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Abstract

A general analysis of polarization phenomena for coherent pion electropro-

duction on deuterons is presented. The spin and isospin structures of the


� + d ! d + P 0 amplitudes (where 
� is a virtual photon) are established

and relationships between meson electroproduction on deuterons and on nu-

cleons are given in the framework of the impulse approximation. The reaction

e+ d! e+ d+ �0 is investigated in detail, for a relatively large value of mo-

mentum transfer, 0.5 GeV2
� �k2 � 2 GeV2, both at threshold and in the

region of �-isobar excitation. Special attention is devoted to the sensitivity

of di�erent contributions to the exclusive cross section for d(e; e�0)d, as the


��! form factor or the NN�potential. The predicted k2-dependence of the

cross section agrees well with the available experimental data.
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I. INTRODUCTION

The reaction 
 + d ! d + P 0, where P 0 is a neutral pseudoscalar meson (�0 or �), is

the simplest coherent meson production process in 
d-collisions. The presence of a deuteron

with zero isospin in the initial and �nal states leads to a speci�c isotopic structure for the

corresponding amplitudes. Moreover, although the spin structure may be, in general, fairly

complex, it is essentially simpli�ed in the near theshold region making the 
+N ! N +P 0

(where N denotes a nucleon) and 
+ d! d+P 0 reactions especially interesting for hadron

electrodynamics studies.

Pion-electropoduction e+d! e+d+�0 is even richer since it involves longitudinal as well

as transverse photons. Experimental information about this process has been missing for a

long time, but such an experiment has recently been performed at MAMI [1] or at Je�erson

Lab. In the last case, with the experimental set-up which has been used to measure the

tensor deuteron polarization in elastic ed-scattering [2], a sample of �0-electroproduction

data were obtained during dedicated runs, [3] at relatively large momentum transfer square

(' 1:1� 1:6 GeV2) in the threshold and in the �-region.

The e+d! e+d+�0 reaction allows to "scan" the isospin structure in the full resonance

region and to separate isovector from isoscalar contributions. Moreover, experiments using

a polarized deuteron target yield a di�erent information compared to measurements of the

polarization of the �nal deuteron.

Another interesting problem of near threshold meson photoproduction on deuterons con-

cerns the isotopic structure of the 
+N ! S11(1535) transition. The results of di�erent mul-

tipole analyses of the 
+N ! N+� reactions have shown that the 
+N ! S11(1535) tran-

sition is essentially isovector [4{7], in agreement with predictions of quark models [8{12]. Ex-

perimental data on 
+p! p+� in the near threshold region [13] indicate that the S11(1535)

excitation is the main mechanism. On the other hand, the amplitude for 
 + d ! d + �

in the near threshold region has to be isoscalar and, therefore, small in contradiction with

earlier data [14] which showed a large cross section. Recent d(
; �) X data [15] have given
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an explanation by showing that this reaction is essentially inelastic.

We derive here a general analysis for pseudoscalar meson electroproduction on deuterons,

based on general symmetry properties of the hadron electromagnetic interaction. A similar

analysis limited to pion photoproduction on deuterons has been �rstly published in [16{18],

where the analysis of di�erent polarization observables has been done searching a sensitivity

to possible dibaryon contributions. A study of polarization phenomena in this reaction

was continued later in refs. [19,20]. Chiral perturbation theory can not be applied to large

momentum transfers, therefore only the s-wave cross section for the process e+d! e+d+�0

has been calculated at very small momentum transfer, up to �k2=0.1 GeV2 [21]. Recently

the process e+ d! e+ d+ �0 has been object of theoretical investigations [22,23].

An adequate dynamical approach to pion electroproduction has to take into account

all previous theoretical �ndings related to other electromagnetic processes on deuteron,

such as elastic ed scattering [24], �0-photoproduction, 
 + d ! d + �0 [25], and deuteron

photodisintegration 
 + d ! n + p [26]. Similarly to these processes, the reaction e + d !

e+d+�0 will face two main problems: the study of the deuteron structure and of the reaction

mechanism, on one side, and the determination of the neutron elementary amplitude on

another side.

Elastic ed-scattering, being the simplest process to access the deuteron structure, has

been considered, for large momentum transfers, a good case to test di�erent predictions of

perturbative QCD, such as the scaling behavior of the deuteron electromagnetic form factors

[27] and the hypothesis of helicity conservation [28]. The analysis of the scaling behavior

should help in de�ning the kinematical region of the transition regime from the meson-

nucleon degrees of freedom to the quark-gluon description of the deuteron structure. In this

respect coherent �0-electroproduction of the deuteron opens new possibilities to study the

scaling phenomena in di�erent regions due to the more 
exible kinematical conditions: it

uni�es the kinematics of elastic ed-scattering, with its single dynamical variable (the mo-

mentum transfer square, k2) and the process of �0-photoproduction, with two independent

dynamical variables (the total energy s and the momentum transfer t from the initial to the
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�nal deuteron). As a result, three kinematical variables drive the process e+d! e+d+�0.

Di�erent mechanisms have a leading role in di�erent kinematical regions.

In order to interpret the �rst experimental data for e + d ! e + d + �0, with small

excitation energy of the produced d�0-system (up to the �-resonance region) but at relatively

large momentum transfer, k2, the starting point of the theoretical analysis is naturally the

impulse approximation (IA). Similarly to previous calculations of elastic ed- scattering and

�0-photoproduction processes, as a further step, contributions of meson exchange currents

(MEC) [29] have to be evaluated in the resonance region, while rescattering e�ects [30{32]

have to be taken into account in the near threshold region. Large disagreements exist, up

to now, in a quantitative evaluation of these e�ects.

The present paper is organized as follows:

a) we �rst establish the spin structure of the matrix element for the 
� + d ! d + P 0

reaction and give a formalism for the description of polarization observables. The depen-

dence of the ~d(e; e0P 0)d di�erential cross section on the polarization characteristics of the

deuteron target is derived in a general form, using a formalism of structure functions (SF),

which is particularly adequate to describe, in the one-photon approximation, the polariza-

tion properties for any e+A! e+ h+A0 process (where A is any nucleus and h is a single

hadron or hadronic system). These structure functions are further expressed in terms of the

scalar amplitudes which parametrize the spin structure of the corresponding electromagnetic

current for the process 
� + d! d+ P 0.

b) using the IA , we give relations between the scalar amplitudes, describing the 
�+d!

d+ P 0 and the 
� +N ! N + P 0 reactions,

c) �nally, we calculate some observables for e+d! e+d+�0 in the framework of the IA

in order to study its sensitivity to the isotopic structure of the 
� +N ! N + �0 processes

near threshold and in the region of � excitation, at relatively large �k2. The numerical

calculations are done for for values of momentum transfer in the range 0.5 GeV2 � �k2 �

GeV2.
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II. GENERAL FORMALISM FOR THE DESCRIPTION OF e+ d! e+ d + P 0

PROCESSES

A. Derivation of the cross section

The general structure of the di�erential cross section for the e+ d! e+ d +P 0 reaction

can be established in the framework of the one-photon mechanism (Fig. 1) by using only

the most general symmetry properties of the hadronic electromagnetic interaction, such

as gauge invariance (the conservation of hadronic and leptonic electromagnetic currents)

and invariance upon mirror symmetry (parity invariance of the strong and electromagnetic

interactions or, in short, P -invariance). The details of the reaction mechanism and the

deuteron structure do not contribute at this step.

The transition matrix element can be written:

M(ed! edP ) =
e2

k2
u(k2)
�u(k1)

D
dP

���Ĵ�

��� dE � e2

k2
`�J�; (1)

`� � u(k2)
�u(k1);J� �
D
dP

���Ĵ�

��� dE ;
where the notations of the particle four-momenta are explained in Fig. 1 and J� is the

electromagnetic current for the transition 
� + d ! d + P 0. Using the conservation of

leptonic and hadronic currents, (k � J = k � ` = 0) one can rewrite the matrix element in

terms of space-like components of currents only :

M =
e2

k2
~e � ~J ; ~e � ~̀� ~k

~k � ~̀
k0

2 ;

where k = (k0; ~k), k0 is the energy, ~k is the three-momentum of the virtual photon in the

CMS of 
�+d! d+P 0. All observables will be determined by bilinear combinations of the

components of the hadronic current ~J : Hab = JaJ �

b . As a result, we obtain the following

formula for the exclusive di�erential cross section in terms of the tensor components Hab:

d3�

dE2d
ed
p

=
�2

64�3
E2

E1

j~qj
M
p
s

1

1� �

X

(�k2) ;

X = Hxx +Hyy + � cos 2' (Hxx �Hyy)� 2�
k2

k0
2Hzz
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�
s
2�(1 + �)

(�k2)
k0

2 [cos' (Hxz +Hzx)� sin' (Hyz +Hzy)] (2)

+� sin 2' (Hxy +Hyx)� �
p
1� �[

p
1 + � (Hxy �Hyx)�

s
2�

(�k2)
k0

2

(sin'(Hxz �Hzx)� cos'(Hyz �Hzy)];

where ��1 = 1� 2~k2Ltg
2
�e

2
=k2 is the polarization of the virtual photon. Here E1(E2) is the

energy of the initial (�nal) electron in the lab system; �e is the electron scattering angle in

the lab; d
e is the solid angle of the scattered electron in the lab system ; d
p and ~q are

respectively the solid angle and three-momentum of the produced P 0-meson in the CMS;

M is the target mass; ~kL is the photon three-momentum in the lab system; � = � 1 for

the two possible initial electron helicities; ' is the azimuthal angle of the scattered electron

with respect to the plane of the reaction 
� + d ! d + P 0. The coordinate system is such

that the z-axis is along ~k and the xz plane is de�ned by ~k and ~q.

The tensor structure of Hab = JaJ �

b (where the line denotes the sum over the �nal

deuteron polarizations) can be written in the following form:

Hab = H
(0)
ab +H

(1)
ab +H

(2)
ab ; (3)

where the indexes (0), (1) and (2) correspond to unpolarized, vector and tensor polarized

initial deuterons, respectively. The �rst term H
(0)
ab can be parametrized as:

H
(0)
ab = m̂am̂bh1 + n̂an̂bh2 + k̂ak̂bh3 +

n
m̂; k̂

o
ab
h4 + i

h
m̂; k̂

i
ab
h5; (4)

with
n
m̂; k̂

o
ab
= m̂ak̂b+m̂bk̂a;

h
m̂; k̂

i
ab
= m̂ak̂b�m̂bk̂a: Here h1 - h5 are the real SF's, which

depend on k2, s and t, ~̂n = ~k� ~q=
���~k � ~q

���, ~̂m = ~̂n� ~̂k, ~̂k = ~k=j~kj. The SF's h1 - h4 determine

the cross section for the reaction e+d! e+d+P 0 with unpolarized particles. The SF h5 (the

so-called \�fth" structure function) determines the asymmetry of longitudinally polarized

electrons scattered by an unpolarized target. This T -odd contribution is determined by the

product of longitudinal and transverse components of the hadron electromagnetic current
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and it is nonzero only for noncoplanar kinematics, ' 6= 0. This contribution is very sensitive

to the details of the �nal state interaction.

The tensorH
(1)
ab is linear in the pseudovector ~S (vector polarization of the initial deuteron)

and can be written in the following general form:

H
(1)
ab = ~̂m � ~S(fm̂; n̂gabh6 + fk̂; n̂gabh7 + i[m̂; n̂]abh8 + i[k̂; n̂]abh9)

+~̂n � ~S(m̂am̂bh10 + n̂an̂bh11 + k̂ak̂bh12 + fm̂; k̂gabh13 + i[m̂; k̂]abh14)

+~̂k � ~S(fm̂; n̂gabh15 + fk̂; n̂gabh16 + i[m̂; n̂]abh17 + i[k̂; n̂]abh18): (5)

So, 13 real SF's h6 - h18 describe the e�ects of the vector target polarization for the exclusive

cross section in the one-photon approximation. The symmetric (antisymmetric) part of H
(1)
ab

determines the scattering of unpolarized (polarized) electrons by a vector-polarized target.

In particular, it is the symmetric part of H
(1)
ab , which induces T -odd asymmetries in the

~d(e; e
0

P 0)d reaction.

The integration of the tensor H
(1)
ab over d
p can be done in the following way, typical for

inclusive polarized electron-hadron collisions 1:

Z
H

(1)
ab d
p = i"abcScw3 + i"abck̂c~S � ~̂kw4 +

�
k̂a

�
~̂k � ~S

�
b

+ k̂b

�
~̂k � ~S

�
a

�
w5:

For the inclusive structure functions w3 - w5 one obtains the following expressions in terms

of integrals of the linear combinations of SF's hi:

w3 =

Z
(�h9 � h14 + h17)d
p;

w3 + w4 =

Z
h17d
p; (6)

w5 =

Z
(h7 � h13)d
p;

i: e: most of the exclusive SF
0

s h6 - h18 do not contribute to the inclusive SF
0

s w3 - w5.

1Note, that for an unpolarized deuteron target the following formula holds:
R
H

(0)
ab d
p = Æabw1 +

k̂ak̂bw2.
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Finally, for the tensor H
(2)
ab , characterizing the e�ects of the tensor target polarization,

it is possible to write the following general expression :

H
(2)
ab = (Qcdm̂cm̂d)(m̂am̂bh19 + n̂an̂bh20 + k̂ak̂bh21 + fm̂; k̂gabh22 + i[m̂; k̂]abh23)

+(Qcdn̂cn̂d)(m̂am̂bh24 + n̂an̂bh25 + k̂ak̂bh26 + fm̂; k̂gabh27 + i[m̂; k̂]abh28)

+(Qcdm̂ck̂d)(m̂am̂bh29 + n̂an̂bh30 + k̂ak̂bh31 + fm̂; k̂gabh32 + i[m̂; k̂]abh33) (7)

+(Qcdm̂cn̂d)(fm̂; n̂gabh34 + fk̂; n̂gabh35 + i[m̂; n̂]abh36 + i[k̂; n̂]abh37)

+(Qcdk̂cn̂d)(fm̂; n̂gabh38 + fk̂; n̂gabh39 + i[m̂; n̂]abh40 + i[k̂; n̂]abh41);

where Qij is a tensor polarization component of the deuteron target, Qii = 0, Qij = Qji, so

the density matrix for the initial deuteron can be written as follows:

D1aD
�

1b =
1

3

�
Æab �

3

2
i"abcSc �Qab

�
: (8)

Therefore, for exclusive reactions like A(e; e)A0h, in the framework of the one-photon

mechanism, the e�ects of the target tensor polarization are characterized by a set of 23 real

SF's, h19 - h41. However the result of the integration of this tensor over the angle d
p of the

P 0-meson reduces its dependence to 5 real structure functions only :

Z
H

(2
abd
p =

�
Qcdk̂ck̂d

� h
w6

�
Æab � k̂ak̂b

�
+ w7k̂ak̂b

i

+Qabw8 +
�
Qak̂b +Qbk̂a

�
w9 + i

�
Qak̂b �Qbk̂a

�
w10; Qa = Qabk̂b:

In summary, the exclusive di�erential cross section for unpolarized electron scattering

in e� + d ! e� + d + P is determined by a set of 28 (40 + 81 + 162 = 28) SF's, where

the indexes 0, 1 and 2 correspond to unpolarized target (0), target with vector (1) and

tensor (2) polarizations. For longitudinally polarized electron scattering there are additional

10+51+72 = 13 SF's. These 41 SF's can be divided alternatively into 5 - describing electron

scattering by an unpolarized deuteron target, 13 - describing the e�ect of the vector deuteron

polarization and 23 - depending on the tensor deuteron polarization. Taking into account

the T-invariance of the electromagnetic interaction of hadrons, we can classify the set of 41
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SF's in 10 + 81 + 72 = 16 T-odd structures and 40 + 51 + 162 = 25 T-even SF, as illustrated

in Table 1.

For inclusive hadron electro-production, the number of SF's reduces to two (w1�w2) for

the unpolarized case, three (w3 � w5), describing deuteron vector polarization e�ects and

�ve (w6 � w10), depending on the tensor polarization.

This analysis takes into account the eventual vector and tensor polarizations of the

target but not the polarization of the produced particles since a summation over the �nal

polarization states has been done. It can be easily generalized to any other polarization

observables such as the recoil deuteron polarization or the spin correlation coeÆcients. A

thorough formal treatment of polarization phenomena can be done in other ways, see, for

example, [22].

B. Amplitude analysis

The next step in this analysis, is to establish the spin structure of the matrix element

for the 
� + d! d+ P 0 reaction without any constraint on the kinematical conditions.

This spin structure of the amplitude can be parametrized by di�erent (and equivalent)

methods, but for the analysis of polarization phenomena the choice of transverse amplitudes

is sometimes preferable. Taking into account the P -invariance of the electromagnetic inter-

action of hadrons, the dependence of the amplitude of 
�+d! d+P 0 on the 
� polarization

and polarization three-vectors ~D1 and ~D2 of the initial and �nal deuterons is given by:

F (
�d! dP 0) = ~e � ~̂m(g1 ~̂m � ~D1~̂n � ~D�
2 + g2~̂k � ~D1~̂n � ~D�

2 + g3~̂n � ~D1 ~̂m � ~D�
2 + g4~̂n � ~D1

~̂k � ~D2

�

)

+~e � ~̂n(g5 ~̂m � ~D1 ~̂m � ~D�
2 + g6~̂n � ~D1~̂n � ~D�

2 + g7~̂k � ~D1
~̂k � ~D�

2 + g8 ~̂m � ~D1
~̂k � ~D�

2 + g9~̂k � ~D1 ~̂m � ~D�
2)

+~e � ~̂k(g10 ~̂m � ~D1~̂n � ~D�
2 + g11~̂k � ~D1~̂n � ~D�

2 + g12~̂n � ~D1 ~̂m � ~D�
2 + g13~̂n � ~D1

~̂k � ~D�
2); (9)

The process 
� + d ! d + P 0 is described in the general case, by a set of 9 amplitudes

for the absorption of a virtual photon with transverse polarization and 4 amplitudes for the
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absorption of a virtual photon with longitudinal polarization. These numbers are dictated

by the values of the spins of the particles and by the P-invariance of hadron electrodynamics.

Taking into account the possible helicities for 
� and deuterons ( in the initial and �nal states)

one can �nd 3 (
�) � 3 (initial deuteron) � 3 (final deuteron) = 27 di�erent transitions

in 
� + d ! d + P 0 and 27 corresponding helicity amplitudes f�
 ;�1;�2, where �i are the

corresponding helicities. Not all these amplitudes are independent, due to the following

relations: f��
 ;��1;��2 = �(�1)�
��1��2f�
 ;�1;�2, which result from the P-invariance. It

is then possible to �nd that f00;0 = 0 and that it remains only 13 independent complex

amplitudes. Therefore the complete experiment requires, at least, the measurement of 25

observables. Let us mention in this respect speci�c properties of polarization phenomena

for inelastic electron-hadron scattering: in exclusive e+d! e+d+P 0 processes the virtual

photon has a nonzero linear polarization, even for the scattering of unpolarized electrons

by an unpolarized deuteron target. Therefore, the study of the '- and �-dependences of

the d(e; eP 0)d di�erential cross section - at a �xed values of the dynamical variables s, t

and k2 - allows, in principle, to �nd not a single, but 4 di�erent quadratic combinations of

scalar amplitudes simultaneously: h1, h2, h3 and h4. The relationships between the structure

functions hi; i = 1� 41, and the amplitudes gk; k = 1� 13, are given in the Appendix.

III. THE 
� + d! d+ P 0 REACTION AT THRESHOLD

A. Derivation of the cross section

The threshold region is de�ned here as the 
� energy region in which P 0-meson production

occurs in a S-state. This region may be wide as it happens in 
+N ! N +� or very narrow

as in 
 + p! p+ �0. This region starts from s = (M +mP )
2
, where mP is the mass of the

produced pseudoscalar meson, but the momentum transfer squared k2 can take any value

in the space-like region (k2 � 0).

For threshold P 0-meson production only one three-momentum, ~k, is present (instead of
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two: ~k and ~q, in the general case) and the full kinematics of the produced hadronic system

is �xed by the kinematical conditions of the scattered electron only, similarly to elastic ed-

scattering. For S-wave production any angular dependence in 
� + d! d + �0 disappears.

The inclusive cross section is obtained by integrating the di�erential cross section (2):

d2�

dE2d
e

=
�2

16�2
E2

E1

j~qj
M
p
s

1

1� �

X(t)

(�k2) ;

X(t) = H(t)
xx +H(t)

yy + �
�
H(t)

xx �H(t)
yy

�
� 2�

k2

k0
2H

(t)
zz �

s
2� (1 + �)

(�k2)
k0

2

�
H(t)

xz +H(t)
zx

�

��
p
1� �

0
@p1 + �

�
H(t)

xy �H(t)
yx

�
+

s
2�

(�k2)
k0

2

�
H(t)

yz �H(t)
zy

�1A ; (10)

where the superscript (t) stands for threshold.

The hadronic tensor H
(t)
ab , for the case of polarized deuteron target, can be written as :

H
(t)
ab =

�
Æab � k̂ak̂b

�
t1
�
k2
�
+ k̂ak̂b t2(k

2) + i"abcSct3(k
2) + i"abck̂c~S � ~kt4(k2)

+
h
k̂a
�
~k � ~S

�
b
+ k̂b

�
~k � ~S

�
a

i
t5(k

2) +

�
~Q � ~̂k

� h�
Æab � k̂ak̂b

�
t6(k

2) + k̂ak̂bt7(k
2)
i

+Qabt8(k
2) +

�
Qak̂b +Qbk̂a

�
t9
�
k2
�
+ i

�
Qak̂b �Qbk̂a

�
t10(k

2): (11)

The quantities ti(k
2), i = 1 - 10, are real structure functions, which are bilinear combi-

nations of threshold electromagnetic form factors which will be de�ned in the next section.

The symmetrical part of the tensorH
(t)
ab determines the di�erential threshold cross section

for the scattering of unpolarized electrons (by polarized and unpolarized deuterons), and the

antisymmetrical part characterizes the scattering of longitudinally polarized electrons.

B. Amplitude analysis

Taking into account the P -invariance of the hadronic electromagnetic interaction, the

following threshold multipole transitions for 
� + d! d+ P 0 are allowed:

E1`; E1t and M2! J P = 1�;
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where J and P are respectively the total angular momentum and parity of the 
�d system.

Therefore, threshold P 0-electroproduction is characterized by two transitions with absorp-

tion of electric dipole virtual photons (with longitudinal ` and transverse t polarizations) and

one transition with absorption of magnetic quadrupole (transverse only) virtual photons.

The threshold amplitude of the process 
� + d ! d + P 0 can be parametrized in the

following way:

Fth =

�
~e � ~D1 � ~D�

2 � ~e � ~̂k ~D1 � ~D�
2 � ~̂k

�
f1t(k

2) (12)

+~e � ~̂k ~D1 � ~D�
2 � ~̂kf1l(k2)

+

�
~e� ~̂k � ~D1

~̂k ~�D�
2 + ~e� ~̂k ~�D�

2
~̂k � ~D1

�
f2(k

2);

where ~e is the polarization of the virtual 
-quantum.

The form factor f1t(k
2) [f1`(k

2)] describes the absorption of electric dipole virtual photons

with transverse [longitudinal] polarization and the form factor f2(k
2), the absorption of a

magnetic quadrupole 
-quantum. They have the same fundamental meaning as the elastic

electromagnetic form factors of the deuteron.

Generally they are complex functions of k2, due to the unitarity condition (Fig. 2) in

the variable s ( with a n+p system in an intermediate state with both nucleons on the mass

shell). But their relative phases have to be equal to 0 or �, as a result of T -invariance of

hadron electrodynamics (theorem of Christ and Lee [33]). In general, they depend also on

the s variable, so that fi(k
2)! fi(k

2; s).

In order to have a full reconstruction of the spin structure for 
� + d ! d + P 0,

polarization measurements are necessary. A simple one is the tensor polarization of the

scattered deuteron (or the tensor analyzing power using a polarized deuteron target).

After summing over the polarization states of the �nal deuterons the following expressions

can be obtained for the threshold SF
0

s t1 - t10 in terms of the electromagnetic threshold

form factors f1t(k
2), f1`(k

2) and f2(k
2) :

3t1(k
2) = 2

����f1t(k2)���2 + ���f2(k2)���2
�
;
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3t2(k
2) = 2

���f1`(k2)���2 ,

t3(k
2) = �1

2
Re f1`(k2)

�
f1t(k

2) + f2(k
2)
�
�

;

t4(k
2) = �1

2

���f1t(k2)� f2
�
k2
����2 + 1

2
Re f1`

�
f1t(k

2) + f2(k
2)
�
�

;

t5(k
2) = �1

2
Im f1`(k

2)
�
f1t(k

2) + f2(k
2)
�
�

;

3t6(k
2) = �4Re f1t(k2)f �2

�
k2
�
;

3t7(k
2) =

���f1t(k2)� f2(k
2)
���2 � 2Re f1`(k2)

�
f1t(k

2) + f2(k
2)
�
�

;

3t8(k
2) =

���f1t(k2)� f2(k
2)
���2 ;

3t9(k
2) = �

���f1t(k2)� f2(k
2)
���2 +Re f1`(k2) �f1t(k2) + f2(k

2)
�
�

3t10(k
2) = �Im f1`(k

2)
�
f1t(k

2) + f2(k
2)
�
�

. (13)

This a strong simpli�cation compared to the 41 real SF's, depending on 13 complex ampli-

tudes, which are necessary in the general case.

The SF t5(k
2) is related to the asymmetry of unpolarized electrons scattered by a vector

polarized deuteron target (with polarization orthogonal to the electron scattering plane),

while the SF h10(k
2) is related to the asymmetry of longitudinally polarized electrons scat-

tered by a deuteron target with tensor polarization. These two SF
0

s are determined by the

interference of the longitudinal (f1`(k
2)) and both transverse (f1t and f2) form factors of the

threshold transition 
� + d! d + P 0. They de�ne the T-odd polarization observables and

must vanish if the relative phase of the longitudinal and transverse form factors is equal to

0 or � [33]. A dedicated experiment at SLAC [34] for the search of T-odd asymmetry of

unpolarized electrons (and positrons) by a polarized proton target - with negative result -

remains the best test of T-invariance in hadron electrodynamics (at moderate energies). No

similar experiments have been done with a polarized deuteron target but an attempt [35] to

detect a nonzero vector deuteron polarization in elastic ed-scattering has been tried, with a

negative result too.
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From the expressions, obtained for the SF
0

s in terms of the corresponding threshold form

factors, one can �nd an optimal strategy for performing a full experiment on P 0-meson elec-

troproduction on deuteron near threshold. One must �rst perform a Rosenbluth separation

for the di�erential cross section of unpolarized electron scattering by an unpolarized target,

which allows to �nd the structure functions t1(k
2) and t2(k

2). These SF
0

s determine the

total cross sections for the absorption of virtual photons with transverse and longitudinal

polarizations. It is straightforward then to deduce, from the longitudinal structure func-

tion t2(k
2), the k2-dependence of the form factor f1`(k

2) - for absorption of electric dipole

longitudinal virtual photons.

The transverse structure function t1(k
2) contains the contributions of both transverse

electromagnetic form factors, namely jf1tj2 and jf2(k2)j2. If we interchange the transverse

and longitudinal structure functions, we have a situation similar to elastic ed-scattering :

for elastic ed-scattering the transverse structure function contains only the contribution of

the magnetic form factor, so its k2-dependence can be found directly (after a Rosenbluth

�t), but the longitudinal structure function contains the contributions of the charge and

quadrupole electromagnetic form factors of deuteron. To separate these contributions it is

necessary to measure the tensor polarization of scattered deuterons or the tensor analyzing

power [36]. From this we can conclude that the measurement of the tensor polarization

of the �nal deuteron in e + d ! e + d + P 0 near threshold, will allow to separate the

contributions due to f1t(k
2) and f2(k

2).

This procedure, however, does not give the sign of the threshold form factors. For elastic

ed-scattering, using the well known values of the static electromagnetic characteristics of

the deuteron : its electric charge, magnetic and quadrupole moments, it is possible to

extrapolate the sign step by step for any values of the momentum transfer square k2. We

can use the same method for 
� + d ! d + P 0, using at k2 = 0 the signs of the amplitude

for 
 + d ! d + P 0 which can be deduced, in principle, from the signs of the threshold

amplitudes for the elementary processes 
 +N ! N + P 0.
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We can also �nd the sign of the f1t(k
2), f1`(k

2) and f2(k
2) form factors at any value k2

by using their relation with the form factors of the 
�+N ! N +P 0 reactions at threshold.

The matrix element for S-wave P 0-meson production on a nucleon can be parametrized in

terms of two form factors, namely :

F(
�N ! NP 0) = �+
2 [(~� � ~e� ~e � ~̂k ~� � ~̂k)ft(k2) + f`(k

2)~e � ~̂k ~� � ~̂k]�1; (14)

where �1 and �2 are the two component spinors of the initial and �nal nucleons ; ft(k
2) and

f`(k
2) are the threshold electromagnetic form factors, corresponding to the absorption of

electric dipole virtual photons with transverse and longitudinal polarizations. At k2 = 0,

f`(0) = 0 and ft(0) = E0+ is the threshold electric dipole amplitude for 
 + N ! N + �

(with real photons).

In the framework of the IA (Fig. 3) the form factors f1t(k
2), f1`(k

2) and f2(k
2) for


� + d! d+ P 0 can be directly related to the form factors f`(k
2) and ft(k

2) for 
� +N !

N + P 0.

IV. IMPULSE APPROXIMATION

The most conventional starting point of possible mechanisms for pion electroproduction

on the deuteron is the IA. This is, for example, the main mechanism in the region of �-

excitation, where the rescattering e�ects for 
 + d! d+ �0 are negligible [30,31]. A special

attention has to be devoted to the threshold region, for 
(
�) + d ! d + �0, in particular

for pion electroproduction in S-state where the rescattering e�ects may play an important

role. Nevertheless, it is possible to show, in a model independent way, using only the Pauli

principle, that the main rescattering contribution due to the following two step process:


 + d ! p + p + ��(and n + n + �+) ! d + �0 vanishes, when the two nucleons in the

NN�-intermediate state are on mass shell. We plan to discuss this problem in a separate

paper.
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A. Relationship between the 
� + d! d+ P 0 and 
� +N ! N + P 0 amplitudes

In the framework of IA (Fig. 3), the matrix element M(
�d ! dP 0) for the 
� + d !

d + P 0 process can be written:

M = 2

Z
d3~pT r'+

�����~p+ 1

4
~Q

����
�
F̂'

�����~p� 1

4
~Q

����
�
; (15)

~Q = ~k � ~q; 2~p = ~p1 � ~p2 +
1

2
~Q;

where ~P1 = ~p1+ ~p2, ~P2 = ~p1
0

+ ~p2 , and ~k+ ~p1 = ~q+ ~p1
0

(the notation is explained in Fig. 3),

F (
N ! NP 0) = �+
2 F̂ �1;

F̂ =
�
~� � ~K + L

�
=2 (16)

and ~K, L are the spin-dependent and spin-independent contributions to the matrix F̂ .

For the deuteron wave function we shall use the following representation, which takes

into account the S- and D-waves in the np-system :

'(~p) =
1

(2�)
3

2

Z
d3~re�i~p~r'(r); (17)

'(r) =
1p
4�

2
4~� � ~Du(r)

r
+
w(r)p
2r

0
@3~� � ~r ~D � ~r

r2
� ~� � ~D

1
A
3
5 i�2p

2
;

where u(r) and w(r) are the standard wave functions of the S- and D-states in deuteron.

Expression (15) is particularly convenient to establish the spin structure of the amplitude

of the 
� + d! d+P 0 process. Since in general the amplitudes ~K and L (for the processes


� + N ! N + P 0) depend on the integration momentum ~p in (15), the wave functions

u and w of the initial and �nal deuteron will not depend on the same variable. Indeed,

due to the nonlocality of 
�N ! NP 0 vertex, the coordinates ~r and ~r
0

of the initial and

�nal deuterons do not coincide. However, choosing the ~K and L amplitudes at a particular

value of the internal momentum ~p1, F̂ can be taken outside the integration symbol. This

allows to express the quantityM in terms of a de�nite combination of deuteron form factors,

multiplied by the isovector (isoscalar) amplitudes for the 
�+N ! N+�0 (
�+N ! N+�)

reaction (factorization hypothesis).
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This procedure is usually justi�ed by a rapid fall-o� of '(j~p)j when j~pj increases and by

a (relatively) weak dependence of the ~K and L amplitudes on j~pj [16].

Let us discuss shortly how to determine the most suitable nucleon Fermi momentum.

It is natural to compare the 
� + d ! d + P and 
� + N ! N + P amplitudes at the

same values of two variables, namely k2 and t. The choice is still open for the variable

s = (k + p1)
2. The simplest prescription - to set s1 = m2 + k2 + 2mk0 (where m is the

nucleon mass and k0 is the virtual photon energy in lab system of 
�d-collisions) - does not

work. Indeed, when both nucleons in the reaction 
 + N ! N + P are on the mass shell,

then for a given value k0; the intervals of t-variation in the reactions 
 +N ! N + P and


 + d ! d + P are not the same : in order to realize for 
 + N ! N + P the interval

of t-variation, characteristic for 
� + d ! d + P; it is necessary to go outside the physical

region in cos �� (namely, jcos ��j > 1), (where �� is the angle between the momenta 
� and

P in the CMS of the reaction 
 +N ! N + P:) This diÆculty can be avoided increasing

correspondingly the value of the variable s1 which is favoured by the Fermi-motion of the

nucleons in the deuteron.

This prescription, obviously, does not give a unique value for the momentum ~P1. How-

ever, the condition that both nucleons for the process 
� + N ! N + P are on mass shell,

leads to the following relation between the components P1x and P1z (in case of real photon

with k2 = 0) :

P1z (AQz � BQ0) =2
�
Q2

0 �Q2
z

�
; Q0 = k � !; Qz = k � q cos �;

A = Q2 + 2P1xQx; B2 = A2 + 4
�
Q2

x �Q2
0

� �
m2 + P 2

1x

�
; (18)

where � is the angle between the momenta of 
 and P in the CMS of 
 + d! d+ P , and

! is the P-meson energy in this system.

Let us remind that the xz plane is chosen as the plane of the reaction 
+d! d+P; the

z axis is directed along the momentum of the 
; and all the momenta lie in the xz plane.

The component P1x will be �xed by one of the conditions :

P1x = 0; (19)
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P1x = q sin �=2; (20)

P1x = q sin �=4: (21)

Using Eq. 18, one can �nd the corresponding value of P1z:

The momenta, de�ned by Eqs. (19-21), lie in the kinematical region which gives the

largest contribution to the matrix element of the 
 + d ! d + P process (the presence of

such region is due to the fact that the deuteron wave function falls o� rapidly with the

increasing of Pi or Pf -corresponding arguments of initial and �nal deuteron wave functions).

In the literature another choice of ~P1 has been used (more simple than (18)) :

~P1 = �~k=2; (22)

~P1 = �3~k

4
+
~q

4
(23)

The choice (22) corresponds to minimum of Pi, and the choice (23) to Pi = Pf : Of

course, in the general case the I.A. 
+ d! d+P 0 amplitude should be determined by the


 +N� ! N� +P amplitudes, with two virtual nucleons N�, mi 6= mf 6= m. However, such

amplitudes are not known yet.

In our calculation we will use the CMS of the virtual photon and the participant nucleon

NP , so that ~k + ~p1 = 0, considering the e�ective mass W of the 
�NP -system and the pion

production angle in 
� +NP ! � +N as the arguments of the elementary amplitudes 2.

After some transformations, Eq. (15) becomes:

M(
�d! dP 0) = ~D1
~D�
2L̂F1( ~Q2) + 2

�
3 ~D1 � ~̂Q ~D�

2 � ~Q� ~D1 � ~D2

�
L̂F2( ~Q2)

+i ~̂K � ~D1 � ~D�
2

�
F3( ~Q2) + F4( ~Q2)

�
� 3i ~̂K � ~̂Q ~̂Q � ~D1 � ~D�

2F4( ~Q2); (24)

2The analysis of the sensitivity of the di�erent observables for the process 
 + d! d+ �0 to the

di�erent choices of ~p1 can be found in [16]
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with ~̂Q =
�
~k � ~q

�
=j~k � ~qj, where ~̂K and L̂ are the values of ~K and L for a de�nite value of

~p1 (see below).

The generalized deuteron form factors Fi( ~Q2) are de�ned by :

F1( ~Q2) =

Z
1

0
dr j0

�
Qr

2

� h
u2(r) + w2(r)

i
;

F2( ~Q2) =

Z
1

0
dr j2

�
Qr

2

� "
u(r)� w(r)p

8

#
w(r);

F3( ~Q2) =

Z
1

0
dr j0

�
Qr

2

� �
u2(r)� 1

2
w2(r)

�
; (25)

F4( ~Q2) =

Z
1

0
dr j2

�
Qr

2

�"
u(r) +

1p
2
w(r)

#
w(r);

j0(x) =
sin x

x
; j2(x) = sinx

�
3

x3
� 1

x

�
� 3

cos x

x2
:

The combinations of the deuteron wave functions u(r) and w(r) in Fi( ~Q2) de�ne the charge,

the magnetic and quadrupole form factors of the deuteron. The fourth form factor F4 in

Eqs. (25) is associated with a nonconservation of the current of the transition d! d + �0,

due to the speci�c structure of the triangle diagram contribution.

The calculated form factors, Fi( ~Q2), using Bonn [40] and Paris [41] deuteron wave func-

tions, are shown in Fig. 4.

The quantity ~Q2 characterizes the value of the four-momentum transfer squared t in the


� + d! d+ P 0 reaction,

t = (k � q)2 = 2M

�
M �

q
M2 + ~Q2

�
;

so that t � � ~Q2, when
���~Q����M .

Obviously, the structure of the 
� + d ! d + P 0 amplitude, Eq. (24), is not the most

general one, even in the case of arbitrary values of ~K and L and deuteron form factors Fi( ~Q2).

Let us consider �rst the general spin structure of the amplitude for 
�+N ! N+P 0 process :

M(
�N ! N�) = �y2F�1;

F = i~e � ~̂k � ~̂qf1 + ~� � ~ef2 + ~� � ~̂k ~e � ~̂qf3 + ~� � ~̂q ~e � ~̂qf4 (26)
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+~e � ~̂k(~� � ~̂kf5 + ~� � ~̂qf6);

where fi = fi(s1; t; k
2) are the scalar amplitudes for 
� +N ! N + P 0, so that

L = if1~e � ~̂k � ~̂q;

~K = ~e � f2 + ~̂k

�
~e � ~̂qf3 + ~e � ~̂kf5

�
+ ~̂q

�
~e � ~̂qf4 + ~e � ~̂kf6

�
: (27)

Comparing the expression (24) for the amplitude M(
�d ! dP 0) in IA with the general

spin structure of the amplitude one can establish a de�nite connection between both sets of

scalar amplitudes, namely gi, i = 1�13, for 
�+d! d+P 0 (on one side) and fk, k = 1�6,

for 
� +N ! N + P 0 (on another side). Their exact relations are given below:

g1 = �g3 = sin �(f3 + cos �f4)
�
F3

�
~Q2
�
+ F4

�
~Q2
��

�3Qk (Qmf2 +Qk sin �f3 +Qq sin �f4)F4

�
~Q2
�
;

g2 = �g4 = �(f2 + sin2 �f4)
�
F3

�
~Q2
�
+ F4

�
~Q2
��

+3Qm (Qmf2 +Qk sin � +Qq sin �f4)F4

�
~Q2
�
;

g5 = sin �f1
h
F1

�
~Q2
�
+ 2F2

�
~Q2
� �

3Q2
m � 1

�i
;

g6 = sin �f1
h
F1

�
~Q2
�
� 2F2

�
~Q2
�i
;

g7 = sin �f1
h
F1

�
~Q2
�
+ 2F2

�
~Q2
� �

3Q2
k � 1

�i
;

g8 = 6 sin �QmQkf1F2

�
~Q2
�
� f2

�
F3

�
~Q2
�
+ F4

�
~Q2
��

;

g9 = 6 sin �QmQkf1F2

�
~Q2
�
+ f2

�
F3

�
~Q2
�
+ F4

�
~Q2
��

;

g10 = �g12 = (f2 + f3 cos � + f4 cos
2 � + f5 + f6 cos �

�
F3

�
~Q2
�
+ F4

�
~Q2
��

�3Qk[Qk(f2 + f3 cos � + f5) +Qq(cos �f4 + f6)]F4

�
~Q2
�
;

g11 = �g13 = � sin �(cos�f4 + f6)[F3

�
~Q2
�
+ F4( ~Q

2)] + 3Qm[Qk(f2 + cos �f3 + f5) +

Qq(cos �f4 + f6)F4

�
~Q2
�
;

where Qm = ~̂Q � ~̂m, Qk = ~̂Q � ~k, Q2
m +Q2

k = 1, Q2
m = sin2 �

~q2

j~k � ~qj2
, and � is the P 0-meson

production angle in CMS of 
� + d! d+ P 0 process.
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Note that the relations g1 + g3 = g2 + g4 = g10 + g12 = g11 + g13 = 0; which are correct

for any amplitude fk, result from the factorization hypothesis.

Neglecting the D-wave contribution, we can predict that the following ratios:

�
H(0)

xx �H(0)
yy

�
=
�
H(0)

xx +H(0)
yy

�
0
=
�
jf3j2 + jf4j2 � jf1j2 � jf2j2

�
=
�
jf1j2 + jf2j2 + jf3j2 + jf4j2

�
;

�
H(0)

zz

�
=
�
H(0)

xx +H(0)
yy

�
0
=
�
jf5j2 + jf6j2

�
=
�
jf1j2 + jf2j2 + jf3j2 + jf4j2

�
; (28)

which do not depend on deuteron form factors and therefore on the deuteron structure.

V. MODEL FOR 
� +N ! N + �0

In order to calculate the scalar amplitudes gi; i = 1�13, for the 
�+d! d+�0 process

in framework of IA , it is necessary to know the ~Q2-dependence of the deuteron form factors

Fj(Q
2); j = 1 � 4, from one side, and the elementary amplitudes fk; k = 1 � 6, for the

process 
� +N ! N + �0, from another side. In order to calculate the isovector part of the

amplitudes fk for 
� + N ! N + �0, we shall use the e�ective Lagrangian approach-with

a standard set of contributions (Fig. 5). Such approach [42] has successfully reproduced

the experimental data [43], for the process e + p! e + p + �0 in the following kinematical

conditions: 1:1 � W � 1:4 GeV and �k2 = 2:8 and 4.0 GeV2, in the whole domain of

cos #� and azymuthal angle �. The main ingredients of this calculation were the s- and

u-channel contributions of N and �, with particular attention to the 'o�-shell' properties

of the ��isobar. The comparison with the experimental data allowed to determine the

following values of the electromagnetic form factors for the 
� + p! �+ transition:

G�

M=3Gd; Gd = (1� k2=0:71 GeV2)�2; REM = E1+=M1+; RSM = S1+=M1+;

whereM1+; E1+ and S1+ denote the magnitude of the magnetic dipole, electric (transversal)

quadrupole and Coulomb (longitudinal) quadrupole amplitudes or transition form factors

for the 
� +N ! � excitation. In our analysis we will use the two following results of the

experiment [43]:
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� The magnetic dipole form factor G�

M(k2) dominates, i.e. the ratios REM and RSM are

small (in absolute value);

� The magnetic dipole form factorG�

M decreases with�k2 faster than the dipole formula.

We parametrize the inelastic magnetic form factor G�

M(k2) � G(k2) for the N ! �

electromagnetic transition with the help of the following formula:

G(k2) =
G(0)Gd(k

2)

(1� k2=m2
x)
:

Using the last experimental data about the ratio G(k2)=3Gd we �nd m2
x = 5:75 GeV2, in

agreement with previous estimates [44].

Note in this connection, that the new JLab data [45] about the electric proton form

factor GEp(k
2) show also a deviation from the dipole formula, with a similar value of the

parameter mx.

In order to calculate the amplitudes fi, i = 1; ::6, for the elementary processes e�+N !

e� + N + �0, N = p or n, we will use a model similar to [46] but with the following

modi�cations:

� we introduce a term describing the exchange of !-meson in the t�channel;

� the s-channel contribution of the � isobar is parametrized in such a form to avoid any

o�-mass shell e�ects (such as the admixture of 1=2� or 3=2� states).

� the u�channel of the ��isobar is neglected.

In order to justify the last option, let us note the essential di�erence between the

u�channel contributions of N and �. The necessity to introduce the u-channel contri-

bution from the proton exchange in the process 
� + p ! p + �0 is dictated by the gauge

invariance of the electromagnetic interaction. As a byproduct, it derives the crossing sym-

metry for the resulting s + u proton exchange. In case of �-exchange, there is a di�erent

situation with respect to the above mentioned symmetry properties: the gauge invariance

and the crossing symmetry. Due to the non-diagonality of the electromagnetic transition
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� + N ! �, it is possible to parametrize this vertex in a gauge invariant form indepen-

dently from the virtuality of the �. Therefore, the �-contribution only in the s-channel, is

gauge invariant, independently from the u-channel �-contribution. This means that for the

�-contribution there is no direct connection between the gauge invariance and the crossing

symmetry, as for the proton exchange. Moreover, even the �-contribution in s� and u-

channels simultaneously will not induce crossing symmetry. Namely due to the presence of

the �-pole in the physical region of s-channel, it is necessary to introduce the ��width in

the corresponding propagator- with resulting complex amplitudes, whereas the u�channel

�-contribution is characterized by real amplitudes. It turns out that we do not have exact

crossing symmetry for the �-contributions, even for the sum of u-and s diagrams with �-

exchange. An exact calculation of the u-channel �-contribution can be found in [42]. Such

calculation involves 3 o�-mass-shell parameters which can not be predicted by theory, start-

ing from a composit model of hadrons. They show a large dependence on the unitarization

method, and are strongly correlated. Their determination from experimental data can not

be done uniquely. Moreover, the experimental data on 
p ! p�0 in the �-region show an

angular dependence according to a 5� 3 cos2 �-distribution, which indicates a predominnce

of the s-channel contribution.

Therefore we will consider only the s� channel �-contribution. In order to avoid prob-

lems with o�-mass shell e�ects, we write the matrix element for the �-contribution follow-

ing the two-component formalism for the description of the spin structure of both vertices,

�! N + � and 
� +N ! �. Therefore we can write:


 +N ! � : ~e� ~k � ~�yI�1; M1 transition, only!

�! N + � : �y2I~� � ~q;

where I is the identity matrix. Each component of the vector ~� is a 2-component spinor,

satisfying the condition ~� � ~� = 0, in order to avoid any spin 1/2 contribution. Using for the

� density matrix the following expression:

�ab =
2

3
(Æab �

i

2
�abc�c);

24



we can write the matrix element for the �-contribution in the CMS of 
�+N ! N + �0 as

follows:

M� =
eG(k2)j~qj

M2
� � s� i��M�

�
y

2(2i~e � ~̂k � ~̂q + cos#�~� � ~e� ~� � ~̂k~e � ~̂q)�1

q
(E1 +m)(E2 +m);

(29)

where M� (��) is the mass (width) of �.

The following � contributions to the scalar amplitudes, fi�; i = 1� 6, can be derived:

f1� = 2�(s; k2);

f2� = cos#��(s; k
2);

f3� = ��(s; k2); (30)

f4� = f5� = f6� = 0;

where we use the notation:

�(s; k2) =
G(k2)j~qj

M2
� � s� i��M�

:

The normalization constant G(0) can be deduced from the value of the total cross section

for the reaction 
 + p! p+ �0 (with real photons) at s =M2
�:

�T (
p! p�0) =
�

2
G2(0)

j~qj3

j~kj
(E1� +m)(E2� +m)

M4
��

2
�

;

where

E1� =
M2

� +m2

2M�

; E2� =
M2

� +m2 �m2
�

2M�

;

j~kj = M2
� �m2

2M�

; j~qj =
q
E2

2� �m2:

Using the spin structure of the resonance amplitude (29), we obtain the following structure

for the resonance contribution to the matrix element of the process 
� + d! d+ �0:

M�(

�d! d�) =

1

2
�(s; k2)

�
2 sin �~e � ~̂n

�
F1

�
~Q2
�
~D1 � ~D2

�

+ F2

�
~Q2
�
(3 ~D1 � ~̂Q ~D2

� � ~̂Q� ~D1 � ~D2

�

)

�
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+

��
~e � ~̂m ~̂m � ~D1 � ~D2

�

+ ~e � ~̂n ~̂n � ~D1 � ~D2

�
�
cos � � ~e � ~̂q ~̂k � ~D1 � ~D2

�
� �
F3

�
~Q2
�
+ F4

�
~Q2
��

�3 cos �F4

�
~Q2
�
~e � ~̂m ~̂Q � ~D1 � ~D2

�

Qm + 3F4

�
~Q2
�
~e � ~̂q ~Q � ~D1 � ~D2

�

Qk

�
:

Taking into account only the S-wave component of the deuteron wave function it is possible

to predict the �� dependence for the simplest polarization observables for 
� + d! d+ �0:

�
H(0)

xx �H(0)
yy

�
=
�
H(0)

xx +H(0)
yy

�
= �3 sin2 �

3� 2 cos2 �
; H(0)

xz = H(0)
zz = 0:

and in the case of tensor polarized deuterons :

�
H(2)

xx +H(2)
yy

�
=
�
H(0)

xx +H(0)
yy

�
0
= �Qzz

cos2 �

4 (3� 2 cos2 �)
;

�
H(2)

xx �H(2)
yy

�
=
�
H(0)

xx +H(0)
yy

�
0
= (Qxx �Qyy)

cos2 �

4 (3� 2 cos2 �)
.

For comparison, note that in the case of the process e+ p! e+ p+ �0 we have (for an

unpolarized proton target):

�
H(0)

xx �H(0)
yy

�
=
�
H(0)

xx +H(0)
yy

�
= � 5 sin2 �

5� 3 cos2 �
:

The matrix element M! for the !-exchange in 
� +N ! N + �0 can be written in the

following form:

M! =
g!G!(k

2)

m!(t�m2
!)
�����e�k�q�u(p2)

�

� �

�!

2m
���(k � q)�

�
u(p1)

The constants �! and g! are �xed by the Bonn potential [40]: �! = 0; g2!=4� = 20: The

VDM suggests the following parametrization for the form factor G!(k
2):

G!(k
2) =

G!(0)

1� k2=m2
�

:

The value G!(0) can be �xed by the width of the radiative decay ! ! �
, through the

following formula:

�(! ! �
) =
�

24
G2

!(0)

 
1� m2

�

m2
!

!3

m!;

where BR(! ! �0
) = �(! ! �0
)=�! = (8:5 � 1:5)%, �! = (8:81 � 0:09) MeV and

m! = 782 MeV.
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Concerning vector meson exchange in e� +N ! e� +N + �, it is known [46], that the

vector meson exchange is important for the processes 
 + N ! N + �, in the considered

region of W . Due to the isovector nature of the electromagnetic current in 
�+ d! d+ �0,

the �0-contribution to 
� + N ! N + �0 is exactly cancelled. The VDM parametrization

of the electromagnetic form factors suggested above for the 
��!-vertex as to be considered

as a simpli�ed possibility for the space-like region of momentum transfer, where there is no

experimental information. However, in the region of time-like momentum transfer, di�erent

pieces of information exist. Let us mention three of them. The decay ! ! � + `+ + `�

[47] allows to measure this form factor in the following region 4m` � k2 � (m! � m�)
2;

where m` is the lepton mass. The process e++ e� ! �0+! [48] is driven by the considered

form factor in another time-like region, namely for k2 � (m! + m�)
2. For completeness

we mention the �� ! �� + �� + ! decay [49]. The presence of the same factor G!(k
2) in

processes so di�erent as e++ e� ! �0+! and � ! �� +��+! results from the well known

CVC hypothesis (Conservation of Vector Current for the weak semileptonic processes).

Note also that we have taken a 'hard' expression for the VDM form factor, G!(k
2),

which is assumed to reproduce at best the structure function A(k2) of elastic ed scattering,

through the calculations of the meson exchange current due to �� exchange [50]. However

this conclusion is correlated to the properties of the nucleon form factor, especially with

the behavior of the isoscalar electric form factor, GEs = (GEp + GEn)=2: New GEp data

[45] (with large deviation from the previously assumed dipole behavior) will also favor a

hard form factor G!(k
2) for the good description of the k2 dependence of A(k2) at large

momentum transfer. However a satisfactory description will depend also on the large k2-

dependence of the neutron electric form factors, which will be measured in the next future

up to jk2j = 2 GeV2 [51]. It is then expected that the di�erent observables in the processes

e+N ! e+N+�0 and e+d! e+d+�0 at relatively large momentum transfer are sensitive

to the parametrizations of the form factor G!(k
2). For example, the VDM parametrization

for G!(k
2) shows that this form factor is 'harder' in comparison with nucleon and N ! �

form factors. Therefore, in this case, the relative role of !-exchange will be essentially
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increased at large momentum transfer.

VI. RESULTS AND DISCUSSION

In order to test the model for �0 electroproduction on deuterons, we compared our

calculation to experimental data on �0 and �+ photoproduction on proton in the �-resonance

region. The angular distributions at di�erent energies of the real photon reproduce quite

well the existing data, a sample of which is shown in Fig. 6. This agreement justi�es

the generalization of the model in case of �0-electroproduction on nucleons, e� + N !

e�+N + �0, by introducing the corresponding electromagnetic form factors in the di�erent

photon-hadron vertices (see Fig. 5). Note also, that the resulting electromagnetic current for

the process 
�+N ! N+�0 (with virtual photon) still satis�es the gauge invariance, for any

parametrization of the electromagnetic form factors, and for any values of the kinematical

variables k2, W and cos#�. However this model does not satisfy the T-invariance of the

electromagnetic interaction, but here we will consider only T-even observables, such as the

di�erent contributions to the d(e; e�0)d di�erential cross section ( with unpolarized particles

in the initial and �nal states). This problem, which is common to all modern approaches of

pion photo- and electro-production on nucleons, is generally not discussed in the literature.

In the framework of IA , as it was shown before, the deuteron structure is described by by

four inelastic form factors Fi( ~Q
2); i = 1�4, where the argument ~Q2 depends on all the three

kinematical variables, k2, W and cos #�, which characterize the process 
� +N ! N + �:

~Q2 = (~k � ~q)2 = ~k2 + ~q2 � 2j~kjj~qj cos#�;

with

~k2 = k20 � k2; k0 =
W 2 + k2 �m2

2W
;

~q2 = E2
� �m2

�; E� =
W 2 +m2

� �m2

2W
:

Fig. 7 illustrates the dependence of the variable ~Q2 on cos#� at �xed values of k2 and W ,

at W=1.2 GeV and W=1.137 GeV (which corresponds to E
 = 220 MeV, see Fig. 6). This
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dependence is similar for all values of k2, in the interval jk2j = 0:5 � 2:0 GeV2. Note that

~Q2
max ' 3 GeV2 at �k2 = 2 GeV2 , so, at the same value of four momentum transfer, the

process 
�+d! d+�0 is driven by the deuteron form factors at higher momentum transfer

in comparison with elastic ed-scattering.

Comparing Fig. 7 and Fig. 4 (which shows the ~Q2-dependence of the deuteron form

factors, in the interval 0 � ~Q2 � 3 GeV2), one can see that in the range �k2 = 0:5 � 2:0

GeV2, the deuteron form factors are very sensitive to the behavior of the deuteron wave

function calculated in di�erent NN-potentials.

The ��-dependence of all four contributions to the inclusive d(e; e�0)d cross section,

namely Hxx�Hyy, Hzz and Hxz+Hzx, is shown in Fig. 8 for W = 1:137 GeV and in Fig. 9

forW = 1:2 GeV 3. The di�erent rows correspond to �k2 = 0:5; 1, 1.5 and 2 GeV2, from top

to bottom. In order to show the relative role of the di�erent mechanisms for the elementary

processes 
� + N ! N + � ( in the considered kinematical region for the variables k2 and

W ), each picture shows four curves: � contribution only, � + s + u (nucleon diagrams)

and � + s + u� !. The calculations are shown for both relative signs of the vector meson

contribution in order to stress the importance of the ! contribution. The positive sign has

been choosen from the comparison with experimental data on 
+p! p+�0 (real photons).

The ! contribution is important for all the four considered observables, in particular

for the Hxx � Hyy terms at �� ' 80o; in the case of Hzz the largest sensitivity appears for

backward �0 electroproduction.

The relative role of the absorption of virtual photon with longitudinal and transversal

polarizations depends essentially on the variables k2 and W , with an increase of the ratio

Hzz=(Hxx + Hyy) with �k2. At W=1.2 GeV, where the �-contribution (with absorption

of transversal virtual photons) dominates, the relative role of Hzz is weaker in comparison

with Hxx +Hyy. However for �k2 � 1 GeV2 Hzz exceeds Hxx +Hyy, even in the resonance

3Note that in our normalization, Eq. (2), all components Hab are dimensionless numbers.

29



region.

The ratio (Hxx�Hyy)=(Hxx+Hyy) is negative (due to the dominance of the transversal �

and !-contributions) and has a ' sin2#� behavior. The longitudinal-transversal interference

contribution, Hxz + Hzx, shows a particular sensitivity to the di�erent ingredients of the

model, with strong #�-dependence, in the whole considered kinematical domain. In view of

the importance of the ! contribution to all observables for the d(e; e�0)d process, we studied

the sensitivity to the choice of the electromagnetic 
�!�-vertex form factor. For this aim

we used two parametrizations, a hard monopole form, G(h)
! (k2), predicted by the standard

VDM, and a soft dipole form G(s)
! (k2):

G(h)
! (k2) =

G!(0)

1� k2

m2
�

; G(s)
! (k2) =

G!(0) 
1� k2

m2
�

!2 :

Fig. 10 shows the ��-dependence of the following ratios:

r�(cos ��) =
(Hxx �Hyy)hard � (Hxx �Hyy)soft

(Hxx �Hyy)hard + (Hxx �Hyy)soft

for two di�erent values of k2 (�k2 = 0:5 and 2 GeV2) and W = 1:137. For W = 1:2 GeV

(Fig. 11) the largest sensitivity to the choice of the form factor G!(k
2) appears at forward

angles for �0-production, whereas at W = 1:137 GeV all angles are equally sensitive to this

choice. At the �-resonance this sensitivity increases slightly with �k2.

The absolute measurements of the di�erent contributions to the inclusive cross section

for d(e; e�0)d will help in de�ning the appropriate k2-dependence of the form factor G!(k
2).

However , as we can see on Fig. 12, the absolute values of the Hxx�Hyy contributions, the

shape and absolute values of Hzz and Hxz +Hzx are also sensitive to the NN�potentials,

in particular at large k2. In Figs. 13, 14, 15 and 16, we illustrate the behavior of the four

observables, for di�erent parametrizations of the following ingredients:

� the deuteron wave function: for the Bonn [40] and Paris [41] potentials,

� the electromagnetic form factors for the 
��!-vertex: hard (VDM) and soft (dipole)

parametrizations;
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� the electromagnetic form factor of the proton: dipole or a 'softer' parametrization

based on recent data on the proton electric form factor.

The di�erences between these parametrizations increase at large momentum transfer.

The inclusive cross section for d(e; e)�0d is characterized by two contributions, only.

After integration over d
�, we have:

Ht(k
2;W ) =

Z +1

�1
d cos#�(Hxx +Hyy);

H`(k
2;W ) =

Z +1

�1
d cos#�Hzz:

The three-dimensional plot of Fig. 17 shows the dependence of these inclusive functions, on

k2 and W . The calculation is done here, for the hard form factor G!, the dipole form factor

GEp and the Paris deuteron wave function.

A comparison of this calculation with the data from [3] is shown in Fig. 18. The k2-

dependence is reported for di�erent ranges of the variableW , from threshold to the �-region.

The data are relative yields, integrated in the experimental acceptance, assuming constant

eÆciency. The agreement is quite satisfactory, in the considered domain. The theoretical

curves are normalized at the largest point. They are not very sensitive to the opening of the

azymuthal angle: the solid and dashed line correspond respectively to the 2� integration

and to the limit for small ��, which is closer to the experimental conditions. Such behavior

is an indication of a weak �-dependence of the d(e; e0�0)d cross section in this kinematical

region.

VII. CONCLUSIONS

We have made a general analysis of coherent pseudoscalar neutral mesons production on

deuterons, e + d ! e + d + P 0, which holds for any kinematics of the discussed processes.

Threshold P 0-meson production (at any value of momentum transfer square k2 and for

the minimum value of the e�ective mass of the produced hadronic system) is especially

interesting due to the essential simpli�cation of the spin structure of the corresponding
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amplitudes and to the decreasing number of independent kinematical variables. Another

kinematical region, which is interesting for the process 
� + d ! d + �0, is the �-isobar

excitation on the nucleons.

Coherent P 0-meson production is interesting due to its special sensitivity to the isotopic

structure of the threshold amplitude for the elementary processes 
� +N ! N + P 0.

The �0-meson electroproduction on the deuteron allows to measure the threshold ampli-

tude for 
� + n! n+ �0, which is important for testing hadron electrodynamics [55].

The �-meson electroproduction on the deuteron could be important for the study of �N -

and �d-interactions, in particular after the �nding of a strong energy dependence of the cross

section of n+ p! d+ � process near threshold.

The IA can be considered as a good starting point for the discussion of corrections such

as mesonic exchange currents, isobar con�gurations in deuteron, quark degrees of freedom,

etc., but rescattering e�ects will also have to be discussed, in particular for �-production

near threshold.

Using an adequate model for the elementary processes of �0-electroproduction on nucle-

ons, e� +N ! e� +N + �0, which satisfactorily reproduces the angular dependence of the

di�erential cross section for the processes 
 + p ! p + �0 and 
 + p ! n + �+ (in the �-

resonance region), we estimated the four standard contributions to the exclusive di�erential

cross section for the reaction d(e; e�0)d as functions of the variables k2;W and #�. These

calculations were done at relatively large momentum transfer square, �k2 = 0:5�2:0 GeV2,

where recent data exist. All observables show a large sensitivity to the parametrization of

electromagnetic form factors, in the considered model. A special attention was devoted to

the study of the e�ects of soft and hard parametrizations of form factor for the �!
�-vertex,

as well as to possible deviation of the proton electric form factor from the dipole �t. More-

over, as it is well known for elastic ed-scattering, we �nd here, too, a large dependence of all

the observables to the choice of NN�potential. The large sensitivity of the d(e; e�0)d cross

section to the !-exchange contribution can be used, in principle, to study the corresponding

electromagnetic form factors in the space-like momentum transfer region.
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The comparison of the model with the available experimental data is satisfactory. This

agreement supports the two-nucleon picture of the deuteron structure in the region of rela-

tively large momentum transfer, con�rmed by the recent ed-elastic scattering data.

Appendix

We present here the expressions for the structure functions h1 � h41 in terms of the scalar

amplitudes g1� g13. The SF's h1� h5 corresponding to the interaction with an unpolarized

deuteron target can be written as:

3h1 = jg1j2 + jg2j2 + jg3j2 + jg4j2 ;

3h2 = jg5j2 + jg6j2 + jg7j2 + jg8j2 + jg9j2 ;

3h3 = jg10j2 + jg11j2 + jg12j2 + jg13j2 ;

3h4 = Re (g1g
�

10 + g2g
�

11 + g3g
�

12 + g4g
�

13) ;

3h5 = Im (g1g
�

10 + g2g
�

11 + g3g
�

12 + g4g
�

13) ;

We derive fhe following expressions for the SF
0

s h6 - h18, which characterize the e�ects of

the target vector polarization :

h6 = �Im (g2g
�

6 � g3g
�

9 � g4g
�

7) ;

h7 = Im (g6g
�

11 + g7g
�

13 + g9g
�

12) ;

h8 = Re (g2g
�

6 � g3g
�

9 � g4g
�

7) ;

h9 = Re (g6g
�

11 � g7g
�

13 � g9g
�

12) ;

h10 = �2Im g1g
�

2;

h11 = �2Im (g5g
�

9 � g7g
�

8) ;

h12 = �22Im g10g
�

11;

h13 = �Im (g1g
�

11 � g2g
�

10) ;

h14 = Re (g1g
�

11 � g2g
�

10) ;
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h15 = Im (g1g
�

6 � g3g
�

5 � g4g
�

8) ;

h16 = Im (g5g
�

12 � g6g
�

10 � g8g
�

13) ;

h17 = �Re (g1g
�

6 � g3g
�

5 � g4g
�

8) ;

h18 = Re (g5g
�

12 � g6g
�

10 + g8g
�

13) ;

Finally for the SF
0

s h19 - h41, which describe the e�ects on tensor target polarization, one

obtains :

3h19 = � jg1j2 + jg2j2 + jg7j2 � jg8j2 ;

3h20 = � jg5j2 + jg9j2 ;

3h21 = � jg10j2 + jg11j2 ;

3h22 = �Re (g1g
�

10 � g2g
�

11) ;

3h23 = �Im (g1g
�

10 � g2g
�

11) ;

3h24 = jg2j2 � jg3j2 � jg4j2 ;

3h25 = jg6j2 + jg7j2 + jg9j2 ;

3h26 = jg11j2 � jg12j2 � jg13j2 ;

3h27 = Re (g2g
�

11 � g3g
�

12 � g4g
�

13) ;

3h28 = Im (g2g
�

11 � g3g
�

12 � g4g
�

13) ;

3h29 = �2Re g1g�2;

3h30 = �2Re (g5g
�

9 + g7g
�

8) ;

3h31 = �2Re g10g�11;

3h32 = �Re (g1g
�

11 + g2g
�

10) ;

3h33 = Im (g1g
�

11 + g2g
�

10) ;

3h34 = �Re (g1g
�

6 + g3g
�

5 + g4g
�

8) ;

3h35 = �Re (g5g
�

12 + g6g
�

10 + g8g
�

13) ;
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3h36 = �Im (g1g
�

6 + g3g
�

5 + g4g
�

8) ;

3h37 = Im (g5g
�

12 + g6g
�

10 + g8g
�

13) ;

3h38 = �Re (g2g
�

6 + g3g
�

9 + g4g
�

7) ;

3h39 = �Re (g6g
�

11 + g7g
�

13 + g9g
�

12) ;

3h40 = �Im (g2g
�

6 + g3g
�

9 + g4g
�

7) ;

3h41 = Im (g6g
�

11 + g9g
�

12 + g7g
�

13) :
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FIGURES

FIG. 1. One-photon exchange mechanism for the process e+ d! e+ d+ P 0.
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FIG. 2. np-intermediate state contribution to the unitarity condition for 
 + d ! d + P 0; the

dotted line crosses the particles on mass shell.
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FIG. 3. IA diagrams for 
 + d! d+ P 0.
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FIG. 4. ~Q2-dependence of the deuteron form factors, (see Eq. (19)) F1 (full line), F2 (dashed

line), F3 (dotted line), F4 (dashed-dotted line). The calculation is based on: (a)- the Paris wave

function; (b) - the Bonn wave function.
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FIG. 5. The Feynman diagrams for 
� +N ! N + �- processes
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FIG. 6. The angular dependence of the di�erential cross sections for the photoproduction pro-

cesses: - 
+ p! p+�0 at energy E
=220 MeV (a), 240 MeV (b), 260 MeV (c), 300 MeV (d); full

stars (open crosses) are data from [52] ( [53]); - 
 + p! n+ �+ at energy E
=240 MeV (e), 300

MeV (f); full stars are data from [54]; the dashed lines are predictions of the present model.
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FIG. 7. Dependence of the variable ~Q2 on #�. The thin (thick) lines correspond to

W = 1:2 (1:137) GeV, �k2=0.5 GeV2 (full line) �k2=1 GeV2 (dashed line) �k2=1.5 GeV2 (dotted

line) �k2=2 GeV2 (dashed-dotted line)
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FIG. 8. #�-dependence of the di�erent contributions to the exclusive di�erential cross section

for d(e; e�0)d, Hxx +Hyy, Hxx �Hyy, Hzz and Hxz + Hzx at W=1.137 GeV. The di�erent rows

correspond to �k2 = 0:5; 1, 1.5 and 2 GeV2, from top to bottom. Di�erent mechanisms are shown:

��contribution only (dotted line), � + s + u contributions (dashed-dotted line), � + s + u � !

(dashed line) � + s+ u+ ! (full line).

47



FIG. 9. Same as Fig. 8, but for W = 1:2 GeV.
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FIG. 10. #�-dependence of the ratio r�(cos ��) forW = 1:137 GeV, with dipole GEp, and Paris

wave function. The r+ contribution is reported for �k2=0.5 GeV2 (full line) and for �k2=2 GeV2

(dotted line). The r� contribution is reported for �k2=0.5 GeV2 (dashed line) and for �k2=2

GeV2 (dashed-dotted line).
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FIG. 11. Same as Fig. 11, but for W = 1:2 GeV.
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FIG. 12. Sensitivity of the four observables: Hxx+Hyy (a), Hxx�Hyy (b), Hzz (c), Hxz+Hzx

(d), to the deuteron wave function, for Paris (full line) and Bonn(dashed line) potentials.
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FIG. 13. #� dependence of the four observables: Hxx + Hyy (a), Hxx � Hyy (b), Hzz (c),

Hxz+Hzx (d), for di�erent parametrizations of the electromagnetic form factor of the 
��!-vertex

and electric form factor of the proton at W=1.137 GeV, �k2=0.5 GeV2 and hard form factor G!:

Paris potential and soft GEp (full line), Paris potential and dipole GEp (line), Bonn Potential and

dipole GEp (dotted line), Bonn Potential and soft GEp (dashed-dotted line).
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FIG. 14. Same as Fig. 13, but for soft form factor G!.
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FIG. 15. Same as Fig. 13, but for �k2=2.0 GeV2 and hard form factor G!.
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FIG. 16. Same as Fig. 13, but for �k2=2.0 GeV2 and soft form factor G!.
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FIG. 17. Two-dimensional plot of the �k2 and W -dependences of the transversal Ht (a) and

longitudinal H` (b) contributions to the inclusive di�erential cross section for d(e; e0)�0d (H` and

Ht are dimensionless numbers).
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FIG. 18. Comparison between the theoretical predictions and the data, for the k2-dependence

of the cross section and di�erent bins of the invariant mass �W = W �Wthr: 0 � �W � 40 MeV

(a); 40 MeV � �W � 80 MeV (b); 80 MeV � �W � 120 MeV (c); 120 MeV � �W � 160 MeV

(d). The solid line and dashed lines correspond to di�erent ranges of �-integration, 2� and ��=6,

respectively. The points are taken from [3]. The curves are normalized to the highest point.
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TABLES

d ~d

!
!

d sum

e 4(+) 8(-) 16(+) 28

~e 1(-) 5(+) 7(-) 13

sum 5 13 23 41

TABLE I. Classi�cation of Structure Functions. The sign � denotes T-even and T-odd SF's
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