

N . There is still one small problem: Foam may “by mistake” perform an unnecessary cell
division for variable xn+1, simply due to statistical errors in the “projection histogram”
described in Section 3.4.1. This problem is solved in Foam in an elegant way: in addition
to providing for xn+1 predefined division points the user of Foam may declare xn+1 as
an “inhibited variable” in the sense of Section 2.8. In this case Foam will still split
cells according to a list of predefined division points for xn+1, but will not perform any
additional division in this variable! For the generated MC events the translation of the
continuous xn+1 to the discrete i is done as trivially as before. The above method is
the basic method of the implementation of the “multibranching” (or “multichannel”) MC
method using Foam. Let us call it “predefined and inhibited division”, for short a PAID
method. We shall also describe below how to combine PAID method with mapping, etc.

In order to appreciate more fully the advantages of PAID, let us consider a more
straightforward implementation of the multibranching. In the object oriented environment
one may construct N instances of the Foam object, each of them for the n-dimensional
function ρ(x1, . . . , xn, i), initialize them (creating separate foam of cells) and generate
event (x, i) with the associated weight wi(x). Index i can be chosen according to proba-
bility pi = R′

i/
∑

j R′
j, where R′

i are provided by the i-th object of the Foam class (at the
end of its initialization). The total weight of the event is w(x, i) = wi(x)/pi. Let is call
this scenario an “externally organized multibranching”, for short EOM.

Both methods have certain advantages and disadvantages. In PAID the user does not
need to organize the optimal/efficient generation of the branching index i. The root cell
is divided into N equal size sub-root cells, which then evolve separately into independent
system of the cells, adapting individually to the singularities in the i-th component of ρ.
Foam adjusts relative importance of the sub-root cells and their descendants, and finds
the optimal number of the division cells in the N sub-foams within the requested total
memory limit. In the EOM scheme these adjustments for the individual branches has
to be done by the user. On the other hand, in some rare cases, the user may want to
configure the Foam objects for each branch individually. In the EOM scheme it can be
done, for each Foam object separately. In the PAID scheme it cannot be done, because
all cells have the same properties, the cell split algorithm is the same, cell geometry is
common, etc. In most cases, the PAID method will be preferred, because it is easier to
organize.

In the following we shall concentrate on the PAID scheme. In this case, the normaliza-
tion integral is provided by the Foam at the end of the exploration phase, and it includes
the sum over discrete variable

R′ =

N∑
i=1

∫
ρ′i(x)dxn. (7)

17

We also have the usual relation between the average weight and the integral

R =

N∑
i=1

∫
ρ(x)dxn = R′ 〈w〉. (8)

The above method extends trivially to the case of several discrete variables. As already
stressed, the relative probabilities of the discrete components pi ∼ R′

i =
∫

ρ′i(x)dxn in the
MC generation are automatically adjusted by the Foam algorithm, such that the maximum
weight or the total invariance is minimized. The arranging for that in the user program
in the EOM scheme would require an extra programming effort, while in Foam this comes
for free.

2.11.3 Multi-layer method

There is an alternative PAID-type method of dealing with the problem of the discrete
variable, which generates points according to ρ(x1, . . . , xn, i), i = 1, 2, . . .N . It will
produce the same distribution but will differ from PAID in the MC efficiency, in terms
of the maximum weight or variance. One may simply generate with help of Foam the
n-dimensional auxiliary distribution

ρ̄(x1, . . . , xn) =
N∑

j=1

ρ(x1, . . . , xn, j) (9)

and next, for each generated x, chose randomly discrete variable i according to the prob-
ability

pi(x) = ρ(x, i)/
n∑

j=1

ρ(x, j). (10)

Let us call it PAID∗, or a multi-layer method. This method is slightly less convenient
to implement, as is clearly seen for n = 0, where the user effectively has to generate the
discrete variable i = 1, 2, . . . , N according to the above probability by himself, by means
of creating an inverse cumulative distribution, mapping random number into i, etc., while
in the standard PAID scenario this all job is done by the Foam program14. Furthermore, in
PAID method each component distributions ρ(x, j) may have a “cleaner” structure of the
singularities then the sum. Consequently, in the PAID method Foam will probably find it
easier to learn the shape of each component distribution than of the sum in PAID∗. These
two kinds of equivalent multibranching algorithms like PAID and PAID∗ are described
and analysed in Ref. [14]. PAID∗ method is used in the KKMC generator of Ref. [13] to
generate index i numbering type of the final state quark or lepton.

14The mapping xn+1 → i is a simple arithmetic operation.

18

2.11.4 Multibranching and mapping

However, the most important reason setting up Foam according to PAID scenario, with
the separate foam build-up for each component distributions ρ(x, j), is that for each
component one may apply individually adjusted mapping of variables, which makes every
component distribution much less singular. The combination of the mapping and multi-
branching is one of the most powerful known methods of improving MC efficiency [15,14].
How it can be actually realized with help of Foam, depends on the properties of the dis-
tribution ρ(x) to be generated. In the case when we have an explicit sum over many
components

ρ(x1, . . . , xn) =

N∑
j=1

ρ(x1, . . . , xn, j), (11)

each of the components being positive, with distinctly different and well known structure
of the singularities, we would recommend the use Foam in the PAID scheme. Knowing
the structure of singularities, we may be able to introduce mapping in each component
separately, which compensates for these singularities with the Jacobian factor. In such a
case Foam is provided with the following distribution:

ρ(y1, . . . , yn, j) = ρ(x
(j)
1 (y), . . . , x(j)

n (y), j)

∣∣∣∣∂x(j)(y)

∂y

∣∣∣∣ , j = 1, 2, . . . , N, (12)

understanding that the translation of the discrete index j into a continuous variable yn+1,
is done in the usual way. The foam of cells is, of course, build-up in the y-variables,
different for each j-th branch. The user is fully responsible for the proper mapping
x(j)(y), j = 1, 2, . . . , N , and the calculation the Jacobian factor in every component
(branch). In the user subprogram providing the ρ-distribution the variable yn+1 will be
translated first into index j and then, depending on the value of j, a given type of a
mapping will be applied. For the outside part of the code the index j can be made
available, or it may be hidden (erased from the record), depending on the needs of a
specific application.

In some cases, however, we do not have at our disposal an unique split of the ρ(x) into
well defined positive components like in eq. (12), but rather only a rough idea about the
leading singularities. That means, one is able to construct the distribution

ρ(x1, . . . , xn) ∼ ρ̄(x1, . . . , xn) =
N∑

j=1

ρ̄(x1, . . . , xn, j), (13)

where ρ̄(x, j) have the same type of the leading singularities as ρ(x), and we know the
normalization of singularities in ρ(x) up to a constant factor; that is for x in the neigh-
bourhood of the j-th singular point, a line or a (hyper)plane, only ρ̄(x, j) really matters,
that is ρ(x) ' Cj ρ̄(x, j) where Cj is not known a priori15.

15This definition is not very precise, it roughly means that each component is approximately a product
of the singular factors and cannot be reduced into sum of such.

19

In addition, let us assume, that we are able to compensate for the singularities in each
ρ̄(x, j) exactly by dedicated mapping specific to singularities in the j-th branch. In other
words, the mapping is ideal in each branch:∣∣∣∣∂x(j)(y)

∂y

∣∣∣∣ =
R̄j

ρ̄(x, j)
. (14)

The above means also, that we know analytically the exact values of the integrals16:
R̄j =

∫
ρ̄(x, j)dxn.

In such a case we may employ the algorithm of Foam successfully by means of defining
the “branching ratio”

bj(y1, . . . , yn) = ρ̄(y1, . . . , yn, j)/ρ̄(y1, . . . , yn),
∑

bi(y) = 1, (15)

constructing the distribution to be digested by Foam as

ρ(y1, . . . , yn, j) = bj(x)ρ(x
(j)
1 (y), . . . , x(j)

n (y))

∣∣∣∣∂x(j)(y)

∂y

∣∣∣∣ =
R̄j ρ

(
x(y)

)
∑

l ρ̄
(
x(y), l

) , (16)

and proceeding as in the PAID scheme described previously.
The role of the function bj(x) is to isolate out from ρ(x) “a layer” including just one

known type of singularity. In order to see how this method works, let us consider the j-th
singularity being a δ(n)(x − a) shape (narrow Gaussian peak etc.) of the size ε. Then,
in the neighbourhood of the singularity bj(x) = 1 and ρ(x) ' Cj ρ̄(x, j), while further
away from the singularity position ρ(x) ∼ εn, and is negligible. The Foam program will,
of course, include the Cj factor properly in the normalization, and build up the foam of
cell everywhere, close to a singularity and far away. It will do it, however, not in the x
variables but in the y-variables. Now, the mapping x → y (specific to j-th branch) will
expand the singularity neighbourhood to size of O(1), while the y-image of the remaining
space will be shrinker down to a size of O(ε). This can be a source of the following
pitfall to be remembered: in the shrinked y-domain of O(ε), in the places where the other
singularities i 6= j are placed, ρ(y, j) may get narrow spikes or dips of the height of O(1),
such that their integral contribution will be negligible, of O(εn). Nevertheless, the Foam

algorithm may find it difficult to locate these structures, and this may lead to a small but
finite bias of the generated distributions and calculated integrals. One should keep this
in mind and perform special tests (MC runs with a maximum number of cells, and high
MC statistics) in order to check that this effect is not present.

The above method is quite similar to that of Ref. [15]. One difference is that in method
of Ref. [15] there are several iteration with the aim at adjusting the relative normalization
of the components ρ̄(x1, . . . , xn, j) to ρ(x). Our scheme could be effectively regarded as a
method of Ref. [15] with just one iteration; that is the first step being the foam build-up,
and the second step (1st iteration) being the MC simulation. One iteration is sufficient in
the limit of vanishing overlap of the components ρ̄(x1, . . . , xn, j) in the entire ρ̄(x). While

16In fact, we could normalize ρ̄(x, j) to unity, R̄j = 1, if we wanted.

20

in the method of Ref. [15] a better adjustment is provided by the next iterations, in Foam

the cellular adaptive method provides an extra mileage. One cannot therefore say which
one is better in general – it depends on the distribution ρ(x).

In fact, in the PAID scheme with the mapping, extra iterations are also possible. It
can be done as follows: (a) read Rj from all N “leading cells” after the foam build-up,
(b) rescale ρ̄(y1, . . . , yn, j) → (Rj/R̄j)ρ̄(y1, . . . , yn, j) and (c) repeat the foam build-up17

for the new branching ratios bj(x) in eq. (16). The above procedure can be repeated.
Whether such an iteration is profitable it depends on the particular distribution – we
expect that in most cases it is not necessary, due to adaptive capabilities of Foam.

Last not least, let us also consider the case of a sum of integrals with different dimen-
sionality, or in other words, the distribution in which the number ni of the continuous
variables x1, ..., xni

depends on a certain discrete “master variable” i = 1, ..., N (for ex-
ample ni = i)

R =

N∑
i=1

∫
ρi(x1, ..., xni

) (17)

Foam can deal with this case too. The simplest solution is to find the maximum dimension
nmax and add extra dummy variables on which ρi does not depend, such that formally
all sub-distributions have the same dimension nmax. In this way one is back in a situa-
tion described earlier, and may apply the PAID method, with or without the additional
mapping. The slight drawback of this solution is that in the present implementation of
Foam we cannot inhibit the unnecessary cell divisions across the directions of the newly
introduced dummy variables – simply because they are not the same in all branches18.
Because of that, this kind of a problem can be in some cases dealt with more efficiently
using EOM scenario, with a separate Foam object for each branch.

For additional practical examples on how to realize multibranching with Foam, see
Section 6.

3 Cell split algorithm and geometry

As already indicated, our algorithm of the cell split covers two strategies: (A) minimization
of the maximum weight wmax and (B) minimization of the variance σ, where both wmax

and σ are calculated in the Monte Carlo generation, using the MC weight w = ρ/ρ′. The
distribution ρ′ is the result of the exploration (it is constant over each cell) and is frozen at
the end of exploration. During the subsequent MC event generation, events are generated
according to ρ′(x). Its integral R′ =

∫
ρ′(x)dnx has to be known exactly before the start

of the MC generation. The integral R =
∫

ρ(x)dnx is obtained up to a statistical error at
the end MC event generation from the usual relation to the average weight: R = R′〈w〉ρ′.
The average 〈...〉ρ′ is over events generated according to ρ′.

17In the programming with Foam it is possible to erase all cells from memory and rebuild them.
18A more sophisticated procedure of inhibiting the division could be implemented in Foam, if there is

a strong demand for that.

21

There is another important ingredient in the algorithm of the cell split: in addition
to the auxiliary distributions ρ′(x) we also define another distribution ρloss(x) related
to integrand ρ(x). The important role of the distribution ρloss(x) is to guide the build-
up of the foam of cells; the function Rloss =

∫
ρlossd

nx is minimized in the process –
its value is decreasing step by step, at each the cell split. Obviously, both ρloss(x) and
ρ′(x), are evolving step by step during the foam build-up. Once the division process is
finished, the distribution ρloss(x) is not used anymore; MC events are generated with
ρ′(x). Nevertheless, ρloss(x) is strongly related to the properties of the weight distribution
in the MC generation phase.

(A) In the case when our ultimate aim is to minimize wmax we define

ρ′(x) ≡ max
y∈CellI

ρ(y), for x ∈ CellI ,

Rloss =

∫
dnx [ρ′(x)− ρ(x)] =

∫
dnx ρloss(x).

(18)

The distribution ρloss is the difference between the “ceiling distribution” ρ′ and the actual
distribution ρ from which it is derived. The rejection rate in final MC run is just propor-
tional to the integral over the loss distribution ρloss(x) by construction, i.e. the rejection
rate= Rloss/R. (This justifies the name “loss”.) The distribution ρloss(x) has also a clear
geometrical meaning, see below.

(B) In the case when we do not care so much about the maximum weight and the
rejection rate but rather we want to minimize the ratio of the variance to average of the
weight, σ/〈w〉, in the final MC generation, then we are led to the following definition:

ρ′(x) ≡
√
〈ρ2〉I , for x ∈ CellI ,

ρloss(x) ≡
√
〈ρ2〉I − 〈ρ〉I , for x ∈ CellI .

(19)

The average 〈...〉I is over the I-th cell; see Appendix A for a detailed derivation of the
above prescription. The ratio σ/〈w〉 in the final MC generation is a monotonous ascending
function of the Rloss =

∫
ρloss(x)dxn, see Appendix A. Consequently, minimization of Rloss

is equivalent to minimization of σ/〈w〉.

3.1 Rules governing binary split of a cell

The basic rule governing the development of the foam of cells are the following:

(a) For the next cell to be split we chose a cell with the biggest19 Rloss.

(b) Position/direction of a plane dividing a parent cell into two daughter cells ω →
ω′ + ω′′ is chosen to get the largest possible decrease ∆Rloss = Rω

loss −Rω′
loss −Rω′′

loss.

19In the Foam code there is also an option of choosing randomly the next cell to be split, according to
probability proportional to Rloss, instead of a cell with the largest Rloss.

22

How the split of a given cell into two daughter cells in step (b) is done in practice? The
method relies upon a small MC exercise within a cell, in which a few hundreds of events
are generated with a flat distribution. They are weighted with ρ and projected onto k
(hyperrectangular case) or n(n+1)/2 (simplical case) edges of the cells. In the mixed case
of cell being the Cartesian product of a k-dimensional hyperrectangle and n-dimensional
simplex, there are k + n(n + 1)/2 projections/edges. Resulting histograms are analysed
and the best “division edge” and “division hyperplane position” are found – this one for
which the estimate (forecast) of the ∆Rloss is the biggest. In the actual Foam algorithm,
each new born cell is immediately explored, its Rloss, R and R′ are calculated, and the
best candidate of the direction and position of the dividing plane are established and
memorized, as the attributes of the cell, see below for details. In this way, every newly
created cell is ready for an immediate binary division.

3.2 Geometry of binary split of a cell

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

i

j

new vertex

daughter 2
daughter 1

Parent simplex

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

Parent cell

daughter 1

daughter 2

division plane

Figure 5: Geometry of the split of the 3-dimensional cell being simplex or hyperrectangle.

In Fig. 5 we show a 3-dimensional cell being a simplex or a hyperrectangle and we
visualize the geometry of their split.

Let us describe first the split of the n-dimensional simplical parent cell into two daugh-
ter cells. In the case of the simplical cell [1] we need to know which of n(n + 1)/2 edges
defined by any pair of vertices of a given simplex is used in the split. Suppose that it is
an edge defined by a pair of indices (i, j), i 6= j, where i, j = 1, 2, ..., NV , of the vertices

(~VKi
, ~VKj

), see Sect. 2.4 for the method of numbering of the vertices. A new vertex VNV +1

is put somewhere on the line (edge) in between the two vertices

VNV +1 = λ~VKi
+ (1− λdiv)~VKj

, 0 < λdiv < 1, (20)

where the division parameters λdiv is determined using an elaborate procedure described
later in this section, and the number of vertices is updated NV → NV + 1. With the new

23

vertex two daughter simplices are formed with the following two lists of vertices (their
pointers):

(K1, K2, ..., Ki−1, (NV + 1), Ki+1, ..., Kj−1, Kj, Kj+1, ..., Kn, Kn+1),

(K1, K2, ..., Ki−1, Ki, Ki+1, ..., Kj−1, (NV + 1), Kj+1, ..., Kn, Kn+1).
(21)

For the k-dimensional hyperrectangular cell defined with a pair of the vectors (~q,~h)
we decide first about the direction of the division plane. Assuming that the division plane
is perpendicular to i-th direction the two daughter cells (a) and (b) are defined with the
two pairs of the new vectors as follows:

~q(a) = (q1, q2, . . . , qk), ~h(a) = (h1, h2, . . . , hi−1, hiλdiv, hi+1, . . . , hk),

~q(b) = (q1, . . . , qi−1, qi + hiλdiv, hi+1, . . . , qk), ~h(b) = (h1, . . . , hi−1, hi(1− λdiv), hi+1, . . . , hk).

(22)

The 3-dimensional case of the simplical and hyperrectangular cell split made in this
way is illustrated in Fig. 5.

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

j

X λ−1

Xproj

λ

i

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

2

3

4

(3,4)

(1,4)

(1,2)

(2,3)

(2,4)

1

Figure 6: Geometry of the split of the 3-dimensional simplex cell.

3.3 Projecting points into an edge

Before we describe the determination of the division edge and of the division parameter
λdiv let us still discuss certain geometric aspect of the Foam algorithm – that is how we
project a point ~x inside a cell onto one of the edges of the cell. In the case of a simplex
the edges are numbered by the pair of indices (i, j), i > j, which number edges spanned

by a pair of vertices20 (~VKi
, ~VKj

), while in the case of the hyperrectangle the i-th edge
is spanned by the pair of vectors ~q and ~q+ = (q1, . . . , qi−1, qi + hi, . . . , qn). The point
x inside a cell is projected into the edge and parametrized using parameter λ ∈ (0, 1).

20As explained in Sect. 2.4, numbering of vertices is done using pointers Ki to the elements of the array
of vertices.

24

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

X

projX

λ−1

λ

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

(3)

(1)
1

2

3

(2)

Figure 7: Geometry of the split of the 3-dimensional hyperrectangular cell.

Parameter λ will be used to define an auxiliary projection dρ/dλ for each edge in the
following subsection. In particular we have to know how to evaluate λ in an efficient way.
In the case of a simplex cell we have:

~xproj = λ~VKi
+ (1− λij)~VKj

, 0 < λij < 1, (23)

where

λij(~x) =
|Deti|

|Deti|+ |Detj | ,
Deti = Det(~r1, . . . , ~ri−1, ~ri+1, . . . , ~rn, ~rn+1),

Detj = Det(~r1, . . . , ~rj−1, ~rj+1, . . . , ~rn, ~rn+1), ~rj = ~VKj
− ~x,

(24)

and Det(x1, x2, ..., xn) is determinant. The case of a hyperrectangular cell is much simpler:

λi = (xi − qi)/hi. (25)

Obviously, due to time consuming evaluation of the determinants at higher dimensions,
the above projection procedure will be much slower for simplices than for hyperrectangles.

In Fig. 6 we illustrate projection procedure into six edges for the 3-dimensional simplex
and in Fig. 7 the case of the three edges of the 3-dimensional hyperrectangular cell.

3.4 Determination of an optimal division edge and of λdiv

Our aim is to find out which division plane, that is cutting through which edge, provides
the best gain of the total integral Rloss, summed over two daughters, as compared to
the parent cell. In order to do that, first we analyse all possible division planes, for all
edges, and find out the best one, in terms of the gain in Rloss. In other words, we go
through all edges (k edges for hyperrectangle and/or n(n + 1)/2 for simplex), for each
edge we find out the best parameter λdiv and the corresponding best gain in Rloss. Then,

25

0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

dρ
dλ

λ

Parent ρ′

Parent Rloss

0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

dρ
dλ

λ

Parent ρ′

New ρ′

Parent Rloss

New Rloss

New

?

Figure 8: Projection histogram. The case of optimizing the maximum weight.

we compare between the gains in Rloss for all edges and define the optimal edge as the
one with the best gain in Rloss. The procedure of finding the best λdiv is essentially the
same for simplical and hyperrectangular cells – on the other hand, there is a difference in
the algorithm of finding the best λdiv between the cases of optimization of the maximum
weight and of the variance, see the following discussion.

3.4.1 Optimization of the maximum weight – choosing λdiv

Let us consider first the case of finding the best λdiv for Rloss corresponding to optimization
of the maximum weight. The 1-dimensional case is a good starting point. The cell in this
case is just an interval (q, q + h) and λ = (x − q)/h. In the left part of the Fig. 8 we
see a histogram with Nb bins, made of 1000 events generated inside a cell (interval) using
the weight w = ρ(x), that is the histogram represents approximately the distribution
dρ/dλ, λ ∈ (0, 1). This distribution (histogram) peaks close to lower edge. The function
ρ′(x) = maxx∈Cell ρ(x) is constant over the cell and is depicted as an upper horizontal
line marked “Parent ρ′”. The contribution of this particular (parent) cell to Rloss =∫

cell
ρlossdx =

∫
cell

(ρ′(x)− ρ(x))dx is easily recognized as an area between the line marked
“Parent ρ′” and the histogram line. If we have stopped the exploration at this stage, with
this parent cell, then in the MC run points would be generated with the flat “Parent ρ′”
and the weight would be w = ρ(x)/ρ. Turning weighted events into unweighted by means
accepting r < w events and rejecting r < w, where 0 ≤ r ≤ 1 is an uniform random
number, would correspond to generating points (λ, r) within rectangle below “Parent ρ′”
line, accepting all points which are below the histogram line and rejecting points above
the histogram line in the area marked “Parent Rloss”. This justifies the subscript “loss”.

The best cell division is found by examining all Nb − 1 end-points λ = q + ih/Nb,

26

i = 1, 2, ..., Nb − 1 of the bins in the histogram, as a possible candidate for the division
point (plane in two and more dimensions) between the two daughter cells, and choosing
the best one. In the right part of the Fig. 8 we have marked such a candidate division
point with a star. For a given division point, we determine for two daughter cells the
new “ceiling function” ρ′; in Fig. 8 it is line marked “New ρ′”. For each daughter cell we
evaluate Rloss. The summary Rloss for both daughter cells is easily recognized as an area
between the line marked “New ρ′” and the histogram. Of course, we get automatically
the new total Rloss smaller than for the original parent cell! This procedure is repeated
for all possible j = 1, 2, ..., Nb− 1 division points and each time we record the net gain in
∆jRloss = Rloss,parent−Rloss,daughter1−Rloss,daughter2. For the actual best division point we
chose the division point with the largest gain ∆jRloss. In Fig. 8 the star marks the best
division point.

u
0

u
1

u
2

u
3

u
4

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

2

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

3

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

4

Figure 9: Two dimensional ρ(~x) (left) and the geometry of the first three simplical cells (right).
Inside the area marked by dashed line ρ(~x) = 0.

Let us now consider the 2-dimensional distribution ρ(x) depicted in the left part of
Fig. 9, which is nonzero within the narrow strip along four edges of the rectangle. In
the simplical mode Foam divides starting n-dimensional hyperrectangle into n! simplices
– in this case into 2 triangles. We concentrate on the division procedure of the lower
triangle, see the right part of Fig. 9. In the exploration of this triangular cell we use 1000
MC points and project them onto 3 edges. The corresponding 3 histograms are shown in
Fig. 10, where the middle histogram represents the projection onto the diagonal – this is
why it features two peaks distinct at the ends. In all three plots we have also drawn the
curve for ρ′(x) for the best hypothetical split. The most promising split in terms of the
gain in Rloss turn outs to be related to the middle plot and is marked in the right part of

27

0:250 0:500 0:750 1:000
0:000

0:250

0:500

0:750

1:000

dN

�

� 0:250 0:500 0:750 1:000
0:000

0:250

0:500

0:750

1:000

dN

�

� 0:250 0:500 0:750 1:000
0:000

0:250

0:500

0:750

1:000

dN

�

�

Figure 10: Distributions used in construction of λdiv in the case of optimizing the maximum weight.

Fig. 9. The reader may notice that the ρ′(x) in the middle plot of Fig. 10 is not of the
type discussed above, because it has two discontinuities instead of one. This is because in
Foam we have introduced certain refinement of the algorithm of finding an optimal λdiv.
One may easily notice that the algorithm described above could not locate correctly the
drop in the distribution dρ/dλ of the middle plot, because there are two equally strong
peaks at the end of this distribution21. In the improved version of the algorithm the
search of the optimal λdiv uses all pairs of the bin edges (λi, λj) = (q + ih/Nb, q + jh/Nb),
0 ≤ i < j ≤ Nb. For every pair (i, j) a new ceiling function ρ′(x) is determined such that
it is unchanged outside the subinterval (λi, λj) and is “majorizing” the histogram bins
inside this subinterval. Once we find out the best pair (i, j) in terms of Rloss, then we take
either λi or λj as a division point λdiv (at least one of them is not equal 0 or 1). In the case
of two or more peaks in dρ/dλ the resulting division point λdiv happens to be close to one
of the edges of the gap between the two peaks. This feature prevents the Foam algorithm
(at least partly) from placing a new division plane across a void in the multidimensional
distribution ρ(x). In other words such a void will “repel” the division planes from the
voids. In the case of the double peak structure of the middle plot of Fig. 10, the improved
algorithm will of course allocate big value of Rloss to a new cell (interval) which includes
the gap. In the next step of the foam build-up this cell (interval) will have big chance
to be split, and for this split the position of the split point will be located at the second
edge of the gap. This is exactly what we need for an efficient foam evolution.

3.4.2 Optimization of the variance – choosing λdiv

Let us consider now the case of finding out the best λdiv for Rloss corresponding to opti-
mization of the variance. The strategy is again to choose λdiv minimizing Rloss. In Fig. 11
we illustrate our algorithm on the example of the three projections of the triangular cell.
The three projections correspond to a triangular cell in two dimensions. (We do not spec-
ify ρ(x), as it is irrelevant for the purpose of our explanation.) In the upper row of three
plots in Fig. 11 we show as a horizontal line the value of the distribution ρloss =

√〈ρ2〉 (it

21The algorithm would pick up λdiv in a random point between the two peaks.

28

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

Figure 11: Distributions used in construction of λdiv in case of optimizing the variance.

is the same for all 3 projections). The solid histogram is the distribution dρ/dλ and the
dashed histogram is the distribution dρloss/dλ calculated bin by bin using

√〈ρ2〉, treating
every bin as a separate cell. The properly normalized difference of the above two distri-
butions

√〈ρ2〉 − 〈ρ〉 is plotted separately as the dashed histograms in the lower row of
the three plots in Fig. 11. The horizontal line for the total ρloss is shown once again there.
The histogram of dρloss/dλ gives us an idea where the biggest source of the variance is
located and our aim is to “trap” it properly with an intelligent choice of λdiv. We follow
a similar algorithm as in the case of the maximum weight minimization, namely we loop
over pairs of the bin edges (λi, λj) = (q + ih/Nb, q + jh/Nb), 0 ≤ i < j ≤ Nb, and for every
pair we calculate Rloss inside the interval (λi, λj) and outside this interval. We find out
which (i, j) provides the biggest gain ∆ijRloss = Rloss,parent −Rloss,Inside−Rloss,Outside. In
the lower row of the plots in Fig. 11 we show as a solid line the distribution of Rloss for
the best pair (i, j). Depending on the peak structure, at least one of the division point,
of the optimal pair (λi, λj) is different from zero or one, and we take this one as λdiv.
In Fig. 11 the chosen λdiv are marked with the black triangles. The above procedure is
done for each edge and the best ∆ijRloss is used as a guide to define an edge for which
the next cell division will be executed. The information about the best edge and the best
division point λdiv is recorded in the cell object. As seen in Fig. 11, λdiv tends to fall
at the position where dρloss/dλ drops or increases sharply. Note that since the division
point is always at the edge of the bin, it is therefore a rational number, λdiv = j/Nb.
This has interesting consequences, since the number of the bins Nb is fixed, it is therefore

29

enough to memorize this integer index j (2 Bytes) together with the integer index of the
division cell edge (also 2 Bytes) as an attributes of the cell, in order to define fully and
uniquely the geometry of the division of the cell! See Section 2.6 for more details how
this is exploited to save computer memory needed to encode the entire foam of cells.

u
1

?
2

u
3

?
4

u
5

?
6

u
7

u
8

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

4

��

6

hhhe
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�

8

hhhhh
hhhhh

hhhhh
hhhhh

hhhhh
hhhhh

hhhhh
hhhhh

h
�

�
�

�
�

9

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

���
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

10

�
�

�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

11

?
1

?
2

u
3

?
4

?
5

?
6

?
7

?
8

?
9

?
10

?
11

?
12

?
13

?
14

?
15

u
16

?
17

?
18

?
19

?
20

u
21

?
22

?
23

u
24

u
25

u
26

u
27

u
28

u
29

u
30

u
31

u
32

u
33

u
34

u
35

u
36

u
37

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

��������������������������

14

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

22

hhhhhhhhhhhhhhhhhe
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

27

��
��
��
��
��
��

��
�Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

29

hhhhh
hhhhh

hhhhh
hhhhh

h((((((((((((((((((((((((((
31

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

32

hhhhhhhD
D
D
D
D
D
D
D
D
D
D�
�
�
�
�
�
�
�
�
�
�

36

((((
((((

((((
(((!!!!!!!!!!!!!!!!!

39

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
Cl

l
l
l
l
l
l

40

((((((
((((((

((((((
((((((

((
�
�
�

43

B
B
B
B
B
B
B
B
B
B
��
��
��
��
��
��
��
��
��
��
���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

44

E
E
E
E
E
E
E
E
E
E
EB
B
B
B
B
B
B
B
B
B
�
��

45

,
,
,
,
D
D
D
D
D
D
D
D
D
D
D
D
D

46

,
,
,
,
,
,
,
,

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

47

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
eT
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
TE
E
E
E
E
E
E
E
E
E

48

e
e
e
e
e
eE
E
E
E
E
E
E
E
E
E�

�
�
�

49
A
A
A
A
A
A
A
A
A
A
��
��E
E
E
E
E
E
E
E
E
E
E

50

((((
((((

((((
((((bbbbbb
52

b
bbb

bb
bb
bb
bb
bbb

b((((((((((((((((

53

e
e
e
eD
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D

54

e
e
e

55

!!
!!
!!
!!
!`̀ `̀ `̀ (̀((((((((((((((

56

`````````
!̀!!!!!!!!

57

aa
aa

aa
aa

a�
��
��
�A
A
A
A
A
A
A

58

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Qaaaaaaaaa

A
A
A
A

59

C
C
C
C
C
C
C
C
Cl
l
l
l
l
l
l
�
�
�
�

60

C
C
C
C
C
C
C
C
C
�
�
�

61

hhh�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�

62

hhhh�
�
�
�
�
�
�
�
�
�,

,
,
,
,
,
,
,
,
,
,
,

63

   
   

   
   

   
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

64

hhhhhhhhhhhh�
�
�
�
�
               65

hhhhh
hhhhh

hhhhh
hhhhh

h
�� 66

��
67

PP
PP

PP
PP

P ������

68

```
```

```
```

```
` PPPPPPPPP

69

?
1

?
2

?
3

?
4

?
5

?
6

?
7

?
8

?
9

?
10

?
11

?
12

?
13

?
14

?
15

?
16

?
17

?
18

?
19

?
20

?
21

?
22

?
23

?
24

?
25

?
26

?
27

?
28

u
29

u
30

?
31

?
32

?
33 ?

34

?
35

u
36

?
37

?
38

?
39

?
40

u
41

?
42

?
43

?
44

?
45

?
46

?
47

?
48

?
49

?
50

?
51

?
52

?
53

u
54

?
55

u
56

?
57

?
58

?
59

u
60

?
61

u
62

?
63

?
64

?
65

?
66

u
67

?
68

?
69

u
70

u
71

?
72

?
73

u
74

?
75

u
76

?
77

u
78

?
79

u
80

u
81

u
82

u
83

u
84

u
85

?
86

u
87

u
88

u
89

?
90

u
91

u
92

u
93

u
94

u
95

u
96

u
97

u
98

u
99

u
100

u
101

u
102

u
103

u
104

u
105

u
106

u
107

u
108

u
109

u
110

u
111

u
112

u
113

u
114

u
115

u
116

u
117

u
118

u
119

u
120

u
121

u
122

u
123

u
124

u
125

u
126

u
127

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
Cl

l
l
l
l
l
l

40

(((((((
((XX
XXX

XX
�
�
�

71

e
e
e
e
e
��
��E
E
E
E
E
E

82

A
A
A
A
A
A
AE
E
E
E
E
E
E
E
E
E�

�
�

84

C
C
C
Cl
l
l
l
l
l
lXXX

XXX
86

���
�����

96

�
�
�
�
�
�
((((

((((
(((!!!!!!!!!!!!!!!!!

98

D
D
D�
�
�
�
�
�
�
�
�
�
�

100

�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�

102

hhh�
�
�
�
�
��

�
�
�
�
�

103

,
,
,
,
,
,
,
,
�
�
�
��

�
�
�
�
�
�
�
�
�
�

105

Z
Z
Z
Z
Z
Z
Z
!!@

@
@
@
@
@

111

J
J
J
J
�
�
�

113

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
baaaaaaaaaaaaaaaaaaaaaaaaa����

115

e
e
e
e
e
e
eQQ
Q
Q
Q
Q
Q
Q
Q
Q
Q

117

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�

118

E
E
E
E
E
E
EB
B
B
B
B
B
B
B
B
Bl

l
l

120

PP
PP

PPhhhhhhhh��
123

ccD
D
D
D
D
D
D
D
D
D

127

�
�
�
�
�
�
�
�
�
�
�
�
�
�
e
e
e
e
e

128

hhhhhhhhhhhhhhhhhe
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e�
�
�
�
�
�
�
�
�
�
�
�
�
�

129

e
e
e
eB
B
B
B
B
B
B
B
B
B

130

%
%
%
%
%�
�
�
�!!!

133

�
�
�
�
�
�
e
e
e

134 �
�
�
�
�
�

135

HH
HH
XXXXXX136

bb
bXXXXXXX

138

```
``` 140

143

hhhhhhhhhhhhhhhhhhhhhhhh
144

A
A
A
A
A
Ae
e
e
e
e
��

146

A
A
A
A
��E
E
E
E
E

147

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

149

!!
!!
!!
!!
!!
!!HHHHH((((((((((((((((

150

bbbbbbbbbbbb!!!!!!!!!!!!

151

QQ
D
D
DA
A
A
A

153

````
�
�
�
�

154

�
�
�
�%
%
%
%
%

155

�
�
�
               

156

hhhhhhhhhhhh��
157

�
�
�
�
�
�
D
D
D�
�
�
�
�
�
�
�

158

,
,
,
,
D
D
D�

�
�
�
�
�

159

Z
Z
Z
Z
���A

A
A
A

160

@
@
@
@
@
@ZZ
Z
Z
A
A
A

161

   
  bb
162

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

�
�
�
�
�
�
�
�
�
�
�
�
�
�

164

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
TL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L�

�
�
�

165

�
�
�
�
�`̀!!!!!!!

166

e
e
e
e
e
e
e
��
��
��
��
��
��
��
��
��
��
���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

168

B
B
B
B
B
B
B
B
B
Be
e
e
e
e
e
e
�
�
�

169

�
�
�

170

��
��
��
�`̀ `̀ `̀ (̀(((((((((((

172

!!
!!
!!
!!
!�������(((

173

e
e
e
eHHHH

��

174

e
e
e
e
aaa

D
D
D

176

Q
Q
Q
Q
Q
Q
Q
Q
Q
Qaaaaaa

e
e
e
e

177

�
�
B
B
B
B
B
B
B
B
B
BC
C
C
C
C
C
C
C
C
C
C

178

E
E
E
E
E
E�
�
C
C
C
C
C

179

ee
����

180

hhhhh
hhh ee

181

hhhhhh
hhhhhh

hhhhhh
hhhhh

182

��
��
�
�
�
�
�
�
�
�,
,
,
,
,
,
,
,
,
,
,
,

184

hh�
�
������

185

(((((�����
186

��
��
��
�
�
�
�
�

187

e
e
eA
A
A
A
A
A
AD
D
D
D
D188

\
\
\D
D
D
D
D��

189

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

190

   
   

   
   

   �
�
�
�

191

e
e
e
e
e
e
e
e
e
e
e
e
e
eT
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
TL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

192

e
e
e
e
e
e
eL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
LE
E
E
E
E
E
E
E
E
E
193

C
C
C
C
C
C
C
C
C
C
CD
D
D
D
D
D
D
D
D
D
D
D
D
D

194

ccC
C
C
C

195

((((((
((((196

(((((((
�������

197

hhhh
hhhh

hhhh
hhhhhhhhhhhhh

198

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

200

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�

201

bb
C
C
CJ
J
J
J
202

C
C
C
C
C
C
Cbb

203 E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
hhhhhhhhhhhhhhhhhhh

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�

204

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
hhhh

E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E

205

���
��hhhhhh

206

���
hhhh

hhbbb
207

aa
l
l
l
l
lZ
Z
Z
Z
Z
Z
Z

209

hhhh
hhhh

hhhhAA 210AA��211
hh�

�
�
�
�
�
�
�
�
�%
%
%
%
%
%
%
%
%
%
%

212

%
%
%
%
%
%
%
%
%
%
%�

�
�
�
�
�
�
�
�
�

213

214
    215
bb216

((((
((((

((((
((((bbb217

PPP
hhhhh

hhhhhhhhhhhhhhhhhh
218

hhhhh
hhhhh

hPPP 219

PPPP220

```
```

```
` PPPPPP

221

(((((((
(222PPP

P ((((((((
223

224
������

225

hhhhh
hhhhh

hhhhh
hhhhh

h
%
%
%

226

%
%
%

227
������

 ((((((((

228

��
��
��((((((((((((((((((

229

aa
aa

aa
aa

aa
aa
��
��
�e
e
e
e
e
e
e

230

��
��
��
��
��
�aaaaaaaaaaaa

231

l
l
l �

�

232

hhhhhhh
hhhhhhh

hhhhhhh
hhh l

l
l

233

hhhh 234hhhh235

�
�
D
D
D
D
D
D
D
D

236

�
�
�
�
�
�

237

L
L
L
Lll
l
��

238

E
E
E
E
EL
L
L
L

239

hhhhhhD
D
D
D
D
D
D
D
D�
�
�
�
�
�
�
�
�

240

hh�
�
�
�
�
�
�
�
�

241

hhhh
hhhh

hhhh
hhhh

hhhh
hhhh

hhhh
hhhh

hhh �������������

242

aa
aa

aa
aa

aa
aa

aa
aa

aa
aa

aa
aa

ahhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh���������

243

�
�
`̀ `̀�����
244

�
�
���

���
�
�
�
�

245 ��
�ll246

aa
aa

aa
a

l
l
l
l

247

C
C
Ce
e
e
ePP

248

CC
C
PP
��

249

2

4

7

9

10 11

40

43

46

64

77

86

89

91

92

94

97

98

100

105

108

110

115

117

119

121

122
124

126

129

130
133

134

137

138 139 140 141

142 143

146

148 149

151

152

153

154 155

156

157

158

159

161

162 163

164 165

167

168 169

170

171

173

174

175

177

178 179

181

182 183

185

186 187

188

189

190

192193

194
195

196

198

199

200 201

202

204 205

206207

208 209

210 211

212

214

215

216

217

218

220 221

222

223

224

225

226227

228 229

230

231

232 233

234235

236 237

238

239

240 241
242
243

244 245

246

247

248 249

49

52

56

59

63

64

69

75

80

82

89

91

92

94

97

98

102

106

110

112

115

117

120

122

125

127

129

131

133

134 135

137

139

141

142 143

144

147

149

151

152

154

156

159

161

162

165

166

167

168

170

171

172

173

175

176

177

178 179

180 181

183

184

187

189

190

191

192

193

194 195

196 197

198

199

200

201

202 203

204

205

206 207

208 209

210

211

212

213

214

215

216

217

218 219

220221

222

223

224 225

226227

228

229

230

231

232233

234235

236

237

238 239

240

241

242243

244

245

246247

248249

u
1

?
2

?
3

u
4

?
5

?
6

?
7

?
8

?
9

?
10

?
11

?
12

?
13

?
14

?
15

?
16

?
17

?
18

?
19

?
20

?
21

?
22

?
23

?
24

?
25

u
26

?
27

?
28

?
29

?
30

?
31 ?

32

?
33

?
34

?
35

u
36

?
37

?
38
?
39

?
40

?
41

?
42

u
43

?
44

?
45

?
46

?
47

u
48

?
49

?
50

u
51

?
52

?
53

u
54

u
55

u
56

?
57

?
58

u
59

u
60

?
61

u
62

u
63

?
64

?
65

u
66

u
67

?
68

?
69

u
70

?
71

u
72

?
73
u

74

u
75

u
76

u
77

u
78

u
79

u
80

u
81

u
82

u
83

u
84

u
85

u
86

u
87

u
88

u
89

?
90

u
91

u
92

u
93

u
94

u
95

u
96

u
97

u
98

u
99

u
100

u
101

u
102

u
103

u
104

u
105

u
106

u
107u

108

u
109

u
110

u
111

u
112

u
113

u
114

u
115

u
116

u
117

u
118

u
119

u
120

u
121

u
122

u
123

u
124

u
125

u
126

u
127

e
e

e
e

e
e

e
e

e
e

e
e

e
e

e
e

e
e

e
e

e
el
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
�
�
�

76

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

80

l
l
l
l
l
l
l@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@@
@
@
@
@
@
@
@
@

90

\
\
\
\
\
\@
@
S
S
S
S

97

@
@
@
@S
S
S
S
S
101

@
@

@
@

@
@

@
@

@ZZ
Z
@
@
@
@
@
@
@

103

l
l

l
l

l
l

l@
@
@
@
@
@

105

bb
b@

@
@

@A
A
A107

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

108

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@ZZ

Z
Z
@
@
@
@
@
@
@
@
@
@
@
@
@

111

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

114

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

115

e
e
e
e
e
e
e
e
e
e
e
e@

@
@

@
@

@
@

@
@

@
@

116

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

118

@
@

@
@

@
@

@@
@
@
@
@
@
@
@
@
@
@
@l

l
l

l
l

120

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

123

l
l
l
l
l
l
l
l
l
l@

@
@

@
@

@
@

@
@

@

124

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

127

@
@

@
@

@
@

@
@

@
@

@
@

@
@e
e
e
e
e
e
e
e
e
e
e
e
e

128

e
e

e
e

e
e

e
e

e
e

e
e

eA
A
A
A
A
A
A
A
A
A
A
A
A

129

@
@

@
@

@
@

@
@

@
@

@
@

@@@
@
@
@
@
@
@
@
@
@
@
@

131

@
@
@
@
@
@
@
@
@
@@

@
@

@
@

@
@

@
@

@

133

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
eHH

HH
HH

HH
HH

HH
HH

HH
HH

H
134

HHHHHHHHHHHHHHHHHHH
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

135

J
J
J
J
JPPPP@

@
@

@
@

@
@

137

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

139

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

140

J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
JJ
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J

142

@
@

@
@

@
@

@
@

@
@

@
@

@@
@
@
@
@
@
@
@
@
@
@
@
@

145

@
@

@
@

@
@

@
@

@
@

@l
l
l
l
l
l
l
l
l
l
l
l
l

146

@
@

@
@

@
@

@
@

@
@

@@
@
@
@
@
@
@
@
@
@
@

147

c
cA
A
A148
S
S
S
S
SA
A
A

c
c

149

@
@

@
@

@
@

@
@

@
@

@
@@
@
@
@
@
@
@
@
@
@
T
T

150

@
@

@
@

@
@

@
@

@
T
Te
e
e
e
e
e
e
e
e
e
e

151

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

152

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

153

Z
Z

Z
Z

Z
Z

Z
��@
@
@
@
@
@
@

154

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
@

@
@

@
@

@
@c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

155

HHHHHHHHHHHHHHHHHHHHHHHHH@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@�
�

�
�

�
�

156

HH
HH

HH
HH

HH
HH

HH
HH

HH
HH

HH
HH

H�
�

�
�

�
�

�
�

�
�

�
�

�

157

S
S
S
S �

�
�
�

158

@
@

@
@S

S
S
S

159

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

ll

161

@
@

@l
l
l
l
lQQ

Q
162

e
e
e
e
e
e
e
e
e@

@
@

@
@

@
@

@
164

@
@
@
@
@
@
@
@@

@
@

@
@

@
@

@
165

@
@
@
@
@@

@
@

@
@

@
@

@
@

@
@

@
@@
@
@
@
@
@
@
@
@

166

@
@
@
@
@
@
@
@
@
@e
e
e
e
e
e
e
e
e
e

bb

168

@
@
@
@
@
@
@
@
@
@
@
@
@@
@
@
@

@
@

@
@

@
@

@
@

@
@

169

@
@

@
@

@
@

@
@

@
@

@@
@
@
@
@
@
@
@
@
@

170

e
e

e
e

e
e

e
e

e
e

e@
@
@
@
@
@
@
@
@
@
@

171

cce
e
eA
A173

@
@

@
@

@
@

@cc
@
@
@
@
@
@

175

@
@
@
@@

@
@

@
@

@
@

@
@@
@
@
@
@
@
176

l
l
l
l
l
l
l
l
l@

@
@

@
@

@
bb

b

177

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

178

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@ \
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

179

@
@
@
@
@
@
@
@
@
@
@
\
\
\
\
\
\
\
\
\
\
\
\
\e

e
e

e
e

e
e

e
e

e
e

e
e

e
e

e
e

e
e

e
e

e
e

e
e

180

@
@
@
@
@
@
@
@
e
e
e
e
e@

@
@

@
@

@
@

@
@

@
@

181

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l �

�
�

�
�

�
�

�
�

�
�

�
�

�

182

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
Ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
�

�
�

�
�

�
�

183

@
@
@
@
@
@
@
@
@@

@
@

@
@

@
@

@
@

184

@
@
@
@
@
@
@
@
@@

@
@

@
@

@
@

@
@

185

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

186

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

l
l

l
l

187

@
@

@
@

@
@

@
@

@
@

@
l

l
l

l
l

l
l

l@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

188

@
@

@
@
@
@

l
l

l
l

l
l@
@
@
@
@
@
@
@
@
@
@

189

@
@
@
@
@AA
@

@
@

@

190

\
\
\
\
\
\
\A
A
A

@
@

@
@

@

191

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

193

\
\
\
\
\
\
\@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@@

@
@

@
@

@
@

@
@194

\
\

\
\

\
\
\

\
\

\@
@
@
@
@
@
@
@
@
��

195

l
l
l
l
le
e
e
e
e
e
e
eA
A
A

196@
@
@
@
@
@
@
@
@
@e
e

e
e

e
e

l
l

l
l

l

197

c
c
c
cl

l
l

l
l

l
l

l
l

l@
@
@
@
@
@
198

c
c
c@

@
@

@
@

@e
e
e199

e
e
e
e
e
e
e\
\
\
\
\
\
\
200

@
@
@
@
@
@
@e
e

e
e

e
e

e

201

@
@
@
@
@A
A
A
A

PPP
P

202

J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
JA
A
A
A
A
A
A
A
A
A
A
A
A

@
@

@
@

@

203

c
c
c
c
c
c@
@
@

bb
bb

204

@
@
@
@
@
@
@
@
@
@
@
@@
@
@
@
@
@
@

c
c

c
c

c
c

205

@
@
@QQQ

LL
206

l
l
l
l
l
l
l
l
l
l
l
l
l
l@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@e
e
e
e
e
e
e
e
e

208

l
l
l
l
l
l
l
l
le
e

e
e

e
e

e
e

e��

209

XXXXXXJ
J
J
J
J�

�
� 210

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J

XXX
XXX

211

cc
BB

212

Z
Z

Z
Z
BB@
@
@
@

213

b
b
bc

c
c

c
c

c
c

c
cl
l
l
l
l
l

214

QQl
l

l
l

l
l@
@
@
@

215

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

217

@
@

@
@

@
@

@
@

@
@

@
@

@ZZ
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
��

218

@
@

@
@

@
@

@
@

@
@

@
@

@@
@
@
@
@
@
@
@
@
@
@
@
@

219

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S�

�

220

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@��

221

@
@

@
@

@
@

@
@

@
@

@@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@@

@
@

@
@

@
@

@
@

@
@

222

S
S@
@
@
@
@
@
@
@
@
@
@@

@
@

@
@

@
@

@
@

@

223

@
@
@
@
@
@
@
@
@
@
@
@@

@
@

@
@

@
@

@
@

@
@

224

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

225

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@AA

226

@
@
@
@
@
@
@
@
@
@
@
@
@
@@

@
@

@
@

@
@

@
@

@
@

@
@

@
@A
A
A

227

c
c

c
c

c
c

c
c
�
�
�e
e
e
e
e
e
e
e
e

228

c
c

c
c

c
c

c
c

c
c

c
c

c
c

e
e
e
e
e
e
e
e
e@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

229

e
e@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

230

ee@@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

231

@
@
@
@@
@
@
@
@
@
@
@
@
@
@@
@
@
@
@
@
@
@232

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
@
@
@
@@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

233

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

234

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@@@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

235

@
@
@
@
@
@
@
@
@
l

l
l

l
l

l
l

l

236

@
@
@
@
@
@
@
@
@
l
l
l
l
l
l
l
l@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

237

e
e
e
e
e
e

@
@

@
@

@
@

@
@

@
@

@
@@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

238

@
@

@
@

@
@e
e
e
e
e
e

239

@
@
@
@
\
\
\
\
\e

e
e
e
e
e
e
e
e

240

\
\
\
\
\@

@
@
@241

l
l

l
l

l
lZ
Z
Z
Z
Z

242

@
@

@
@

@
@l
l
l
l
l
l

243

bbbbbbbb
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

244

@
@
@
@
@
@
@
@bb

bb
bb

bb
245

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

246

S
S@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

247

@@
LLS
S
S

248

@
@

@
@

@
@

@
@

@
@
S
S
S@
@
@
@
@
@
@
@
@
@
@
@
@

249

?
1

u
2

u
3

?
4

?
5

?
6

?
7

?
8

?
9

?
10

?
11

?
12

?
13

?
14

?
15

?
16

?
17

u
18

?
19

u
20

?
21

?
22

?
23

?
24
?
25?

26

?
27

?
28

?
29

u
30

?
31

?
32

u
33

?
34

?
35

u
36

?
37

?
38

?
39

u
40

?
41

?
42

u
43

?
44

?
45

?
46

?
47

?
48

?
49

u
50

?
51

?
52

u
53

?
54

?
55

?
56

u
57

?
58

?
59

?
60

u
61

u
62

?
63

u
64

u
65

?
66

?
67

?
68

u
69

u
70

?
71

u
72

u
73

u
74

?
75

?
76

u
77

u
78

u
79

u
80

u
81 ?

82

?
83

u
84

?
85

u
86

?
87

?
88

u
89

u
90

u
91

u
92

u
93?
94?

95

u
96

?
97

u
98

?
99

u
100

u
101

?
102

u
103

u
104

u
105 u

106

u
107

u
108

u
109

u
110

u
111

?
112 ?

113

u
114

u
115 u

116

u
117

u
118

?
119

u
120u

121

u
122

u
123

u
124u

125

u
126

u
127

�
�
�

�
�

�
�
�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�

16

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�

18

24

hhhh
hhhh

hhhh
hhhh

hhhh
h
�
�
�

28

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�30�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�

32

hhhhhhhhhhhhhhhhhhh

34

�
�
�
hhhhhhhhhhhhhhhhhhh

35

hhhhh
hhhhh

hhhhh �
�
�

41

ZZ
ZZ
44ccc

47

,,�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

50

hhhhh
hhhhh

hhhh 60

(((63

hhhh
hhhh

hhhh
hhhh�� 64

66

\
\
\

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

72

75

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

77

hhhhhh

(((((((((((((
78

�
�
��

�
�
81

hhhhhhhhhhhhhhhhhhh hhhhhh
hhhhhh

hhhhhh
hhhhhh

hhhhhh
hhhh

85

87�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�

91

hhhh
��95

hhhh
99

hhhhhhh
hhhh101

AA

102

PPPPP
hhhhh 104

hhhhhhhhhhhh��
108

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

113
115

117

hhhhhhhhhhhhhh
119

(((((121

L
L
L

124

L
L
L\
\
\
125

���
���

(((((((((((((
126

E
E
E

128

hhhhhhhhhhhhhhhhh133

135

QQL
L
L�
�136

138

139

140

hhhhh141hhhh143

SS��145

E
E
E
�
�
�

146

PPPPPPP
P
148

�
�
��
�
�

150

,,��
151

XXX
XXX

X
���

153

((((
((((

(((((((((((
154

!!(
((((

((((
((((((((((((((((((

156

���
�!!(((157

���
���

�
�
�159

hhhhhhhhhhhhhhhhhhhh
hhhhh

hhhh
160

162

163

164
hhhhhhhhPP166

hhhhh
hhhhh

hhhh
hhhhhhhhhhhhhhhhhhh

169 hhhhhhhhhPPP
hhhhhhh 170

172

�
�
�
�

E
E
E

173

�
�
�

175hhhhhh"" 177

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

178

179

hhhhhhhhhhhh
hhhh 181

hhhhhhhh
183

""
hhhhhhhPPPPP

185
hhhhhhh

hhhhhhh
hhXXX 186

 ��������

189

190

((((
((((

(((((
((((((((((((((((((((

192

hh 194

hhhhhh
hhhhhh

hhhhhh
hhhhhhhhhhhhhhhhhhhhhhhh

195

hh196197

��
((((

((((
198

D
D

E
E
E
E

200D
D

201

J
J
JL
L
L202
QQ203hhhhh204

hhh
hhhhhhhh

hhhhh 205

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

206

�
�
�207@@J
J208
@@209

E
E
E

210

��
211

(((((((((((((((((((
((((

((((
((((

(��
212

(((((
(((((

(((((�����214
215

XXX216217

218 220222 ((((223

((hhhXX224

PP
PP

P((XXXXXX
225 226

(((((((((((
((((

((((
((((((((((((((228

(((((
(((((

(((((((((((
229

230231

233

235 236237

238

AA��
239

hhhhhhhhhhhhhh
hhhhh

hhhhh
hhhhh

240
`̀ `̀ hhhhhhhhhhh

hhhhh 242

hhhhhhhhh̀̀`̀
hhhhh 243

��
���

�

244

��
����

245

(((((
(���246�����247

E
E

248

E
E

249

Figure 12: Examples of the 2-dimensional foam. Number of cells from 10 to 2500.

3.4.3 Concluding remarks on the cell division algorithm

The algorithm of the split of the cell is the important and most sophisticated part of the
new Foam. Let us therefore add a couple final remarks:

30

Figure 13: Example of ρ(x) for which the Foam algorithm of cell division fails.

• The new, much improved procedure of the choice of the division plane is the most
significant difference22 with respect to Foam 1.x of Ref. [1].

• The choice of the edge based on the histograms for each edge makes sense if we use
histograms with at least 2-4 bins and at least 100 MC events per cell. This might
be a serious limitation for these ρ(x), which require a lot of CPU time per function
call.

Finally, in Fig. 12 we show examples of the evolution of the foam of the cell as the number
of the cells grows gradually. The case of the 2 dimensions is easily visualized and we do
it in Fig. 12 for triangular and rectangular cells. In the upper six plots ρ(x) feature a
circular ridge, in the two bottom plots is concentrated along antidiagonal x1 + x2 = 1,
and the last one corresponds to ρ(x) of Fig 9.

3.5 Limitations

We are aware that the present procedure of selecting next cell for the split and the
procedure of defining division plane, although quite sophisticated, is not a perfect one
and has certain shortcomings. Some of them can be probably removed, but some of
them are inherent. In Fig. 13 we show a surprisingly simple example of a function for
which our method of finding a good division point λdiv fails. It fails simply because both
projections of ρ(x) onto two edges of the rectangle are just flat and our procedure will
pick up some λdiv randomly within (0, 1), while the most economic division point is in

22I would like to thank A. Para for discussion which ignited this new development.

31

the middle λdiv = 1/2. On the other hand, although Foam algorithm gets disoriented for
the first division, it will recover and correct for the “falstart” in the next divisions rather
quickly. It will eliminate the two voids from its area of the interest.

Let us notice that the distribution of Fig. 13 violates maximally strongly the “principle
of factorizability” ρ(~x) =

∏n
1 ρi(xi), the principle on which VEGAS family programs are

built [3–5]. Contrary to VEGAS the problem with factorizability in Foam is not a general
one, but is limited to a single cell and usually goes away after the cell split. Nevertheless,
the algorithm of Foam analyzing projections on all edges in a single cell is relying on the
“principle of factorizability”.

Class Short description
TFOAM INTEGRAND Abstract class (interface) for the Foam integrand distribution ρ(x)
TFVECT Class of vectors with dynamic allocation of the components. Used in

TFOAM and TFCELL
TFMATRIX Square matrices, used for simplical geometry in the Foam
TFPARTITION Auxiliary small class for looping over partitions and permutations
TFCELL Class of objects presenting single cell used in TFOAM (Cartesian product

of the simplex and hyperrectangle)
TFOAM Main class of Foam. The entire MC simulator
TPSEMAR Marsaglia et.al. random number generator [16].
TFHST Simple class of one-dimensional histograms. Used only in the Foam ver-

sion without ROOT
TFMAXWT Monitors MC weight, measures performance of the MC run
TFDISTR Collections of distributions ρ(x) for testing Foam

Table 1: Description of C++ classes of Foam.

4 The Foam code

Presently, the C++ version of the Foam code is more advanced than the Fortran77 version.
(We do not plan to develop F77 code any further.) In this section we shall describe mainly
the C++ code.

The code of the Foam version 1.x was originally written in Fortran77 with popular
language extensions, like long variable names etc. It was already written in an object-
oriented style, as much as it was possible. In particular the main classes TFOAM and
TFCELL of the present C++ version were already present in certain form. The important
shortcoming of the F77 version is the lack of dynamic allocation of the memory. Otherwise,
it has most of the functionality of the C++ version, see latter this section for list of
limitations.

32

TFOAM member Short description
float m Versiong Actual version of the Foam (like 2.34)
char m Date[40] Release date of the Foam
char m Name[128] Name of a given instance of the TFOAM class
int m nDims Dimension of the simplical subspace
int m kDims Dimension of the hyperrectangular subspace
int m TotDimg Total dimension = m nDim+m kDim
int m nCellss Maximum number of cells
int m vMax Maximum number of vertices (calculated)
int m LastVe Actual index of the last vertex
int m RNmax Maximum number of random numbers generated at once
int m OptDrives Type of optimization =1,2 for variance or maximum weight reduction
int m OptEdges Decides whether vertices are included in the cell MC exploration
int m OptPeeks Type of cell peek =0,1,2 for maximum, random, random2
int m OptOrds Root cell is simplex for OptOrd=1, hyperrectangle for OptOrd=2
int m OptMCells =1 economic memory for hyperrectangles is on; =0 off
int m Chats =0,1,2 chat level in output; =1 for normal output
int m OptDebug =1, additional histogram (dip-switch)
int m OptCu1st =1, numbering starts with hyperrectangle (dip-switch)
int m OptRej =0 for weighted events; =1 for unweighted events in MC generation
int m nBins No. of bins in edge-histogram for cell MC exploration
int m nSampls No. of MC events, when dividing (exploring) cell
int m EvPerBins Maximum number of effective (w = 1) events per bin
int m nProj Number of projection edges (calculated)

Table 2: Data members of the TFOAM class. Associated setters and getters marked as super-
scripts s and g.

4.1 Description of C++ classes

In Table 1 we list all classes of the Foam package. The main class is TFOAM, which is
the MC simulator itself. It is served by the class TFCELL of the cell objects, and three
auxiliary classes TFVECT, TFMATRIX and TFPARTITION. The other classes are not related
directly to Foam algorithm – they are utilities used by Foam: random number generator
class TPSEMAR [16] and the histograming class TFHIST. The class TFDIST provides a
menu of the distributions for testing Foam. In the following we shall describe in a more
details the key classes TFOAM and TFCELL.

4.2 TFOAM class

TFOAM is the main class. Every new instance of this class (properly initialized) is another
independent Foam event generator. In Tables 2 and 3 we provide full list of data members
of the class TFOAM and their short description. As seen in these tables, we have added
prefix “m ” to all names of the data members, such that in the code they differ visually

33

TFOAM member Short description
Provision for multi-branching

int *m MaskDiv ![m nProj] Dynamic mask for cell division
int *m InhiDiv ![m kDim] Flags inhibiting cell division, h-rectang. subspace
int m OptPRD Option switch for predefined division, for quick check
TFVECT **m XdivPRD !Lists of division values encoded in one vector per direction

Geometry of cells
int m NoAct Number of active cells
int m LastCe Index of the last cell
TFCELL **m Cells [m nCells] Array of ALL cells
TFVECT **m VerX [m vMax] Array of pointers to vertex vectors

Monte Carlo generation
double m MaxWtRej; Maximum weight in rejection for getting w = 1 events
TFMAXWT *m MCMonit; Monitor of the MC weight for measuring MC efficiency
TFCELL **m CellsAct !Array of pointers to active cells, constructed at the end of

foam build-up
double *m PrimAcu !Array of cumulative

∑k
i=1 R′

i, for cell index generation
TObjArray *m HistEdg Histograms of w, one for each edge, with ROOT
TObjArray *m HistDbg Histograms for debug (m OptDebug=1), with ROOT
TH1D *m HistWt; Histograms of MC weight, with ROOT
TFHST **m HistEdg Array of pointers to histograms, without ROOT
TFHST *m HistWt; Histograms of MC weight, without ROOT
double *m MCvectg [m TotDim] Generated MC vector for the outside user
double m MCwtg MC weight
double *m Rvec [m RNmax] Random number vector from r.n. generator, up

to m TotDim+1 maximum elements
Externals

TFOAM INTEGRAND *m Rhogs The distribution ρ to be generated/integrated
TPSEMAR *m PseRangs Generator of the uniform pseudorandom numbers

Statistics and MC results
long m nCallsg Number of function calls
long m nEffev Total no. of effective w = 1 events in build-up
double m SumWt, m SumWt2 Sum of weight w and squares w2

double m NevGen No. of MC events
double m WtMax, m WtMin Maximum/Minimum weight (absolute)
double m Primeg Primary integral R′, (R = R〈w〉)
double m MCresult True integral R from the cell exploration MC
double m MCerror and its error

Working space for cell exploration
double *m Lambda [m nDim] Internal parameters of the simplex:

∑
λi < 1

double *m Alpha [m kDim] Internal parameters of the h-rectang.: 0 < αi < 1

Table 3: Data members of the class TFOAM. Cont.

34

TFOAM method Short description
Constructors and destructors

TFOAM() Default constructor (for ROOT streamer)
TFOAM(const char*) User constructor
T̃FOAM() Explicit destructor
TFOAM(const TFOAM&) Copy Constructor NOT USED
TFOAM& operator=(const TFOAM&) Substitution NOT USED

Initialization, foam build-up
void Initialize(TPSEMAR*, Initialization, allocation of memory

TFOAM INTEGRAND*) and the foam build up
void InitVertices(void) Initializes first vertices of the root cell
void InitCells(void) Initializes first n! cells in h-rect. root cell
void Grow(void) Adds new cells to foam, until buffer is full
int Divide(TFCELL *) Divides cell into two daughters
void Explore(TFCELL *Cell) MC exploration of cell main subprogram
void Carver(int&,double&,double&) Determines the best edge, wmax-reduction
void Varedu(double[],int&,double&,double&) Determines the best edge, σ-reduction
long PeekMax(void) Chooses one active cell, used in Grow
TFCELL* PeekRan(void) Chooses randomly one active cell, in Grow
void MakeLambda(void) Generates random point inside simplex
void MakeAlpha(void) Generates rand. point inside h-rectangle
int CellFill(int, TFCELL*,

int*,TFVECT*,TFVECT*) Fills next cell and return its index
void MakeActiveList(void) Creates table of all active cells

Generation
void MakeEvent(void) Makes (generates) single MC event
void GetMCvect(double *) Provides generated random MC vector
void GetMCwt(double &) Provides MC weight
double MCgenerate(double *MCvect) All the above in single method
void GenerCell(TFCELL *&) Chooses one cell with probability ∼ R′

j

void GenerCel2(TFCELL *&) Chooses one cell with probability ∼ R′
j

Finalization, reinitialization
void Finalize(double&, double&) Prints summary of MC integration
void GetIntegMC(double&, double&) Provides MC integral
void GetIntNorm(double&, double&) Provides normalization
void GetWtParams(const double,

double&, double&, double&) Provides MC weight parameters
void LinkCells(void) Restores pointers after restoring from disk

Debug
void CheckAll(const int) Checks correctness of the data structure
void PrintCells(void) Prints all cells
void PrintVertices(void) Prints all vertices
void LaTexPlot2dim(char*) Makes LaTeX file for drawing 2-dim. foam
void RootPlot2dim(char*) Makes C++ code for drawing 2-dim. foam

Table 4: Methods of TFOAM class.

35

from the other variables (it is a recommended practice in the C++ coding).
Generally, one may notices that many data members, could be declared (and allocated)

as the local variables in the procedures, instead of being data members. For example, vec-
tor m MCvect transporting random numbers out from random number generator m PseMar

could be declared locally at every place where m PseMar is called. We opted for a more
“static” structure of the data, with more than necessary of the data members in the class,
at the expense of the human readability of the code, in order to: (a) facilitate the im-
plementation persistency with ROOT (b) gain in the execution speed (c) facilitate the
translation to other languages.

Most of the methods (procedures) of the class TFOAM are listed in the Table 4. We
omitted in this table “setters” and “getters”, which provide access to some data members,
and simple inline functions, like sqr for squaring double variable. Data members which
are served by the setters and getters are marked in Tables 2 and 3 by the superscripts
“s” or/and “g”.

Let us now characterize briefly the role of most important methods of the class TFOAM
in the Foam algorithm.

Initialize

InitVertices InitCells

PeekRandPeekMax Divide

Grow

CellFill Explore

MakeActiveList

Figure 14: Calling sequence of the Foam procedures during the foam build-up (initialization).

4.2.1 Procedures for Foam initialization and foam build-up

The constructor TFOAM(const char*) is for creating an object of the class TFOAM. Its
parameter is the name given by the user to an object. The principal role of this constructor
is to initialize data members to its default values – no memory allocation is done at this
stage. After resetting all kind of steering parameters of the Foam to preferred values (using

36

setters) user is calling Initialize method, which builds up the foam of cells. The two
methods InitVertices and InitCells allocate arrays of vertices and cells (pointers) with
empty cells. The empty cells are allocated/filled using CellFill. Next comes procedure
Grow which loops over cells, picking up most promising cell for the split, either randomly
using PeekRand or deterministically using Peekmax. The chosen cell is split using Divide.
It is, however, the procedure Explore called by Divide (and by InitCells for the root
cell) which does the most important job in the foam build-up – it performs a small MC
run for each newly allocated daughter cell. It calculates how profitable will be the future
split of the cell and defines the optimal cell division geometry with the help of Carver
or Varedu procedures, for maximum weight or variance optimization respectively. All
essential results of the exploration are written into the explored cell object. At the very
end of the foam build-up MakeActiveList is invoked to create list of pointers to all active
cells, for the purpose of quick access during the MC generation. The procedure Explore

uses two procedures MakeLambda and MakeAlpha, which generate randomly (uniformly)
coordinates of the MC points inside a given cell. The above sequence of the procedure
calls is depicted in Fig. 14.

4.2.2 Procedures for MC generation

The MC generation of a single MC event is done by invoking MakeEvent, which is choosing
randomly a cell with the help of procedure23 GenerCell2 and, next, the internal coor-
dinates of the point within the cell using MakeLambda and/or MakeAlpha. The absolute
coordinates of the MC event are calculated and stored in the data member double-precision
vector m MCvect. MC weight is calculated using an external procedure providing the den-
sity distribution ρ(x), which is represented by the pointer m Rho. A class to which the
object m Rho belongs must inherit from the abstract class TFOAM INTEGRAND. The MC
event (double-precision vector) and its weight is available through getters GetMCvect and
GetMCwt. Note that the variables of the hyperrectangular subspace come first in the
m MCvect, before variables of the simplical subspace.

User may alternatively call MCgenerate which invokes MakeEvent and provides MC
event and its weight, all at the same time.

4.2.3 Procedures for finalization and debug

The use of the method Finalize is not mandatory. It prints statistics and calculates
the estimate of the integral using the average weight from the MC run. The amount of
printed information depends on the values of m chat. For the normalization of the plots
and integrals user needs to know the exact value of R′ =

∫
ρ′(x)dx, which is provided by

the method GetIntNorm or Finalize. The actual value of the integrand from the MC
series is provided by GetIntegMC. Note that for the convenience of the user GetIntNorm

provides R′ or MC estimate of R =
∫

ρ(x)dx, depending on whether MC run was with
weighted events or w = 1 events.

23Method GenerCell1 exists, but is not used.

37

Another useful finalization frocedure

GetWtParams(const double eps, double &AveWt, double &WtMax, double &Sigma)

provides three parameters characterizing the MC weight distribution: the average weight
AveWt, the “inteligent” maximum weight WtMax= wε

max for a given value of eps= ε (see
Sect. 6 for its definition) and the variance sigma= σ. In particular, in case of unweighted
events, wε

max can be used as an input for the next MC run.
The Foam program is invoking procedure is CheckAll, which checks correctness of

the pointers in the doubly linked tree of cells (this can take time for large Nc). It can
sometimes be useful for the debugging purpose. Another two methods PrintVertices

and PrintCells can be used at any stage of the calculation in order to print the list of
all cells and vertices. In the case of the two-dimensions there is a possibility to view the
geometry of the cells with a 2-dimensional plot, which is either a LaTeX file produced by
LaTexPlot2dim, or a ROOT file produced by RootPlot2dim.

TCELL member Short description

“Static” members, the same for all cells!
short int m kDim Dimension of hyperrectangular subspace
short int m nDim Dimension of simplical subspace
short int m OptMCell Option of economic memory for usage (hyperrectangular subspace)
short int m OptCu1st =1, Numbering of dims starts with hyperrectangles; =0 simplices
int m nVert No. of vertices in the simplex = m nDim+1
TFCELL **m Cell0 ! Pointer of the root cell
TFVECT **m Vert0 ! Pointer of the vertex list

Linked tree organization
int m Serial Serial number (index in m Cell0)
int m Status Status (active or inactive)
int m Parent Pointer to parent cell
int m Daught0 Pointer to daughter 1
int m Daught1 Pointer to daughter 2

The best split geometry from the MC exploration
double m Xdiv Factor λ of the cell split
int m Best The best edge candidate for the cell split

Integrals of all kinds
double m Volume Cartesian Volume of this cell
double m Integral Integral over cell (estimate from exploration)
double m Drive Driver integral Rloss for cell build-up
double m Primary Primary integral R′ for MC generation

Geometry of the cell
int *m Verts [m nVert] Pointer to array of vertices in simplical subspace
TFVECT *m Posi Pointer to position vector, hyperrectangular subspace
TFVECT *m Size Pointer to size vector, hyperrectangular subspace

Table 5: Data members of the class TFCELL.

38

4.3 TFCELL class

TFCELL is the important class of objects representing single cell of the foam. Data members
of the class are listed in Table 5.

Most of the methods of the TFCELL class are setters and getters. The non-trivial
methods are GetHcub and GetHSize, which calculate the absolute position and size of
hyperrectangles in the algorithm of Section 2.6 and MakeVolume which calculates the
Cartesian volume of the cell. In the simplical subspace volume is a determinant of a
square matrix of the class TFMATRIX.

4.4 Persistency with help of ROOT

C++ language does not provide any built-in mechanism for persistency of the classes.
For this purpose we use ROOT package [10], with help of its “automatic streamers”.
ROOT is a useful C++ library for histograming, organizing large database of identical
objects of the type used in high energy physics experiments. It also provides an efficient
input/output, with compressing capabilities.

Providing full persistency of any type of C++ classes, preserving all structure of the
pointers is probably impossible to realize in general. ROOT can do it, even for pointers,
provided the code is organized in a special way. (No static variable, explicit integer indices
instead of pointers in some places). As a whole, this solution is not very elegant, but
relatively simple and works correctly. In Tables 2 and 3 we have in the beginning of the
description certain characteristic marks which are directives for persistency mechanism of
ROOT, see manual of ROOT [10] for more details.

One has to remember, when reading TFOAM class object from the disk, that the method
LinkCells() has to be invoked in order to reconstruct fully all pointers in the doubly
linked tree of cells. Moreover, any object of the class TFOAM restored form the disk file
will have its internal object for the random number generator and distribution function.
There is a method which provides access (pointer) to these objects, if necessary. The
relevant fragment of the code may look as follows:

TPSEMAR *RNGen= FoamX->GetPseRan(); //get pointer of RN generator

TFDISTR *RHO = (TFDISTR*)FoamX->GetRho(); //get pointer of distribution

It might be useful if, for instance, we want to reinitialize the random number generator
used by the TFOAM class object, which has been read from the disk-file.

Foam can be used with or without ROOT. In the code all parts of the code dependent on
ROOT enclosed in the pair of preprocessor commands #ifdef ROOT DEF ... #endif,
where ROOT DEF variable is defined centrally in the header file ROOT DEF.h. Eliminating
ROOT requires removing this variable and modifying makefile accordingly (the TFHST

class has to be linked). Version without ROOT does not feature persistency, and is
employing its own simple histograming class TFHST instead of the ROOT class TH1D.
ROOT helps also to create documentation of the Foam in the html format. We recommend
to use a version tied up with the ROOT.

39

4.5 Fortran77 version and its limitations

We also provide users with the Fortran77 versions of the Foam. They are two of them at
the development level 2.02 (May 2001) of the algorithm. First one, in which cells can be
simplical, hyperrectangular and the Cartesian product of the two. This version is limited
to dimension five for the simplical subspace and not very useful for large dimensions
(n ≥ 5) in the hyperrectangular space, because it does not feature the memory saving
algorithm of Section 2.6. Another version called MCell (standing for Mega-Cell) features
only hyperrectangular cells, on the other hand, it includes the memory saving algorithm
described in Section 2.6. We recommend the reader to use the version MCell.

Both these version cannot have dynamic memory allocation; they have a maximum di-
mensions of the integration/simulation subspaces (simplical and hyperrectangular) hard-
coded in the source code. Any change of these maximum dimensions requires recompila-
tion of the code.

Present versions in Fortran77 are substantially improved with respect the original
version of ref. [1]. For the option of minimizing the maximum weight they have exactly
the same algorithm (of the cell split) as the C++ version. They feature, however, an older
more primitive version of the algorithm of finding the best cell division for the variance
reduction.

The structure of the programs, naming of procedures and variables, configuration
parameters and their meaning are very similar in F77 and C++ versions. Some differences
in the usage will be indicated in the next Sections.

4.6 Future development

In the following we indicate some of the possible future developments of the Foam package.
As already indicated we do not plan to develope Fortran77 version any further. On the
other hand, it would be interesting to upgrade the existing Foam version 1.x to in JAVA
to the level of the present version 2.x.

As for the C++ version, it would be a logical development to derive class of pseudo-
random number generators TPSEMAR from the common abstract class, and in this way to
define a universal interface for a library of the number generators. We intend to collect
library of a few random number generators with a universal interface (or find one) for the
use in Foam and applications based on it.

Concerning version of Foam adapted to parallel processing, as in Refs. [5, 7–9], we do
not have plans in this direction in the immediate future. Here, we have of course in mind
the use of the true CPU parallelism in the foam of cells build-up. One has to remember
that in the high energy physics applications, which are our main objective, the foam of
cell build-up will be always a tiny fraction of the total CPU time. The main fraction will
be the subsequent MC simulation in which, as the vast experience with the PC-farms in
CERN and FNAL shows, one may organize the MC simulation with the low-level of the
parallelism, with many simulators started with different random seeds, running in parallel
but not communicating – another specialized job is combining all results at the very end

40

of the run. However, the first practical examples of the true parallelism in the massive MC
simulation for the purpose of the high energy physics experiments has already appeared
recently [17].

As already stressed, the main algorithm of Foam is already rather stable and the main
emphasis in its the future development will be on the effort of making it more user friendly,
and better adapted to the use as a part of bigger MC projects. In particular its provisions
for multibranching will become more sophisticated, as more feedback comes from the real
life applications.

5 Usage of the Foam

5.1 Foam distribution directory of the C++ version

The Foam package is distributed together with the demonstration main programs and
some utilities in form of about 20 files in a single UNIX directory FOAM-export-v2.05.
Demonstration runs can be executed using standard make commands as follows:

make Demo-run

make DemoPers

make Demo-map

make DemoNR-run

The essential fragments of the output form make Demo-run are shown in Appendix B. The
compilation and linking procedure is encoded in the Makefile, which has to be checked
by the user if it conforms the local operating system. In particular, if ROOT is used,
then certain paths and environmental variables in the Makefile have to be adjusted. The
use of the ROOT is decided by the presence of the variable ROOT DEF in ROOT DEF.h file.
Without ROOT user should execute make DemoNR-run.

The essential part of the Foam, that is class TFOAM, TFCELL and a few auxiliary classes
are located in the files TFOAM.cxx and TFOAM.h. This is the “core” of the Foam source.
The source code of the other utility classes TFHST, TFMAXWT, TPSEMAR and TFDISTR are in
separate files. The main programs are in files Demo.cxx and DemoPers.cxx. They should
serve as a useful templates for the user’s own application based on Foam.

There is also one Fortran77 source code circe2.f24, which contains certain testing
distribution linked to TFDISTR. The Makefile provides, therefore, also a useful example
of linking C++ and F77 codes.

There are also two output files output-Demo.linux and output-DemoNR.linux, which
the reader may use to check whether he is able to reproduce these benchmark output
results.

24We thank Thorsten Ohl for providing us a preliminary version of this code [18].

41

5.2 Simple example of an application

The very simple example of the use of the Foam may look as follows:

// *** Initialization ***

double MCwt;

TFDISTR *Density1 = new TFDISTR(FunType); // Create integrand function

TPSEMAR *PseRan = new TPSEMAR(); // Create random numb. generator

TFOAM *FoamX = new TFOAM("FoamX"); // Create Simulator

FoamX->SetkDim(3); // Set dimension, h-rect.

FoamX->Initialize(PseRan, Density1); // Initialize simulator

// *** MC Generation ***

TFHST *hst_Wt = new TFHST(0.0,1.25, 25); // Create weight histogram

double *MCvect =new double[3]; // Monte Carlo event

for(long loop=0; loop<1000000; loop++){

MCwt = FoamX->MCgenerate(double *MCvect); // Generate MC event

hst_Wt->Fill(MCwt,1.0); // Fill weight histogram

}

// *** Finalization ***

double IntNorm, Errel;

FoamX->Finalize(IntNorm, Errel); // Print statistics, get normalization

double MCresult, MCerror, AveWt, WtMax, Sigma;

FoamX->GetIntegMC(MCresult, MCerror); // get MC integral

double eps = 0.0005;

FoamX->GetWtParams(eps, AveWt, WtMax, Sigma); // get MC wt parameters

hst_Wt->Print(); // Print weight histogram

The user has to provide the distribution function belonging to the class which has to
inherit from the following abstract class:

class TFOAM_INTEGRAND{ // Abstract class of distributios for Foam

public:

TFOAM_INTEGRAND() { };

virtual ~TFOAM_INTEGRAND() { };

virtual double Density(int ndim, double*) = 0;

};

In the above example the distribution *Density1 belongs to the class TFDISTR, which is
provided in the Foam distribution directory.

5.3 Configuring the Foam

Foam has fourteen principal configuration parameters plus parameters inhibiting and/or
predefining division geometry in the cell split.

42

Param. Value Meaning
nDim 0∗ Dimension of simplical sub-space
kDim 0∗ Dimension of hyperrectangular sub-space
nCells 1000∗ Maximum number of Cells,
nSampl 200∗ No. of MC events in the cell MC exploration
nBin 8∗ No. of bins in edge-histogram in cell exploration
OptRej 0∗ OptRej=0, weighted; =1, w = 1 MC events
OptDrive 2∗ Maximum weight reduction,

1 or variance reduction
OptPeek 0∗ Next cell for split with maximum R′

I (PeekMax),
1 or randomly with probability ∼ R′

I (PeekRan)
OptEdge 0∗ Vertices are NOT included in the cell MC exploration,

1 or vertices are included in the cell MC exploration
OptOrd 0∗ Root cell is hyperrectangular in simplical subspace

1 or root cell is simplex in simplical subspace
OptMCell 1∗ Economic memory algorithm in hyperrectangular subspace is ON,

0 or economic memory algorithm in hyperrectangular subspace is OFF
EvPerBin 25∗ Maximum no. of eff w = 1 events/bin,

0 or counting of no. eff events/bin is inactive
Chat 1∗ =0,1,2 is the “chat level” in the standard output
MaxWtRej 1.1∗ Maximum weight used to get w = 1 MC events

Table 6: Fourteen principal configuration parameters and switches of the Foam program. The
default values are marked with the star superscript.

5.3.1 Principal configuration parameters

All of the principal parameters listed in Table 6 are set to meaningful default values (see
Table), hence, the beginning user may stay ignorant about their role for some time, and
learn gradually later on how to exploit them in order to improve the efficiency of the
Foam. All these parameters are data members of the TFOAM class, see Table. 2. If the user
wants to redefine all of them, then the relevant piece of code will look as follows:

FoamX->SetnDim(nDim);

FoamX->SetkDim(kDim);

FoamX->SetnCells(nCells);

FoamX->SetnSampl(nSampl);

FoamX->SetnBin(nBin);

FoamX->SetOptRej(OptRej);

FoamX->SetOptDrive(OptDrive);

FoamX->SetOptPeek(OptPeek);

FoamX->SetOptEdge(OptEdge);

FoamX->SetOptOrd(OptOrd);

FoamX->SetOptMCell(OptMCell);

FoamX->SetEvPerBin(EvPerBin);

43

FoamX->SetMaxWtRej(MaxWtRej);

FoamX->SetChat(Chat);

In practical applications one will redefine a subset of them. The minimum requirement is
that the user sets nonzero value of nDim or kDim such that the total dimension nDim+kDim

is a non-zero positive number.

5.3.2 Inhibiting cell division in certain directions

If user of Foam decides to inhibit division in certain variable in the hyperrectangular
subspace, then it can be done with the method SetInhiDiv(int iDim, int InhiDiv)

of the class TFOAM, where iDim is the dimension index for which inhibition is done and
InhiDiv is the inhibition tag. This method should be used before invoking Initialize,
after setting nDim and/or kDim. The relevant code may look as follows:

FoamX->SetInhiDiv(0, 1); //Inhibit division of x_1

FoamX->SetInhiDiv(1, 1); //Inhibit division of x_2

The allowed values are InhiDiv=0,1 and the default value is InhiDiv=0. Note that
numbering of dimensions with iDim starts from zero and variables of the hyperrectangular
subspace always come first, before the simplical ones.

5.3.3 Setting predefined cell division geometry

We may predefine divisions of the root cell in certain variable in the hyperrectangular sub-
space using method SetXdivPRD(int iDim, int len, double xDiv[]). The relevant
piece of the user code may look as follows:

double xDiv[3];

xDiv[0]=0.30; xDiv[1]=0.40; xDiv[2]=0.65;

FoamX->SetXdivPRD(0, 3, xDiv);

Again, this should be done before invoking Initialize, after setting nDim and/or kDim.

5.4 Persistency

Persistency of the Foam classes is arranged using “default streamers” of the ROOT [10]
package. Writing TFOAM class object into a disk file rmain.root can be done with the
single Write as follows:

TFile RootFile("rmain.root","RECREATE","histograms");

...

FoamX->Write("FoamX"); //Writing Foam on the disk, TESTING PERSISTENCY!

...

RootFile.Write();

RootFile.Close();

44

The instruction FoamX->Write("FoamX") can be put at any place of the code after the
instruction FoamX->Initialize(...), see example of the user code shown in Section 5.2.

Next, in another program TFOAM class object can be read from the disk file rmain.root
as follows:

TFile fileA("rmain.root"); // connect disk file

fileA.cd();

fileA.ls(); // optional printout

fileA.Map(); // optional printout

fileA.ShowStreamerInfo(); // optional printout

fileA.GetListOfKeys()->Print(); // optional printout

TFOAM *FoamX = (TFOAM*)fileA.Get("FoamX"); // find object

FoamX->LinkCells(); // restore pointers of the binary tree of cells

FoamX->CheckAll(1); // optional x-check of pointers

and at this point FoamX object is ready to generate MC events, as in the MC generation
part of the code shown in Section 5.2.

5.5 Fortran77 versions

The distribution directory FoamF77-2.02-export contains README file, two demonstration
main programs DemoFoam.f and DemoMCell.f to be compiled and run with the help of
commands

make DemoFoam

make DemoMCell

encoded in the Makefile. The outputs from the above runs can be compared with the
benchmark outputs output-DemoFoam-linux and output-DemoMCell-linux.

The basic Foam source files are: FoamA.f with header file FoamA.h and MCellA.f with
header file MCellA.h.

For the description of the input (configuration) parameters see comments in FoamA.f
and MCellA.f respectively. The names of the configuration variables are the same as in
C++ version, except nCells which is renamed to nBuff. Their values and the meaning
are the same.

Demonstration main programs DemoFoam.f and DemoMCell.f can serve as templates
for the user application programs.

The testing main program uses histograming package GLK of the KKMC program [13],
which user may replace with any other histograming package.

6 Numerical studies and example applications

In the following subsection we examine MC efficiency of the Foam in a series of numerical
exercises. In some of them we shall also show examples of the Foam application with the
distributions relevant for everyday practice in the high energy physics.

45

nDim kDim nCalls nCells nSampl wε
max/〈w〉 σ/〈w〉 ∆statist.R R

0 1 203719 1000 333 0.99148 0.014585 1.031e-05 0.99999782
0 1 206192 1000 1000 0.99147 0.014752 1.043e-05 0.99999962
0 1 206192 1000 3333 0.99147 0.014752 1.043e-05 0.99999962
0 1 206192 1000 10000 0.99147 0.014752 1.043e-05 0.99999962
0 1 206192 1000 33333 0.99147 0.014752 1.043e-05 0.99999962
0 3 275421 1000 333 0.50538 0.54088 0.000382 0.99986832
0 3 435112 1000 1000 0.50886 0.54033 0.000382 1.00017104
0 3 663493 1000 3333 0.49922 0.55721 0.000394 0.99934710
0 3 834094 1000 10000 0.50359 0.54674 0.000386 1.00056316
0 3 1015157 1000 33333 0.51091 0.54035 0.000382 0.99983999
0 3 2312759 10000 333 0.72346 0.27758 0.000196 0.99977045
0 3 2675820 10000 1000 0.72677 0.27504 0.000194 0.99995080
0 3 3054404 10000 3333 0.72199 0.27710 0.000195 1.00013270
0 3 3333479 10000 10000 0.72200 0.27720 0.000196 1.00008994
0 3 3575366 10000 33333 0.72243 0.27786 0.000196 0.99997875
0 4 3825046 10000 1000 0.50363 0.51168 0.000361 1.00013082
0 4 6559430 10000 10000 0.50297 0.51001 0.000360 0.99960319
2 2 4493961 10000 1000 0.43076 0.63185 0.000446 1.00072564
2 2 9374351 10000 10000 0.44922 0.60669 0.000429 1.00013171
4 0 6642202 10000 1000 0.21029 1.19420 0.000844 1.00072248
4 0 12337748 10000 10000 0.20817 1.20067 0.000849 1.00020405
0 6 2311881 1000 3333 0.04199 2.12091 0.001499 0.99856206
0 6 5542146 1000 10000 0.03847 2.38588 0.001687 0.99912901
0 6 12844256 1000 33333 0.03279 2.61028 0.001845 0.99799089
0 6 12737314 10000 3333 0.15385 1.15211 0.000814 1.00039754
0 6 24134694 10000 10000 0.15313 1.19596 0.000845 0.99945766
0 6 42827237 10000 33333 0.14168 1.22627 0.000867 0.99954178
0 6 42808972 100000 1000 0.30910 0.71250 0.000503 0.99972833
0 6 61803017 100000 3333 0.30805 0.71462 0.000505 1.00002674
0 6 92531875 100000 10000 0.30905 0.71423 0.000505 0.99985093
0 9 78325890 100000 1000 0.03718 1.64608 0.001163 0.99367339
0 9 167710365 100000 3333 0.05247 1.73063 0.001223 1.00109792
0 9 353943409 100000 10000 0.05196 1.80538 0.001276 1.00196909
0 9 272162624 400000 1000 0.08490 1.30193 0.000920 1.00065580
0 9 495260998 400000 3333 0.09174 1.35307 0.000956 0.99884358
0 9 924011087 400000 10000 0.08853 1.38579 0.000979 1.00052122
0 12 261911066 100000 3333 0 5.83954 0.004129 0.97304842
0 12 671460574 100000 10000 0.00640 3.85823 0.002728 0.98878698
0 12 913072065 400000 3333 0.01285 2.73991 0.001937 0.98688299
0 12 2117963809 400000 10000 0.01235 2.92642 0.002069 0.99301117

Table 7: Numerical results of Foam with the maximum weight reduction. Variable nCalls is
the total number of the function calls in the foam build-up.

46

nDim kDim nCalls nCells nSampl wε
max/〈w〉 σ/〈w〉 ∆statist.R R

0 4 3855289 10000 1000 0.27659 0.31944 0.000225 1.00025027
0 4 7760907 10000 10000 0.30313 0.31483 0.000222 0.99978048
2 2 4589024 10000 1000 0.23086 0.38050 0.000269 0.99967167
2 2 8696153 10000 10000 0.24696 0.37153 0.000262 0.99959278
4 0 6157799 10000 1000 0.08498 0.92314 0.000652 1.00006553
4 0 10547749 10000 10000 0.09881 0.89859 0.000635 1.00024727

Table 8: Numerical results of Foam with the variance reduction.

Figure 15: Testing distribution ρcamel(x) of Ref. [3] in two dimensions.

6.1 Dependence of the Foam efficiency on the configuration pa-
rameters

As a first numerical exercise we examine the dependence of the Foam efficiency on the
most important (input) configuration parameters, including the dimension of the space.

In Table 7 we collect results from many MC runs for various dimensions, number of
cells and number of MC events in single cell exploration, varying also the type of the
cells. We use always the same test distribution ρcamel(x) of Ref. [3] which features two
relatively narrow gaussian peaks placed on the diagonal. The 2-dimensional version of
this distribution is shown in Fig. 15. We have used the non-default values nBin=4 and
EvPerBin=50 and the default values for the other configuration parameters. In this table
all tests were done for the default option of reduction of the maximum weight, OptDrive=2
(for results with OptDrive=1 see next table). The efficiency wε

max/〈w〉 is calculated using

47

maximum weight wε
max defined as in25 Ref. [1] for ε = 0.0005. The maximum weight wε

max

is calculated with help of a small auxiliary class TFMAXWT.
In Table 7 the efficiency of the MC run measured in terms of wmax/〈w〉 and σ/〈w〉.

The value of the integral R ± ∆statist.R, shown in last four columns, was obtained from
the MC run in which the total number of the MC events was 2 × 106. The value of the
integral R is well known, it is equal one, within 10−5.

The following observations based on the results of Table 7 can be made:

• Looking at the results for total dimension n = 4 we see that the hyperrectangular
cells clearly provide better MC efficiency than simlical ones. All other results are
for hyperrectangular cells.

• All of results are consistent with the observation that the MC efficiency depends
critically on the number of cells. In particular, see results for n = 6, the increase of
nSamp (no. of MC events in cell exploration) beyond certain value does not improve
the efficiency at all.

• In the case of the very inefficient Foam, see n = 12 with σ/〈w〉 ∼ 6, the estimate of
the MC statistical error can be misleading. We see an indication, that one should
not trust runs with σ/〈w〉 > 3.

• For this particular testing function the dimension n = 12 requires a minimum of
400k cells and the resulting efficiency of order of 1% is barely acceptable26.

In Table 8 we repeat the exercise of Table 7 for the option of the variance reduction
OptDrive=1 at four dimensions. As compared to Table 7 we see net improvement in the
variance and deterioration of the wε

max. This agrees with the expectations.

Functions at 2-dimens. Foam 1.01 Simpl. H-Rect. VEGAS

ρa(x) (diagonal ridge) 0.93 0.93 0.86 0.03
ρb(x) (circular ridge) 0.82 0.82 0.82 0.16
ρc(x) (edge of square) 0.57 1.00 1.00 0.53

Functions at 3-dimens. Foam 1.01 Simpl. H-Rect. VEGAS

ρa(x) (thin diagonal) 0.67 0.74 0.66 0.002
ρb(x) (thin sphere) 0.36 0.47 0.53 0.11
ρc(x) (surface of cube) 0.37 0.95 1.00 0.30

Table 9: Efficiencies 〈w〉/wε
max for ε = 0.0005. Functions ρx(x) are the same as in Ref. [1].

Results from Foam are for 5000 cells (2500 active cells) and cell exploration is done for a
modest 200 MC events/cell.

25The ε-dependent maximum weight is defined such that events with w > wε
max contribute ε-fraction

to the total integral. It is numerically more stable in the numerical evaluation than the one defined as
the biggest weight in the MC run.

26However, we still get the correct value of the integral within 0.2%.

48

k n Nc Ns Nb
Neff

bin nCall σ
〈w〉

〈w〉
wε

max
R±∆R ∆R/R

1 2 0 1K 1K 4 25 900K 1168.8 0.0 5.40726±1.99871 0.36963
1 0 2 1K 1K 4 25 169K 0.2272 0.6149 3.14121±0.00022 7.1·10−5

2 0 2 1K 1K 4 25 215K 0.2962 0.7754 3.14118±0.00029 9.3·10−5

1 0 2 5K 1K 4 25 656K 0.0639 0.8421 3.14159±0.00006 2.0·10−5

1 0 2 10K 1K 4 25 1174K 0.0487 0.8877 3.14156±0.00005 1.5·10−5

1 0 2 1K 10K 4 25 849K 0.1479 0.5920 3.14118±0.00014 4.6·10−5

1 0 2 5K 10K 4 25 1457K 0.0606 0.8354 3.14150±0.00006 1.9·10−5

1 0 2 1K 2K 8 25 621K 0.0606 0.8354 3.14195±0.00026 8.4·10−5

1 0 2 1K 8K 8 100 1671K 0.1048 0.6652 3.14168±0.00010 3.3·10−5

Table 10: Numerical results of Foam for 2-dimensional distribution of eq. (26) for µ = 10−6.
Variation of the configuration parameters: k =kDim, n =nDim, Nc =nCells (no. of function

calls), Nb =nBin,
Neff

bin
=EvPerBin. In first column we mark the type of the weight optimiza-

tion OptDrive=1,2, for variance or maximum weight reduction. The value of the integral R
and its statistical error ∆R are from MC run of NMC = 107 events. wε

max is for ε = 0.0005.
nCalls is the total number of the function calls in the foam build-up.

6.2 Comparison with Foam 1.x and classic VEGAS

In Table 9 we update the comparison of the Foam and VEGAS of Ref. [1], adding results
for the new hyperrectangular option. The simplical results are now clearly improved with
respect to Ref. [1], because of the better cell division algorithm. Generally, hyperrectan-
gular cell mode provides as good efficiency as simplical one. However, one should keep in
mind that Foam with hyperrectangular cells is factor two or more faster in the execution.

6.3 Example of sharply peaked distribution

In Table 10 we examine the dependence of the MC efficiency/error on the various input
configuration parameters of the Foam. All these numerical results are for the distribution

ρg(x) =
µx2

(x1 + x2 − 1)2 + µ2
, (26)

which, for µ = 10−6, has a very sharp ridge across the diagonal x1 + x2 = 1. This
distribution is taken from Ref. [19] and is related to the photon distribution at high
energy electron-positron colliders.

What can we learn from the results in Table 10? First of all, in first line, we see a
spectacular failure of the Foam with rectangular cells27. The value of the integral is wrong
by factor two and statistical error is underestimated. This illustrates the problem of the
the lack of “angular mobility” of the rectangular cells indicated in Section 2.3. Rectangles
are unable to align with the singularity along the diagonal. This we illustrate in the left
plot of Fig. 16, for rectangular 1000 cells, where we see clearly “blind spots”. In the right

27Setting the no. of the MC events in a single rectangle exploration to 104 cures the problem partly.

49

Figure 16: Rectangular and triangular foam of 1000 cells for the distribution of eq. (26).

plot the triangular foam of cells is clearly aligning with the diagonal ridge. In the rows
2-3 of Table 10 we see the reasonable numerical results for the triangular foam. They
are for the maximum weight reduction and variance reduction options respectively; the
other configuration parameters are rather close to the default ones. In rows 4-5 we are
playing with the increase of the cell number and in the rows 6-7 with the number of
the MC events used in the cell exploration. Finally in rows 8-9 we change binning of the
histograms used in the MC cell exploration. As we see, the most profitable in terms of the
MC efficiency/precision is the increase of the number of the cells, however, adjusting other
parameters can also help. In all cases we show the number of the calls of the distribution
nCalls in the foam build-up. In the best result of the line 5 with 10000 triangular cells
we have obtained 5 digit precision for about 107 function calls28.

Summarizing, we see from the above exercise, that the user of the Foam has a possi-
bility to adjust several configuration parameters, such that the MC efficiency for a given
distribution is improved quite significantly.

6.4 Decay of τ lepton into 3 pions

In Table 11 we collect numerical results for an example of the Foam application to the
very practical problem of the MC simulation of the decay τ → νπ−π+π−, according to
the distribution (matrix element squared) taken from the MC program TAUOLA [20, 21].

The amplitude of the decay process contains two distinct parts due two Feynman
diagrams, see Fig. 17, which have peaks due to a1 resonance and ρ resonance. There
are two peaks due to ρ resonances partly overlapping in the integration space, such that

28In ref. [19] the same precision for the same function was attained for about 108 function calls.

50

MAPPING k n Nc Ns Nb
Neff

bin nCall σ
〈w〉

〈w〉
wε

max
∆R/R SIZE

(a1) OFF 8 0 1 1K 4 25 518 2.1555 0.038 0.00481 15KB
(a2) ON 9 0 1 1K 4 25 218 1.1391 0.115 0.00254 15KB
(b1) OFF 8 0 20 1K 4 25 5767 1.1847 0.130 0.00264 15KB
(b2) ON 9 0 20 1K 4 25 3548 0.7626 0.206 0.00170 15KB
(c0) OFF 0 8 1000 1K 4 25 487K 1.6603 0.085 0.00371 54KB
(c1) OFF 8 0 1000 1K 4 25 145K 0.5298 0.359 0.00118 53KB
(c2) ON 9 0 1000 1K 4 25 125K 0.7626 0.394 0.00104 53KB
(d1) OFF 8 0 5000 1K 4 25 528K 0.4330 0.438 0.00096 209KB
(d2) ON 9 0 5000 1K 4 25 596K 0.4037 0.467 0.00090 209KB

Table 11: Numerical results from Foam simulation/integration for the decay process τ →
νπ−π+π−, according to matrix element squared of the TAUOLA Monte Carlo [20,21] program.
All MC averages are for 200K events generated after Foam initialization with the configuration
parameters given in the table. Notation and the meaning of the quantities are the same as
in previous tables. The size of the ROOT disk-file, in which the Foam object was written is
indicated in the last column.

-τ

τν

-π

-π

+π

1a
0ρ

-τ

τν

+π

-π

-π

0ρ

1a

Figure 17: Feynman diagrams for τ decay into 3 pions.

the actual shape of the differential distribution is rather complicated. We took for this
exercise subroutine DPHTRE of TAUOLA in which nine random numbers29 are replaced by
the nine variables of the Foam. The 4-particle phase space is 8-dimensional. The ninth
variable is due to two branches in the phase space parametrization of TAUOLA, and in
case of the Foam as well (the method is similar to that of Section 2.11). In cases of “no
mapping and no multibranching” we are back to eight dimensions. The variables x1 and
x2 of the Foam represent (up to a linear transformation) the two effective masses of 3π
and 2π system. The next four variables xi, i = 3, 4, 5, 6 are polar variables cos θ and φ
of the pions in the rest frame of the 3π and 2π systems – this is a completely standard

29Including two random numbers of the subroutine SPHERA and two (Euler) angles corresponding to
the overall rotation of the entire event.

51

Figure 18: The distribution of τ → ν3π decay as a function of x1 and x2 (without mapping), fixing
the other variables to some values.

phase space parametrization, see ref. [21], and also Ref. [22]. The variables x7 and x8

are reserved for the overall rotation, and the last one x9 is mapped into branch index,
see Section 2.11. Variables x7 and x8 are inhibited (no cell split in them), because the
distribution does not depend on them. Variable x9 (if present) has a predefined division
value equal 0.5 and is inhibited for the division (see Section 2.11). In Fig. 18 we show the
decay distribution as a function of x1 and x2 (without mapping), fixing the other variables
to some values. The distribution is clearly a non-trivial one.

In Table 11 we show MC efficiency of the Foam for gradually increasing number of the
hyper-rectangular cells, with the mapping compensating for the for Breit-Wigner peaks
of the a1 and ρ resonances (as in Ref. [21]) and without. One example with simplical cells
is also included.

The most striking result in Table 11 is the comparison of lines (a2) and (b1): the Foam
algorithm with only 20 cells is performing equally well as the doubly-branched mapping
compensating for the resonance peaks of the a1 and ρ. When going to higher number of
cells, the MC efficiency in the cases with and without mapping becomes almost the same.
This is expected, because Foam also does the mapping compensating for the resonances
on its own. From the row (c0) we see also that the simplical mode of the Foam is clearly
under-performing. We think that foam with 1000 cells, see row (c1) in Table 11, is an
economic solution for this problem30. (Mapping due to resonances is not really necessary

30The net profit with respect to TAUOLA [20,21] would be three times faster program, and more impor-
tantly, a significantly simpler code.

52

in this case.)

Figure 19: Foam of rectangular cells for the electron-positron beamstrahlung spectrum of
circe2 [18] with 500 cells.

6.5 Beamstrahlung spectrum

Fig. 19 shows foam of rectangular cells for the 2-dimensional beamstrahlung spectrum
D(z1, z2) of the electron-positron collider [23] at 500GeV, encoded in the program circe2

of Ref. [24, 18]. It should be stressed that this spectrum is not known analytically but
rather through a numerical fit to results of the machine simulation or (in the future) from
an experiment. In order to avoid (integrable) infinite singularities at zi = 1 in D(z1, z2)
we use in Fig. 19 variables ti = (1 − zi)

0.1, i = 1, 2. For this exercise we used foam of
500 cells getting the MC efficiency σ/〈w〉 = 0.41 and 〈w〉/wε

max = 0.64, (for ε = 0.0005);
enough for practical application (can be easily improved by adding more cells).

Generating D(z1, z2) is not really so very much important and difficult problem. A
more interesting problem is to generate the distribution D(z1, z2)σ(sz1z2), where σ(s) is
the cross section of some physics process, which may have a strong singularity of its own,
like resonance or threshold factor. Such a problem was already treated with help of Foam
program in KKMC [13] program and the study of Ref. [25].

53

7 Conclusions

The author hopes that this new adaptive tool for constructing efficient MC programs will
find its way to many applications in high energy physics and beyond. Thhe main points
on the new Foam algorithm and the program are the following:

• Foam is a versatile adaptive general purpose Monte Carlo similator.

• Foam algorithm is based on the cellular division of the integration domain.

• Geometry of the “foam of cells” is rather simple, simplical or hyperrectangular cells
are constructed in the process of a binary split.

• It works in principle for arbitrary distribution – no assumption of factorizability as
in VEGAS of Ref. [3].

• Foam is reducing maximum weight of the weight distribution, it can therefore provide
unweighted events. The variance reduction, useful for the integration and generating
weighted events, is also available.

• Memory-efficient coding of cells allows to build up to ∼ 106 cells in the computer
memory of a typical desktop computer.

• The rules for picking up next cell for the division and the division geometry starts
to be relatively sophisticated (projection on edges etc.) This costs CPU time which
becomes the main barrier towards higher MC efficiency.

• Foam can deal efficiently with strongly peaked distribution up to ∼ 12 dimensions,
with todays desktop computers.

8 Acknowledgements

I would like to thank T. Ohl, A. Para, W. P laczek, E. Richter-Wa̧s, F. Tkachov and
Z. Wa̧s for the interesting discussion and R. Brun for help in getting persistency using
ROOT. Support and warm hospitality of the CERN Theory Division and DESY Zeuthen
is kindly acknowledged. The useful assistance of the Parasoft Company in debugging
C++ code (with the Insure++ tool) is also acknowledged.

54

A Variance optimization

Suppose we have already constructed the cells ω1, ω1, . . . , ωN and within each cell we
have defined the function ρ′(x) constant over the cell, ρ′(x) = ρ′I . The integral R′

I =∫
ωi

ρ′(x)dxn = ρ′IVI is known, because the volume of the cell VI is known. The function
ρ(x) is not, in general, constant over the cell and the weight w = ρ(x)/ρ′(x) is used to
determine its integral in the usual way: R = R′〈w〉ρ′ =

∑
I〈w〉ρ′

I
RI , where the average

〈a〉ρ′
I

=
1

R′
I

∫
ωI

ρ′I(x)a(x)dxn

is defined for the I-th cell alone.
The question is now the following: preserving the geometry of the cells, can we get

smaller variance, simply, by changing the probabilities of the generation of the cells?
Rescaling ρ′I → ρ′′I = λIρ

′
I does not affect the integral R, because the change of the

normalization of R′ and 〈w〉ρ′ is cancelling. It is convenient to assume that the above
rescaling preserves R′ = R′′ and the total average weight 〈w〉ρ′ = 〈w〉ρ′′, that is λI obey
the constraint

∑
I R′

I =
∑

I R′
IλI = const. With the above constraint in mind we now ask:

for what values of λI the dispersion of the total weight σ2 = 〈w2〉ρ′′ − 〈w〉2ρ′′ is minimal31.
Since by construction 〈w〉ρ′′ is independent of λI , we may look only for a minimum of
〈w2〉ρ′′ . With the standard methods we get a (local) minimum condition:

∂

∂λI

{
〈w2〉ρ′′ + ΛR′′

}
=

∂

∂λI

{
1

R′
∑

I

∫
ωI

(
ρ(x)

ρ′IλI

)2

ρ′IλIdxn + Λ

(∑
I

R′
IλI

)}
= 0 (27)

where Λ is the Lagrange multiplier. The solution of the minimum condition

R′
I

R′ 〈w2〉ρ′
I

1

λ2
I

− ΛR′
I = 0 (28)

is simply λI ' const×
√
〈w2〉ρ′

I
, or more precisely

λI =

√
〈w2〉ρ′

I∑
J

R′
J

R′

√
〈w2〉ρ′

J

. (29)

The value of 〈w2〉min ≡ 〈w2〉ρ′′ calculated at the minimum, that is for λI of eq. (29), is
also rather simple

〈w2〉min =
∑

I

R′
I

R′ 〈w2〉ρ′
I

1

λ2
I

=

(∑
J

R′
J

R′

√
〈w2〉ρ′

J

)2

=

(〈√
〈w2〉ρ′

J

〉
ρ′

)2

. (30)

31This problem was, of course, often considered in the past, see for instance Refs. [3, 15]. We outline
here the solution for the sake of completeness and convenience of the reader.

55

Let us note that the functional
√〈w2〉min, which we intend to minimize in the process

of the evolution of the foam (cell split) is a simple sum of contributions from all cells.
Consequently, when working out details of the split of a given cell we may calculate the
gain in terms of the total dispersion independently of other cells, see also below. This
very convenient feature is exploited in the algorithm of the foam build-up.

Adopting (temporarily) the following normalization conventions: ρ′I = 1, w = ρ(x)
and R′

I = VI , λI '
√〈ρ2〉

I
, we get

ρ′′I =
√
〈ρ2〉I , R′′

I = VI

√
〈ρ2〉I , (31)

where the average 〈. . . 〉I is understood as defined for points uniformly distributed within
the I-th cell.

In the Foam algorithm we do not go, of course, through a judicious adjustment of the
relative importance of the cells, which minimizes the variance as described above, but
instead, we simply declare that the distribution ρ′(x) is defined by the optimum solution
of eq. (31). Once we have done it, for the MC weight w defined with respect to such a
new ρ′(x), we find out that 〈w2〉I = 1 for each cell, and also for all cells, 〈w2〉 = 1. What
is then minimized in the process of the cell division is the ratio of the variance to the
average weight32

σ2

〈w〉2 =

(
R′

R

)2

− 1. (32)

This quantity is not so convenient to optimize in the process of the cell split (foam
evolution) and we rather chose to minimize a closely related ‘linearized” quantity

Rloss = R

(√
σ2

〈w〉2 + 1− 1

)
=
∑

I

VI(
√
〈w2〉I − 〈w〉I) =

∫
ρloss(x)dxn = R′ −R,

(33)

which is a sum over all cells and is a monotonous ascending function of σ/〈w〉. In the
process of the cell division ωI → ωIa ⊕ ωIb we decrease σ/〈w〉 step by step, by playing
with the geometry of the cell split such that the gain in the total Rloss = R′−R due to a
given cell split is as big as possible. It is convenient that the contributions from the other
cells to Rloss are unchanged. In this way every cell split will lead to a smaller and smaller
σ/〈w〉 in the final MC run.

32We exploit here the relation 〈w〉 = R/R′, and we should keep in mind that R is constant during the
variance minimization.

56

B Output of the demonstration program in C++

FF
F F
F ** F
F ****** TFOAM::Initialize ****** F
F ** F
F FoamX F
F Version = 2.05 = Release date: 2002.02.13 F
F nDim = 0 = Dimension of the simplical sub-space F
F kDim = 2 = Dimension of the hyper-cubical sub-space F
F nCells = 1000 = Requested number of Cells (half of them active) F
F nSampl = 500 = No of MC events in exploration of a cell cell F
F nBin = 8 = No of bins in histograms, MC exploration of cell F
F EvPerBin = 25 = Maximum No effective_events/bin, MC exploration F
F OptDrive = 2 = Type of Driver =1,2 for Sigma,WtMax F
F OptEdge = 0 = Decides whether vertices are included in the MC F
F OptPeek = 0 = Type of the cell Peek =0,1 for maximum, random F
F OptOrd = 0 = Root cell hyp-cub. or simplex, =0,1 F
F OptMCell = 1 = MegaCell option, slim memory for hyp-cubes F
F OptDebug = 1 = Additional debug histogram, SetDirectory(1) F
F OptCu1st = 1 = Numbering of dimensions starts with h-cubic F
F OptRej = 0 = MC rejection on/off for OptRej=0,1 F
F MaxWtRej = 2 = Maximum wt in rejection for wt=1 evts F
F F
FF

FF
F F
F *** TFOAM::Initialize FINISHED!!! *** F
F nCalls = 246799 = Total number of function calls F
F XPrime = 1.2748942 = Primary total integral F
F XDiver = 0.27441356 = Driver total integral F
F MCresult = 1.0004806 = Estimate of the true MC Integral F
F F
FF

57

FF
F F
F ** F
F ****** TFOAM::Finalize ****** F
F ** F
F NevGen = 2000 = Number of generated events in the MC generation F
F LastVe = -1 = Number of vertices (only for simplical option) F
F nCalls = 248799 = Total number of function calls F
F -- F
F AveWt = 0.78836949 = Average MC weight F
F WtMin = 1.3022085e-06 = Minimum MC weight (absolute) F
F WtMax = 1.0227719 = Maximum MC weight (absolute) F
F -- F
F XPrime = 1.2748942 = Primary total integral, R_prime F
F XDiver = 0.27441356 = Driver total integral, R_loss F
F -- F
F IntMC = 1.0050877 +- 0.0052357675 = Result of the MC Integral F
F MCerelat = 0.0052092644 = Relative error of the MC intgral F
F <w>/WtMax = 0.80037512 = MC efficiency, acceptance rate F
F Sigma/<w> = 0.23296539 = MC efficiency, variance/ave_wt F
F WtMax = 0.985 = WtMax(esp= 0.0005) F
F Sigma = 0.1836628 = variance of MC weight F
F F
FF

58

References

[1] S. Jadach, Comput. Phys. Commun. 130 (2000) 244, physics/9910004.

[2] M. Ciesla and M. Slusarczyk, M.Sc thesis at the Institute of the Computer Science,
Jagiellonian University, Kraków, Poland, 2000.

[3] G.P. Lepage, J. Comput. Phys. 27 (1978) 192.

[4] S. Kawabata, Comp. Phys. Commun. 88 (1995) 309.

[5] T. Ohl, Comput. Phys. Commun. 120 (1999) 13, hep-ph/9806432.

[6] G.I. Manankova, A.F. Tatarchenko and F.V. Tkachov, Milxy way: How much better
than vegas can one integrate in many dimensions?, A Contribution to AINHEP-95,
Pisa, Italy, Apr 3-8, 1995 (extended version).

[7] E. de Doncker and A. Gupta, Parallel Computing 24 (1998) 1223.

[8] E. de Doncker, A. Gupta and R. Zanny, Journal of Computational and Applied
Mathematics 112 (1999).

[9] E. de Doncker, K. Kaugars and A. Gupta, User manual of parint1.1,
http://www.cs.wmich.edu/∼parint/.

[10] R. Brun and F. Rademakers, Root - an object oriented data analysis framework,
Proceedings AIHENP’96 Workshop, Lausanne, Sep. 1996, Nucl. Inst., Meth. in Phys.
Res. A 389 (1997) 81-86, See also http://root.cern.ch/.

[11] S. Jadach and W. P laczek, Comput. Phys. Commun. 72 (1992) 221.

[12] M. Boonekamp, (2001), hep-ph/0111213.

[13] S. Jadach, B.F.L. Ward and Z. Was, Comput. Phys. Commun. 130 (2000) 260,
hep-ph/9912214.

[14] S. Jadach, (1999), physics/9906056.

[15] R. Kleiss and R. Pittau, Comput. Phys. Commun. 83 (1994) 141, hep-ph/9405257.

[16] G. Marsaglia, B. Narasimhan and A. Zaman, Comput. Phys. Commun. 60 (1990)
345.

[17] S. Jadach et al., Comput. Phys. Commun. 140 (2001) 475, hep-ph/0104049.

[18] T. Ohl, Circe version 2.0: Beam spectra for simulating linear collider and photon
collider physics, (to be published, code and parametrisations provided by the author
in advance), 2002, WUE-ITP-2002-006.

59

[19] E. de Doncker, R. Zanny and K. Kaugars, Integrand and performance analysis with
parint/parvis, http://www.cs.wmich.edu/∼parint/, 2000.

[20] S. Jadach et al., Comput. Phys. Commun. 76 (1993) 361.

[21] M. Jezabek et al., Comput. Phys. Commun. 70 (1992) 69.

[22] M. Skrzypek and Z. Was, Comput. Phys. Commun. 125 (2000) 8, hep-ph/9904385.

[23] ECFA/DESY LC Physics Working Group, J.A. Aguilar-Saavedra et al., (2001),
hep-ph/0106315.

[24] T. Ohl, Comput. Phys. Commun. 101 (1997) 269, hep-ph/9607454.

[25] G. Blair, Particle masses and widths via threshold scans at the linear collider,
APS/DPF/DPB Summer Study on the Future of Particle Physics (Snowmass 2001),
Snowmass, Colorado, 30 June - 21 July 2001.

60

