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ABSTRACT

In a collaboration between the Swedish Royal Institute of Technology
(KTH), the IRF and the Swedish Space Corporation, a nano satellite is being
developed under the name Victoria. The main objectives of the project are to
test the implementation of attitude control using a Sun-pointing algorithm
with a single electromagnetic coil as an actuator, and to take images of
scientific interest. The following paper investigates the mentioned Sun-
pointing algorithm and simulates its orbit behaviour in a Matlab-based space
environment (the Spacecraft Control Toolbox). Numerous disturbance
factors affecting the orbit of a satellite are discussed and several models of
the Earth’s magnetic field are used, in order to emulate space flight
conditions as closely as possible. Ultimately, the power consumed by the
attitude control algorithm was measured for different scenarios to facilitate
comparing the efficiency with other control methods.

Johan Sylwander Daniel Åberg

Stockholm Sweden, December 2000



A T T I T U D E  C O N T R O L  O F  A  S P I N - S T A B I L I Z E D  N A N O  S A T E L L I T E
U S I N G  A  S U N - P O I N T I N G  A L G O R I T H M

1

CONTENTS

1 INTRODUCTION ........................................................................................................................................ 3

1.1 A BRIEF SATELLITE HISTORY .............................................................................................................. 3
1.2 NANO SATELLITES ............................................................................................................................... 3
1.3 THE VICTORIA SATELLITE.................................................................................................................... 4

1.3.1 Subsystems ............................................................................................................................ 5
1.3.2 Mission Objectives ................................................................................................................ 6
1.3.3 Attitude Control..................................................................................................................... 6

2 THEORY....................................................................................................................................................... 7

2.1 ORBITAL MECHANICS .......................................................................................................................... 7
2.1.1 The Two-Body Central Force Problem ................................................................................. 7
2.1.2 Energy Conservation for a Central Force .............................................................................. 8
2.1.3 The Kepler Problem .............................................................................................................. 9
2.1.4 Kepler’s Laws ..................................................................................................................... 10
2.1.5 The Keplarian Orbital Elements.......................................................................................... 11
2.1.6 The ECI System................................................................................................................... 12

2.2 ORBIT PERTURBATIONS ..................................................................................................................... 12
2.2.1 Earth Gravity Harmonics..................................................................................................... 13
2.2.2 Radiation Pressure Effects................................................................................................... 13
2.2.3 Atmospheric Drag ............................................................................................................... 14
2.2.4 Lunisolar Gravitational Attractions ..................................................................................... 14

2.3 SPACECRAFT DYNAMICS.................................................................................................................... 15
2.3.1 Euler’s Equations of Motion ............................................................................................... 15
2.3.2 Magnetic Torque Coils........................................................................................................ 17

2.4 SATELLITE DYNAMICS DUE TO DISTURBANCES ................................................................................ 17
2.4.1 Solar Radiation Pressure ..................................................................................................... 18
2.4.2 Thermal Imbalances ............................................................................................................ 18
2.4.3 Gravity Gradient.................................................................................................................. 18
2.4.4 Transmit Antennas Radiation Pressure................................................................................ 19
2.4.5 Residual Dipoles ................................................................................................................. 19

2.5 SUN-POINTING ALGORITHM FOR A SPINNING SATELLITE ................................................................... 20

3 IMPLEMENTATION ................................................................................................................................ 22

3.1 SPACECRAFT SIMULATION ................................................................................................................. 22
3.1.1 Spacecraft CAD – Designing a Virtual Satellite ................................................................. 22
3.1.2 Julian Day Numbers ............................................................................................................ 23
3.1.3 Orbit Environment Simulation ............................................................................................ 24
3.1.4 Solving the Euler Equations with the 4th Order Runge-Kutta Method ................................ 25
3.1.5 Spacecraft Properties........................................................................................................... 26

3.2 GRAHN’S ALGORITHM IMPLEMENTED................................................................................................ 26
3.3 SIMPLIFIED SIMULATION.................................................................................................................... 27

3.3.1 Approximation of the Magnetic Field ................................................................................. 29
3.3.2 Inertia Matrix Adjustments.................................................................................................. 30

3.4 REALISTIC SIMULATION ..................................................................................................................... 32
3.4.1 Sources of Instabilities ........................................................................................................ 33

3.5 POWER CONSUMPTION....................................................................................................................... 33

4 CONCLUSIONS......................................................................................................................................... 35



A T T I T U D E  C O N T R O L  O F  A  S P I N - S T A B I L I Z E D  N A N O  S A T E L L I T E
U S I N G  A  S U N - P O I N T I N G  A L G O R I T H M

2

REFERENCES.................................................................................................................................................... 37

APPENDIX A – EULER ANGLES ................................................................................................................... 38

APPENDIX B – QUATERNION ROTATION ................................................................................................ 40

APPENDIX C – MATLAB FUNCTIONS ........................................................................................................ 42



A T T I T U D E  C O N T R O L  O F  A  S P I N - S T A B I L I Z E D  N A N O  S A T E L L I T E
U S I N G  A  S U N - P O I N T I N G  A L G O R I T H M

3

1 INTRODUCTION

1.1 A BRIEF SATELLITE HISTORY

The idea of placing a satellite in space was first thought of by Sir Isaac
Newton in 1687, at which time the actual process of launching and
maintaining an object in orbit was an impossible task. In the year 1957
however, when rocket science and electronics had finally evolved
sufficiently, Sputnik 1 was launched. It simply emitted a radio beep that
could be recieved from Earth, but this was enough to qualify as an orbiting
satellite. The next launch was made one month later, again by the Russians,
as a dog named ’Laika’ became the first living creature to leave Earth for
space. The U.S. were quick to follow with a succesful launch of the satellite
Explorer 1 in February 1958. Three years later, on April 12th 1961, the
Russian Yuri A. Gagarin became the first man in space.

Then followed launches of several geostationary (rotating with the
Earth and thereby giving the impression being stationary) tele-
communications satellites before finally, on July 21st 1969, the first man
(Neil Armstrong) walked the face of the moon. Today, the american space
shuttle has the capabilities to bring back satellites from orbit for complicated
repairs as well as sending people to and from either MIR or the International
Space Station (ISS). During the last 50 years, satellites have evolved in
terms of the technical aspect, fitting more complex systems into smaller
areas, but they still contain the same basic components. These components
include some sort of altitude meter, usually a radar on normal size satellites,
solar panels and batteries. The panels collect energy while the battery stores
the power for use while the satellite is in the shadow of the Earth. Some
special cases also have  employed nuclear power sources. The use of
telemetry equipment allows for tracking of the satellite’s systems from Earth
via radio transmitters. Furthermore, attitude-control equipment such as
thrusters, electromagnetic coils or actuator wheels is needed to point panels,
sensors or antennae in desired directions.

1.2 NANO SATELLITES

Refined electronics and materials research has recently rendered it possible
to build satellites weighing less than 10 kg. This creates possibilities for
smaller nations, companies or even universities to become involved in space
research or commercial ventures by launching their own small satellites. One
benefit of designing and launching a nano satellite is the considerably shorter
turn around time (time from conceptual idea to finished product), making it
interesting for educational projects. In addition, a simplified system
architecture with fewer onboard instruments facilitates coding of basic
attitude control algorithms.

The concept of nano satellites poses some unique problems in the
design phase of a new spacecraft. The main concern is that, because of the
substantially lower mass, instabilities are easily introduced while adjusting
the attitude of a spin stabilized nano satellite. To avoid increasing nutations
(eventually leading to tumbling or flat spin) during attitude control, the rigid
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body inertia matrix should emulate that of a flat, circular disc as closely as
possible. Due to this problem, nano satellites have traditionally been
equipped with unidirectional instruments, not making use of the full
potential of a scientific satellite. Improved attitude control in nano satellites
is therefore desirable in both scientific and commercial applications. For
example, a number of small satellites could be combined into a formation
orbiting array, giving increased capabilities, similar to combinations of small
radio telescopes on the surface of Earth.

At present, the Munin satellite program [1], initiated by the Swedish
Institute for Space Physics (IRF), the Universities of Umeå and Luleå as well
as the Southwest Research Institute in the U.S., is aiming at launching a
scientific nano satellite weighing 6 kg. The Munin satellite will employ a
passive attitude control system using a permanent magnet, attempting to
align the spacecraft with the magnetic field of the Earth. This simple attitude
control mechanism should prove sufficient in pointing the satellite over the
poles, where the planned experiments will take place. For Hugin [2]
however, a satellite developed mainly by the Royal Institute of Technology
(KTH), different ways of controlling the attitude will be implemented. In
1999, a project work entitled ’Attitude Control of a Nanosatellite using
Reinforcement Learning Neural Networks’ [3] was published, dealing with
the application of a neural network for attitude control purposes. In the
following pages another satellite, named Victoria, will be used to evaluate an
algorithm written by Sven Grahn of the Swedish Space Corporation (SSC).
Its aim is to control the attitude of a spinning nano satellite by pointing the
spin axis toward the Sun.

1.3 THE VICTORIA SATELLITE

The Victoria satellite project is the result of cooperation between the IRF,
SSC and the Instrumentation group at the Physics Department of KTH.
Primarily, the objectives of building the nano satellite are to evaluate
magnetic attitude control and instrument applications. Previous work has
been performed on the application of a neural network, which was taught to
control the Hugin satellite’s attitude either on the ground or in orbit. In the
following project work, only one electromagnetic coil is used by the attitude
control algorithm, instead of the three used in Hugin, reducing the power
consumption substantially and simplifying the internal structure of the
satellite. The launch location of the satellite is not yet determined, but it may
take place at the Krunichev State Research and Production Space Center,
with the satellite strapped onto a larger payload inside a ’Rockot’ launch
vehicle. The basic layout of Victoria is shown in Fig. (1.1) below, with
dimensions and the spin axis marked.
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Figure 1.1. The solar panels are mounted ’facing down’ on the horizontal plates.

Since the Victoria project is managed by a university, as opposed to a
commercial firm, the financial resources available are somewhat limited. It
is therefore necessary to minimize cost levels in the components and the
manufacturing of the satellite, making the final product significantly less
expensive than its commercial counterpart. One way to lower cost is to
purchase off-the-shelf components, for example the camera is likely to be a
standard webcam (QuickCam) with a modified casing to shield the
electronics from radiation.

1.3.1 Subsystems

The satellite consists of several subsystems, interacting to achieve tasks such
as attitude control or the taking of pictures. In the core of the miniturized
network inside the spacecraft, the payload computer is located (see Fig.
(1.2)). It is assigned to process data from the camera, Sun sensor and
magnetometer as well as feed the torque coil with the correct current
according to the attitude control algorithm. Furthermore, the payload
computer, which is a standard Intel 9.8 MHz 8088 CPU, will communicate
with the housekeeping computer. This computer oversees the sending or
recieving of radio signals from ground control and the charging of the
onboard batteries via the solar cells.

Figure 1.2. The satellite subsystems
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During operation, the magnetometer constantly supplies the payload
computer with angular velocity measurements needed in the determination
of rotation and attitude. The Sun sensor has a field-of-view (FOV) of ± 20°
and delivers the direction toward the Sun with high accuracy (errors << 1°).
If need should ever arise to change the governing program in the payload
computer, it can be done by sending the replacement code to the
housekeeping computer, which then uploads it to the payload computer.

1.3.2 Mission Objectives

The satellite will be launched into a Sun-synchronous orbit (i.e. it newer
enters the eclipse) at an altitude of 700 km above sea level and with a spin
rate of 10 rpm. A Sun-synchronous orbit is achieved using the fact that the
Earth’s slight bulge at the equator acts to slowly rotate the plane of the orbit
about the axis of the Earth. When the inclination is chosen just right (about
8° off the polar orbit) the motion matches the motion of the Sun across the
sky. Thus, the plane of the orbit executes one full rotation about the axis of
the Earth in one year.

In orbit, the spacecraft will attempt to align the spin axis with the Sun
vector in an antiparallel fashion, directing the solar panels toward the Sun.
The function of the camera is limited as a result of the constant spin rate, but
it will used as efficiently as possible. Optimal radio reception is obtained
when the antenna is directed tangentially to the Earth’s surface at the ground
control fly-by. A suitable placement of antennae might therefore be on the
location of the spin axis.

1.3.3 Attitude Control

The attitude control will be managed by an algorithm based on the paper ’An
On-board Algorithm for Automatic Sun-pointing of a Spinning Satellite’ [4]
by Sven Grahn. It utilizes one electromagnetic coil placed in the plane
orthogonal to the spin axis of Victoria to generate a dipole moment which in
reciprocal action with the Earth’s magnetic field exerts a torque on the
satellite. By switching the current direction (polarity) of the coil, the torque
can be selected to ’guide’ the spin axis toward the half-plane containing the
projected direction of the Sun, as shown in Fig. (1.3). This algorithm has the
distinct advantage of simplicity; it only requires a few computations at each
time step in the payload computer. The power consumption of the single coil
turns out to be quite low, especially when the satellite has settled on a
desired attitude. In that scenario, the algorithm sends short bursts of current
through the coil to counteract any increases in oscillation of the spin axis.

Figure 1.3. Orientation of the torque
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2 THEORY

2.1 ORBITAL MECHANICS

Below, derivations of the most common governing equations in orbital
dynamics are presented. The number of steps in each deduction has been
kept to a minimum in order to promote reading comprehension.

2.1.1 The Two-Body Central Force Problem

Consider two particles with masses m1 and m2 and position vectors r1 and r2

respectively (Fig. (2.1)). Assume that the only forces affecting the particles
are the forces with which they act upon each other: F21 from particle number
2 on number 1, and F12 from 1 on 2. The equations of motion are then

2111 Fr =&&m (2.1)

1222 Fr =&&m  (2.2)

According to Newton’s third law, F21 is equal to - F12 so the two equations
of motion can be added together, giving:

0rr =+ 2211 &&&& mm (2.3)

With the help of the center of mass vector R = (m1r1 + m2r2)/(m1 + m2) and
the notation M = m1 + m2 this yields the following

0R =&&M (2.4)

Eq. (2.4) shows that there is no force on the center of mass. Hence, the
center of mass remains at rest or moves with constant velocity depending on
the inertial reference frame. Since the sum of the equations produced
something interesting in Eq. (2.3), maybe the difference should be examined
as well. By first dividing Eq. (2.1) with m1 and Eq. (2.2) with m2 and then
subtracting the resulting equation for particle 2 from that of particle 1 this is
obtained:

( ) 21
21

21

11
Frr 





+=−

mm
&&&& (2.5)

If r = r1 – r2 and µ = (1/m1 + 1/m2)
- 1 = m1m2/(m1 + m2), it can be rewritten as

21Fr =&&µ (2.6)

This demonstrates that the position vector of particle 1 relative to particle 2
obeys an equation of motion in which the so-called reduced mass µ plays the
role of (inertial) mass and the force is the force on particle 1 from particle 2.

Figure 2.1. Two-body motion
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Thus, one can formally treat the two particle problem as a one particle
problem, where the mass is the reduced mass.

2.1.2 Energy Conservation for a Central Force

The magnitude of a central force will only depend on the distance from the
center: F(r) = Fr(r)er, which means that the force is conservative and the
potential energy can be written as

( ) ( )∫−=Φ
r

r rrFr d (2.7)

Since the motion is confined to a plane (the [x, y] - plane) it seems suitable to
use cylindrical coordinates, specifying the position with the radius ρ and
angle ϕ. The law of conservation of energy, using cylindrical coordinates,
states

( ) ( ) ( ) Emmv =Φ++=Φ+ ρϕρρρ 2222

2

1

2

1
&& (2.8)

where m is the mass, v the velocity and E is the total energy.
Recalling a basic law of dynamics, it is necessary that the angular

momentum L = mρ2ϕ is constant since the motion is confined to a plane and
the central force field gives zero torque. Hence, the energy equation can be
rewritten in terms of ρ and its time-derivative as follows

( ) E
m

L
m =Φ+





+ ρ

ρ
ρ

22

2
2

2

1
& (2.9)

If an effective potential energy function Φeff is introduced on the form

( ) ( )ρ
ρ

ρ Φ+=Φ
2

2

2m

L
eff

(2.10)

then the energy conservation in terms of the radial motion will look like a
one-dimensional energy conservation:

( ) Em eff =Φ+ ρρ 2

2

1
& (2.11)

Now assume that the force is of the form (given by Newton’s universal law
of gravitation)

( )
2ρ

ρρ
K

F −= (2.12)

where K = Gm1m2 in the case of gravity. Consequently, the potential energy
Φ(ρ) can be stated as
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( )
ρ

ρ K−=Φ (2.13)

making the effective potential energy function look like this:

( )
ρρ

ρ K

m

L
eff −=Φ

2

2

2
(2.14)

One useful application of this equation is to find the turning-points in
the radial motion. These correspond to the maximum and minimum values
of ρ, hence the first time derivative of ρ is zero or there is no radial velocity.
Thus, Eq. (2.11) gives the following expression for the ρ-values of these
turning-points:

E
K

m

L =−
ρρ 2

2

2
(2.15)

This quadratic equation is easily solved and the roots are given by

2

2

22

21

L

mE

L

mK

L

mK +




±=

±ρ
(2.16)

Note that the energy E may be negative here (E gives the shape of the
trajectory). However, the smallest physically allowed value of the energy is
that which makes the expression under the square root zero:

2

222

2min 22 L

mK

m

L

L

mK
E −=





−= (2.17)

For this minimum energy the ρ-value of the trajectory must be given by
the constant ρ = L2/(mK) and the trajectory is thus a circle with this radius. If
the energy E is positive, one root becomes negative and must be discarded,
hence the radial motion has only one minimum ρ-value and the trajectory
extends to infinity. This type of motion is called unbound. When the motion
lies between two turning-points, it is called bound and this can only happen
when the energy is negative E < 0, since K = Gm1m2 is always positive.

2.1.3 The Kepler Problem

In the previous section it was shown that the problem of the radial motion, in
the inverse square central force field, Fρ = - K/ρ2, can be solved using
conservation of energy and angular momentum. Physically that model
describes the motion of a moon around a planet. Now an attempt to solve
for the angular motion will be made. The equations of motion in terms of
cylindrical coordinates are:

( ) ρϕρρ Fm =− 2&&& (2.18)

( ) 02 =+ ϕρϕρ &&&&m (2.19)
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The preferred form for the solutions of these equations would be on the
parametric form (ρ(t), ϕ(t)). Unfortunately, solving that problem is quite
difficult and so the best approach would be to solve the equations
numerically. However, it turns out that if the time t is eliminated and only
the shape of the trajectory as a relationship between ρ and ϕ is seeked, for
instance on the form ρ = f(ϕ), the problem can be treated analytically. This is
often referred to as the Kepler problem since it was Johannes Kepler who
empirically found the shape of the planetary trajectories. The analytical
solution to this problem is (for a step-by-step solution see [5]):

ϕ
ρ

cos1 e

p

+
= (2.20)

where orbit.circular  a of case in the   and  2
2

paApe
mK

L
p π===

Eq. (2.20) constitutes the desired relationship between ρ and ϕ, which
gives the shape of the trajectory. The shape is a so-called ’conic section’
(quadratic curve) and these are defined in Tab. (2.1) below, for different
values of the eccentricity e.

e = 0 circle
0 < e < 1 ellipse
e = 1 parabola
e > 1 hyperbola

Table 2.1. The eccentricity determines the shape of the trajectory.

2.1.4 Kepler’s Laws

The German astronomer Johannes Kepler (1571-1630) established three
physical laws that predicted the motions of the planets around the Sun. These
laws also govern a satellite’s orbit around the Earth. Kepler stated that:

1. Every planet moves in an orbit that is an ellipse, with the
Sun at one focus of the ellipse.

2. The radius vector drawn from the Sun to any planet sweeps
out equal areas in equal time.

3. The squares of the periods of revolution of the planets are
proportional to the cubes of the semimajor axes of their
orbits.

The first law defines the geometry of the orbit, whereas the second law
determines the velocity of the satellite along the orbit. Finally, the third law
predicts the time of a revolution around the Earth.

Later on Sir Isaac Newton (1642-1727) established the three laws of
motion and, from them, the universal law of gravitation. Newton’s theory of
gravitation produced a theoretical principle that explained the motions of the
planets and laid the foundation for modern space flight. The law of
gravitation as well as the conservation of mechanical energy and angular
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momentum yields the equations of motion for any satellite orbit around the
Earth. These equations are described mathematically by three scalar second-
order differential equations. The integration of these equations of motion
produces six constants of integration. These constants of integration are
known as the orbital elements. The Keplarian orbital elements are often
referred to as classical or conventional elements and are the easiest to use.

2.1.5 The Keplarian Orbital Elements

This set of orbital elements can be divided into two groups: the dimensional
elements and the orientation elements. Both groups can be seen in Fig. (2.2)
below:

Figure 2.2. The Earth and the middle black dot constitute the focal points of the ellipse.

The dimensional elements specify the size and shape of the orbit and
relate the position in the orbit to time. They are defined as follows:

1. The semimajor axis of the ellipse (a), which specifies the
size of the orbit.

2. The eccentricity  (e), which specifies the shape of the orbit
(e = 0 results in a circular orbit).

3. The true anomaly (υ) giving the satellite position at any
given time along the orbit. The true anomaly is the angle
between the perigee and the position vector of the satellite.

The orientation elements specify the orientation of the orbit in space.
They are defined as follows:

4. The inclination (i) of the orbit plane (shown in Fig. (2.3))
with respect to the reference plane, which is taken to be the
Earth’s equator plane for satellite orbits.

5. The right ascension of the ascending node (Ω), which is the
angle between the ECI (described below) systems x-axis (in
the direction of the Vernal Equinox) to the point at which the
satellite makes its south-to-north crossing of the equator
(ascending node). This element gives the orientation of the
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orbit plane relative to the x-axis of the ECI coordinate
system.

6. The argument of perigee (ω), measured in the orbit plane in
the direction of motion, from the ascending node to perigee.
The angle ω then specifies the orientation of the orbit in its
plane.

These six orbital elements (a, e, υ, i, Ω, ω) define the satellite’s position
in space at any given time. Furthermore, the Apogee is the longest distance a
vehicle gets from the Earth in its orbit and the Perigee is the closest it comes
in orbit. Ra defines the distance from the center of the Earth to the apogee
and the Line of Nodes is the point where the satellite crosses the Equator.

2.1.6 The ECI System

Several coordinate systems are used in the study of the motions of the Earth
and other celestial bodies. However, the geocentric-equatorial coordinate
system is the most suitable one when studying the motion of satellites
around the Earth. This system has its origin at the Earth’s center with the Z-
axis pointing in the direction of the North Pole. The positive X-axis points in
the direction of the Vernal Equinox. This direction is a line joining the center
of the Earth with the center of the Sun at the first day of spring (all Earth
locations experience identical durations of daylight and darkness). This
direction is sometimes denoted by the head of a ram’s head (ϒ) by
astronomers because it points in the direction of the constellation Aries. The
Y-axis completes the right-handed coordinate system. It is important to keep
in mind that this coordinate system is not fixed to the Earth nor turning with
it; the Earth turns relative to it. The Earth’s spin axis wobbles slightly and
shifts in direction slowly over centuries, an effect known as precession. As a
result, where extreme precision is required, it is necessary to specify the
coordinates of an object based on a particular year or epoch.

2.2 ORBIT PERTURBATIONS

By definition, small deviations from a two-body orbit motion are called orbit
perturbations. The two-body orbit motion (e.g. a spacecraft orbiting a planet)
can result in one of the conic solutions (ellipse, hyperbola and parabola) in
closed form. Deriving the equations of two-body motion and their solutions
can be done through Newton’s law of gravitation and Kepler’s laws of orbit
motion under the assumption of point mass or mass with spherically
symmetrical distribution. However, the accuracy of this model decreases as
the time of propagation increases. Perturbing forces include Earth gravity
harmonics (deviations from a perfect sphere), the lunisolar gravitational
attractions, atmospheric drag, solar radiation pressure and Earth tides. The
magnitude of all the perturbing accelerations is at least one order of
magnitude less than the two-body acceleration, hence the term
‘perturbations’.

Figure 2.3. The ECI System
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2.2.1 Earth Gravity Harmonics

The gravity field of a body with finite mass can be represented by a potential
function. If the mass of a celestial body is assumed to be a point mass or
uniformly distributed in a sphere, the potential function takes the following
simple form:

r

µ=Φ (2.21)

Eq. (2.21) indicates that the strength of the gravity potential at a point in
space is directly proportional to the mass of the body (µ = GM, where G is
the gravitational constant and M is the mass) and inversely proportional to
the distance r to the center of the body. From potential theory, the
gravitational force or acceleration along a given direction is equal to the
partial derivative or gradient of the potential in that direction. In reality, the
point-mass potential cannot accurately represent the gravity field of the
Earth and other planets in the solar system because of the nonspherical shape
of these bodies. Instead, the potential function should be derived from a
spheroid that can closely represent the shape and mass distribution of the
Earth or other planets. The development of the potential of a spheroid
requires an extensive mathematical integration over the entire body, for a
complete description of this potential function see [6].
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Here ae is the equatorial radius of the body, Pn are so-called Legendre
polynomials, w is the declination of the satellite and the Jn coefficients are
described below. This new potential function results in a phenomenon
referred to as gravity harmonics. There are three sets of harmonics: the zonal
harmonics, sectorial harmonics and tesseral harmonics. They constitute the
terms of a mathematical expansion through which the deviations from a
sphere can be represented. The most commonly encountered gravity
harmonics are J2 and J22, which are the largest terms of the zonal and tesseral
harmonics. The coefficient of the second harmonic J2 is related to the Earth
equatorial oblateness through Earth rotation (the difference between the
polar radius and equatorial radius). The J2 coefficient is the source of the
secular rates for the right ascension of ascending node, the argument of
perigee, and a small correction to the mean motion of the orbit. The tesseral
harmonic J22 is related to the ellipticity of the Earth equatorial plane and is
responsible for the long-term (860 days) resonance effects on
geosynchronous orbits. This harmonic causes geosynchronous satellites to
drift from their longitude position, which must be controlled by periodic
stationkeeping maneuvers.

2.2.2 Radiation Pressure Effects

Orbit perturbations induced by solar radiation are a result of photon
momentum or radiation pressure on a space vehicle. At one astronomical
unit (A.U.), the solar radiation pressure constant P0 is 4⋅10-10 N/cm2. This
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value may fluctuate slightly (by less than 1%) as a result of variations in the
solar activity index. A typical radiation pressure effect on satellite orbits is
the long-term sinusoidal variations in eccentricity. The magnitude of the
variation is proportional to the effective area (the projected area of the
satellite), surface reflectivity, and the inverse of the satellite mass. For a
typical communication satellite in geosynchronous orbit, the eccentricity
may vary from 0.001 to 0.004 in six months as a result of solar radiation
pressure effects. For low-altitude orbits, the period of the long-term variation
in eccentricity is governed by the combined rates of the longitude of the
mean Sun, nodal regress and argument of perigee (described in [6]).
Radiation pressure induces periodic variations in all orbital elements, even
exceeding the effects of atmospheric drag at altitudes above 900 km.

2.2.3 Atmospheric Drag

When the orbit perigee height is below 1000 km, the atmospheric drag effect
becomes increasingly important. Drag, unlike other perturbation forces, is a
non-conservative force and will continuously take energy away from the
orbit. Since the drag is greatest at perigee, where the velocity and
atmospheric density are highest, the energy drain is also greatest at this
point. Because of this energy decline, the elliptic orbit first becomes circular
as the altitude of the apogee decreases to the same value as the perigee and
then rapidly spirals into the dense atmosphere. For near circular orbits, the
orbit semi-major axis decay rate can be computed by the following simple
equation:
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a 02

d

d ρ (2.23)

where n is the mean motion (defined as the square root of µ/a3), ρ is the
atmospheric density at present altitude, g0 is the gravitational acceleration at
sea level and B is the ballistic coefficient (expresses a bullet’s length and
aerodynamic shape, thus indicating its ability to overcome air resistance in
flight).

2.2.4 Lunisolar Gravitational Attractions

To understand the long-term behaviour of a satellite orbit under the influence
of the Sun, imagine both the satellite and the Sun spread out into elliptical
rings coinciding with their respective orbits, see Fig. (2.4). The mutual
gravitational attractions of the rings will create a torque about the line of
nodes tending to turn the satellite ring into the ecliptic. The gyroscopic effect
of the torque on the spinning satellite ring will induce a gyro precession of
the orbit about the pole of the ecliptic, specifically a regression of the nodes
along the ecliptic. Similarly, the Moon will cause a regression of the orbit
about an axis normal to the Moon’s orbit plane, which has a 5° inclination
with respect to the ecliptic plane with a node rate of one rotation in 18.6
years. For orbits with periods equal to 12 h or longer, the lunisolar effects
are significant and should be included but for low-altitude orbits, the Sun-
Moon effects can be neglected.

Figure 2.4. Gyroscopic precession
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2.3 SPACECRAFT DYNAMICS

A basic account of the equations governing spacecraft dynamics is given in
the following sections.

2.3.1 Euler’s Equations of Motion

In spacecraft dynamics there is one fundamental equation that constitutes the
foundation upon which many other expressions for rigid bodies are based. It
can be formulated as follows: The angular momentum L of a rigid body,
with one point fixed about the instantaneous axis of rotation through the
fixed point, is defined by

( ) ( )( )ii
i

i
i

iii mm rωrvrL ××=×= ∑∑ (2.24)

where mi is the mass of the ith particle, ri is the vector pointing at particle P,
ωωωω is the angular velocity about the instantaneous axis and the summation is
performed over all particles in the body, see Fig. (2.5). If a fixed cartesian
coordinate system is chosen, the components of the angular momentum can
be written in this form:
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where, with [xi yi zi] being the cartesian coordinates to particle i,
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The quantities Ixx, Iyy, Izz are called the moments of inertia about the x, y,
and z axes respectively and the quantities Ixy, Ixz … are refered to as the
products of inertia. For rigid bodies with a continuous mass distribution,
these can be determined by integration over the body. From the Ijk elements,
a symmetric matrix called the inertia matrix or tensor can be assembled:
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Developing the theory further, a special case of axes gives simplified
calculations for rotating rigid bodies (extracted from [7]): ‘A set of 3
mutually perpendicular axes having origin O which are fixed in the body
and rotating with it and which are such that the products of inertia about
them are zero, are called principal axes of inertia or briefly principal axes’.
For a body rotating around one of its principal axes, the direction of the

Figure 2.5. Rigid body rotation
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angular momentum is the same as that of the angular velocity, see Eq.
(2.28):

ωL I= (2.28)

where I has a scalar value. This results in the following three equations
(proof omitted here):
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For Eq. (2.29) to have non-trivial solutions, it is required that
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Solving the determinant yields three real-valued roots I1, I2 and I3,
called the principal moments of inertia. Computing the directions of the
principal axes can be done by inserting the value of I1, I2 or I3 into Eq. (2.29)
which gives the relative magnitudes of ωx, ωy and ωz and thereby the axis
direction for the chosen principal moment of inertia. An axis of symmetry of
a rigid body, such as the spin axis of Victoria, is always a principal axis.
Since the inertial products are equal to 0 for rotations around principal axes,
only the diagonal terms of Eq. (2.27) are non-zero for a symmetric spinning
satellite (as long as the rotational axis is constant).

According to fundamental dynamics, the derivative of the angular
momentum of a rigid body is equal to the total torque acting on the body.
Differentiating the expression for L from Eq. (2.24), an important relation
between the change in angular momentum and the torque T exerted on a
rigid body is obtained:
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Moving to the spinning body frame one additional term is added:
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The components of Eq. (2.32) can be calculated using the principal axes
frame, arriving at
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These equations are known as Euler’s equations of motion and are
extremely useful in the study of rigid-body motion. The indices 1, 2 and 3
can be exchanged with the cartesian coordinates x, y, and z as long as these
reference axes coincide with the principal axes of inertia and the origin is
located at the center of gravity.

2.3.2 Magnetic Torque Coils

When a current is sent through a loop of wire, known as a coil, a dipole
moment m is formed with a directional normal n given by the direction of
the current in the coil, see Fig. (2.6). The moment is a product of the number
of turns N in the coil, the applied current I, the cross-sectional area A of the
coil (the area enclosed by one loop of wire) and the mentioned normal:

nm ˆNIA= (2.34)

For the coil to exert a torque on the satellite and thereby control its
attitude, some sort of reciprocal action with the surrounding environment is
needed. Fortunately, a magnetic dipole that is exposed to an external
magnetic field, such as the Earth’s magnetic field shown in Fig. (2.7), will
experience a torque. This torque T is given by the cross-product (from [8])

BmT ×= (2.35)

where B is the field vector of the Earth’s magnetic field. Thus, by alternating
the current in the coil and thereby changing the orientation of the dipole, the
satellite’s attitude can be adjusted.

Figure 2.7. The Earth’s magnetic field shape due to the solar wind (particle stream from the Sun)

2.4 SATELLITE DYNAMICS DUE TO DISTURBANCES

There are a number of disturbances (with numerous sources) acting on a
satellite in orbit, introducing torques with different orientations that may
cause the spacecraft to drift off course attitude-wise. Below, a brief account
of the most common disturbance sources and their resulting torques is given.

Figure 2.6. The torque on one
loop of the electromagnetic coil
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2.4.1 Solar Radiation Pressure

Every surface that is illuminated by the Sun is exposed to solar emissions.
These emissions consist mainly of photons, a particle which has a certain
amount of energy that can be translated into mass and movement by
employing Einstein’s well known formula E = mc2. Thus, when objects in
space are hit by photons a pressure is exerted, giving a force directed away
from the Sun. The phenomena was first detected nearly 400 years ago by the
astronomer Johannes Kepler, who observed the way comets’ tails always
point away from the Sun. Light generated forces must not be confused with
the solar wind, an extremely thin flow of particles ejected by the sun which
exerts very little force on anything it hits. Torques due to solar radiation do
not reach higher magnitudes than 8⋅10-10, and will not be considered in the
simulations.

2.4.2 Thermal Imbalances

To precisely determine the orbit, accelerations arising from the thermal
gradients (temperature differences) across the spacecraft surfaces must be
calculated. The level of infrared radiation that is emitted by a surface is
proportional to the emissive properties of the material and to the fourth
power of its temperature. The surface temperature varies with exposure to
both external (i.e. solar radiation) and internal heat sources (i.e. electronics).
Spacecraft often use both passive and active thermal control systems to
regulate the temperature of electronic components. This may result in heat
directionally expelled from the body, causing an acceleration. Modeling a
satellite’s overall thermal behaviour would require knowledge of the history
of every surface’s temperature and current exposure to heat sources, making
the calculation rather tedious. Fortunately, thermal forces on the Victoria
satellite measure in the range of < 10-8 Newtons, and can therefore be
disregarded in basic simulations.

2.4.3 Gravity Gradient

The gravity gradient disturbance torque appears due to any off-diagonal
terms in the inertia matrix (shown in Eq. (2.27)). This gradient refers to the
difference in the acceleration of gravity as the distance to Earth increases.
For the orbit of a rigid body, the center of gravity follows the path of the
orbit plane. Any points on the body that follow the path but are further from
or closer to the Earth will cause a torque to be exerted around the center of
gravity, because of the slightly different gravitational pull at each point. The
torque vector is expressed as:
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where ω0 is a suitable rate of rotation. The contribution of Tgg to the
rotational dynamics for a large satellite with long solar arrays warped by
thermal distortion can be substantial. However, for a satellite of Victoria’s
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moderate size, with negligible inertial products (Ixy, Iyx, Iyz, …), the gravity
gradient torque will not affect basic attitude control simulations.

2.4.4 Transmit Antennas Radiation Pressure

The majority of satellites today are equipped with antennas, transmitting
signals with a certain power P. The contents of these transmissions may
include Telecom, GPS, TV or steering commands. Due to the output power
of the directional antenna, a torque (defined by Eq. (2.37)) will be produced
around the spacecraft’s center of gravity:

urT ×−=
c

P
RF

(2.37)

where c is the speed of light (3⋅108 m/s), r is the vector to the antenna
boresight (the physical axis of a directional antenna) from the spacecraft
center of gravity and u points in the direction opposite the antenna boresight,
see Fig. (2.8). Internal radio frequency transmissions do not produce a net
torque on the satellite. For high power satellites with offset reflectors, the
torque can reach sufficiently high values to pose a problem. For example, a
transmitting antenna with an output of 600 watts offset 3 m from the CG will
generate a 6 µNm torque. Victoria’s transmitter unit, with its 5 watt power
consumption, can at most create a torque of ≈ 0.0033 µNm and will therefore
be considered = 0 during calculations.

2.4.5 Residual Dipoles

The phenomena of residual dipole disturbances comes from the interaction
between the magnetic fields generated by internal current loops on the
spacecraft and solar arrays with the Earth’s magnetic field. In calculating
these disturbances, the solar arrays and core of the satellite must be
accounted for separately. The torque due to residual dipoles (for a generic
two-panel satellite) is:

( ) BMCMCMT ×++= SSNNCRD (2.38)

where B is the Earth’s magnetic field measured in the body frame, CN is the
transformation matrix that transforms from the north panel frame to the core
frame, CS is the south transformation matrix and Mi is the dipole for the ith

body. Typically each of the panels produce a dipole in the neighbourhood of
5 ATM2 while the Earth’s magnetic field magnitude is about 0.90 nT, giving
each array a torque contribution of 0.45 µNm.

Two additional sources of disturbances worth mentioning are: leaks
from onboard gas and liquid supplies and ’outgassing’ of moisture
embedded in the structure. Neither of these will be considered in the
computer simulations.

Figure 2.8. The RF Torque
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2.5 SUN-POINTING ALGORITHM FOR A SPINNING SATELLITE

The attitude control algorithm used for Victoria is written by Sven Grahn of
the Swedish Space Corporation and is applicable to any spin-stabilized
satellite equipped with a Sun sensor, a magnetometer and an electromagnet.
The aim of the algorithm is to point the spin axis, and thereby the solar
panels located on the negative z-side of the satellite (see Fig. (1.1)), toward
the Sun as accurately and continuously as possible for the purpose of
recharging the onboard batteries. Previous Sun-pointing algorithms have
usually incorporated a two-stage process in which the spin axis orientation in
the Earth Centered Inertial (ECI) frame is calculated after which an
appropriate current through the actuator coil(s) is computed by comparison
to the  Earth’s magnetic field. Grahn’s method however, requires neither the
spin axis orientation nor the Sun vector in ECI coordinates. It is based on the
following rule for the direction of current through a coil aligned with the
spin axis: ’The direction of the current through the electromagnet shall be
such that the magnetic dipole moment of the electromagnet along the spin
axis has the same sign as the component of the Earth’s magnetic field along
an axis perpendicular to the plane defined by the spin axis and the direction
toward the Sun’. Fig. (2.9) below demonstrates the basic quantities:

Figure 2.9. The [j, k] plane (shaded) has a normal defined as n = i = a × s.

where a is the spin axis (parallel to k), B is the Earth’s magnetic field vector,
s is the unit Sun vector and [i, j, k] are unit vectors in a coordinate system
with the origin on the spin axis. The [j, k] plane is by definition equal to the
[s, a] plane, α is the angle between s and a and m is a unit vector parallel to
the magnetic dipole moment vector of the electromagnet. For verification,
the dynamics equations of the system will be derived, starting with the
electromagnet which has a magnetic dipole moment M (unit vector m)
parallel or antiparallel to the spin axis:

km u= (2.39)

Here u = { the polarity of the dipole moment of the electromagnet } = ± 1.
Introducing a unit vector b, parallel to the Earth’s magnetic field and

corresponding to the unit vectors i, j, k, it is possible to compute the torque
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T (unit vector t) experienced by the electromagnet. With the scalar
magnitude B of the Earth’s magnetic field, the torque becomes:

( ) ( ) ( )0100 xyzyx bbuBbbbuBB −=×=×= bmT (2.40)

Assuming that Victoria spins without nutation or other deviations from
an ideal rotation, the angular momentum of the satellite can be written as L =
La. Conservation of L (according to classical mechanics) dictates that

T
aL ≡=

dt

d
L

dt

d (2.41)

since the scalar magnitude of the momentum L is not changed by the torque
of the electromagnet (proof omitted here); only by its direction along a. The
time derivative of the spin axis vector can be visualized as a vector
originating from the top of a with the scalar magnitude T/L. In other words,
da/dt is making a turn around an axis defined by a × da/dt. If this vector has
a component that is parallel to the normal of the plane defined by a and s
(normal n = a × s), the vector a tends to align with s, reducing α. The
condition that a × da/dt and a × s should be as parallel as possible can be
expressed by stating that they must not have any component that is
antiparallel. This gives the following:
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in which
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Inserting Eqns. (2.43) and (2.44) into Eq. (2.42) yields:
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Since B > 0, L > 0 and α > 0 always are true, u and bx have to be of equal
sign for the above expression to hold. Thus, the algorithm is formulated:

The sign of the Earth’s magnetic field parallel to i,
perpendicular to the [j, k] plane, is determined by the
magnetometer. The direction of the current through the
electromagnet should be such that its magnetic dipole moment
along the spin axis a has the same sign as the component of the
Earth’s magnetic field along i. When the angle α becomes
sufficiently small, the current is turned off until the spin axis
once again starts to drift away from the Sun vector.
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3 IMPLEMENTATION

3.1 SPACECRAFT SIMULATION

In an age of powerful and inexpensive computers it has become more
efficient and economical to test an engineer’s design in a computer
simulation than on an actual spacecraft. Simulations and analyses of control
systems for satellites can be done in Matlab using a collection of functions
called the Spacecraft Control Toolbox (SCT). Spacecraft control is often
equivalent to attitude control, and considering the task at hand; to analyze a
Sun-pointing control algorithm, it seemed appropriate to perform the
simulations using this toolbox. The SCT, developed by Princeton Satellite
Systems, is a vast collection of Matlab functions intended for attitude and
orbit control of a spacecraft. Some of the functions that have been used are
routines for computing and plotting orbital data (position and velocity of the
satellite), CAD-functions (computes disturbances, see below), and two
models of the Earth’s magnetic field. Spacecraft simulation as well as any
other type of simulation often involves modeling the dynamics of a system,
which requires the equations of motion to be defined. In the case of attitude
determination, the equations for rigid body rotation (Euler’s equations) were
used. Furthermore, the satellite is using the Earth’s magnetic field in
combination with a current through the coil to generate the desired torque.
The current is controlled by the algorithm in conjunction with a Sun-sensor
and a magnetometer. Functions for determining the Sun-vector as well as the
magnetic field in spacecraft coordinates are available in the Spacecraft
Control Toolbox.

3.1.1 Spacecraft CAD – Designing a Virtual Satellite

Within the Spacecraft Control Toolbox, several methods of building and
simulating the flight of spacecraft are available. One method uses a rigid
body assumption and treats the vessel as a point mass with a constant inertia
matrix located at the CG to compute the attitude and the rates of rotation.
This is the method used for the main attitude control simulations since it
produces sufficient accuracy and is easy to code. However, there is one other
method available in SCT that was used initially, to compute the magnitudes
of the disturbance torques (see Section (2.4)) in order to determine whether
these torques should be included in the attitude simulations or not. To
compute disturbance forces, a more complex model of the spacecraft than
the point mass model was required. By defining each major component of
the satellite (core, solar arrays, antennae etc.) in a set of matlab functions
collected under the name Spacecraft CAD, spatial calculations such as
gravity gradient and temperature imbalances could be performed. The model
of Victoria could then be launched into orbit and viewed in ’real-time’
(computations were done in real-time, but the actual movement was slowed
down significantly by the system) as it spun about its z-axis and followed the
orbit path. A flowchart of the fundamental structure of a Spacecraft CAD
model is displayed below as Fig. (3.1):
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Figure 3.1. In order to calculate disturbances, many material parameters must be fed to the program.

where the size is defined by three values (width, height and thickness for a
box), the location in 3D space is given by three cartesian coordinates x, y, z
and the location of the joint to the previous compontent (the core body) also
is written in cartesian coordinates. Furthermore, the mass m and the
temperature, optical and RF properties of each component need to be
determined in the form of material specific data.

The results from the CAD model computations showed that all the
disturbance torques were at least one magnitude smaller than the torque
induced by the electromagnetic coil, and can therefore be excluded from the
attitude control simulations without altering the results noticeably.

3.1.2 Julian Day Numbers

When carrying out computations on astronomical properties such as orbit
periods and planetary movement, it is convenient to use a system of
numbering days based on integers instead of years, months and days. This
system is called Julian day numbers and it facilitates determining the
number of days between two dates (simply subtract one Julian day number
from the other). The Julian day number system is sometimes said to have
been invented by Joseph Justus Scaliger (1540 – 1609), one of the founders
of the science of chronology. However, Scaliger’s invention was not the
system of Julian days, but rather the so-called Julian period. To arrive at this
Julian period, Scaliger combined three traditionally recognized time cycles
of 28, 19 and 15 years, obtaining a cycle of 7980 years (the least common
multiple of 28, 19 and 15). The explanation in Encyclopedia Brittanica
reads:

"The length of 7980 years was chosen as the product of 28
times 19 times 15; these, respectively, are the numbers of years
in the so-called solar cycle of the Julian calendar in which
dates recur on the same days of the week; the lunar or Metonic
cycle, after which the phases of the Moon recur on a particular
day in the solar year, or year of the seasons; and the cycle of
indiction, originally a schedule of periodic taxes or government
requisitions in ancient Rome."
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The first Julian period began with Year 1 on -4712-01-01 and will end
7980 years later on 3267-12-31, as a result of Christ’s birth which was
characterized by the number 9 of the solar cycle, the first Metonic cycle, and
by number 3 of the indiction cycle (9, 1, 3). Scaliger chose as his initial
epoch the year defined by (1, 1, 1), making the first year 4713 B.C. (Note
that 4713 B.C. is the year -4712 according to the astronomical year
numbering). For astronomers a Julian day begins at noon and runs runs until
noon the following day. Decimals can be introduced to represent hours,
minutes and seconds, for example: the Julian day number of 1996-03-31 at
midnight is written 2450174.5. Conversions from Gregorian dates (used in
daily life) to Julian day numbers are performed by a basic algorithm, where
the Gregorian day, month and year are represented by (d, m, y):

( )( )( )
( )( )( )( ) 320754100121449003         

3674121448001461

−+−++⋅
−+−++⋅=

dmy

myjd
(3.1)

Here, days are integer values in the range 1-31, months are integers in the
range 1-12, and years are positive or negative integers. The result of each
division is truncated (remainders are discarded) as in integer arithmetic. The
reversed conversion process (Julian day number to Gregorian date) can be
carried out by employing another algorithm which is omitted here (shown in
[9]). Julian date numbers are used in the advanced magnetic field model
since the actual Earth magnetic field varies with time.

3.1.3 Orbit Environment Simulation

The Spacecraft Control Toolbox provides functions that simulate the orbit of
a satellite by returning the position and velocity vectors at corresponding
times. The input parameters to the function used are defined in a vector
containing the Kepler elements as well as a time vector, defining the total
number of computational points in the simulation. This function is based on
the two-body problem and a spherically perfect Earth, resulting in a
perturbation free orbit environment. Hence, the state vector of the satellite is
calculated with Kepler’s laws using the Kepler elements. The function also
returns a plot of the satellite track around the Earth, see Fig. (3.2). The
described model is acceptable for an attitude control simulation since long
term effects on the orbit will not change the performance of the algorithm.
However, functions for more accurate orbit calculations are also available in
SCT, considering the orbit deviations due to the perturbing forces.

A magnetic torquer depends on the Earth’s magnetic field vector,
making it necessary to model the geomagnetic field. Primarily, this was done
with a simple dipole using the satellite position vector as the input
parameter. Such a model is sufficiently accurate for a low altitude orbit such
as Victoria’s, but for higher altitude orbits or computations that require a
higher degree of accuracy, a more detailed model may be used (see Section
(3.3.1)).

The dipole function returns a magnetic field vector in the ECI frame.
Simulation computations require a transformation of the magnetic field
vector from the ECI frame into the body-fixed frame, an option that is
provided in the SCT using either Euler or quaternion transformations (see
Appendix A & B). Finally, the initial attitude of the satellite is specified

Figure 3.2. A 3D Satellite Track
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using Euler angles, which in turn are transformed into quaternions. The
reason for this is that quaternions are numerically more efficient to use when
propagating the attitude of the satellite using Runge-Kutta methods.

3.1.4 Solving the Euler Equations with the 4th Order
Runge-Kutta Method

The attitude control simulations were all built around the same core loop, in
which a numerical method was used to solve the previously derived Euler
equations of motion (Eq. (2.33)), propagating the angular rate vector and the
rotation quaternions (described in detail in Appendix B) for each time step.
To achieve a sufficiently high degree of accuracy in the computations, the
classical fourth-order Runge-Kutta method was employed, solving primarily
for the ωx, ωy and ωz components. The discretization error of this method is
O(h4), where h is the time step used in the solution, meaning that the error ε
→ 0 rather rapidly as h decreases in size. To illustrate the marked
improvement brought about by increasing the order of a Runge-Kutta
method from second to fourth, Fig. (3.3) has been added, showing two
approximations to the function f(t) = e-t:

Figure 3.3. Different order solutions to e-t (linear and cubic)

The fourth-order Runge-Kutta numerical integration method calculates
the values of rotations and rates for the next time step using the following
algorithm:

( )( )43211 2
6

kkkkxx ++++=+
h

tt
(3.2)

where, for the problem at hand, x is the state vector on the form:

[ ]T
zyxqqqq ωωω4321=x (3.3)

(the q:s being quaternion components). The parameters k1 through k4 of Eq.
(3.2) are computed in the following way:
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where f is the right-hand-side of the differential equations and t is the current
time. Numerical instabilities are easily introduced in the solving of
differential equations, leading to divergence from the correct solution.
Sources of such instabilities as well as suitable preventive actions are
discussed further in Section (3.4.1) below.

3.1.5 Spacecraft Properties

Since the Victoria satellite is still under development as this report is being
written, detailed models of the inertia matrix or component weights are not
available. Instead, the inertia matrix was approximated using the definition
of moments of inertia along with Steiner’s theorem on a set of homogeneous
boxes with different masses. The types of boxes used were:

Component name Mass [kg] Size [m]
Core Box 17 0.20 x 0.20 x 0.20
Solar Panel 1.2 0.20 x 0.20 x 0.01

Table 3.1. Five solar panels were used in the calculation of the inertia matrix.

After verification, the inertial products were found to be one magnitude
less than the three moments of inertia Ixx, Iyy, Izz. They were therefore set to
zero to facilitate and speed up computations, which yielded the following
inertia matrix:
















=

3453.000

02738.00

002738.0

I (3.5)

where the inertial moments have the unit [kgm2]. The center of gravity for
this model is located at 0.0274 m below the center of the core body and the
total mass measures approximately 23 kg.

3.2 GRAHN’S ALGORITHM IMPLEMENTED

The Sun-pointing attitude control algorithm described in Section (2.5) will
ultimately be written in computer code and fed into the payload computer,
using the electromagnetic coil as its actuator. For simulation purposes, a
Matlab function that performs the comparison between the Earth’s magnetic
field and the body fixed frame and then decides upon a suitable polarity of
the coil current was created. This function is called once for each time step
in the main simulation loop, giving the magnetic dipole moment that results
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in a torque. A minimum angle αmin (between the spin axis of Victoria and the
Sun vector) is also sent into the function, below which the coil current is cut
off by giving it polarity 0 (instead of ±1). As soon as the satellite drifts off
position, the coil is turned back on to correct the attitude. Below, a flowchart
demonstrating the steps carried out in the function is shown:

Figure 3.4. The main steps of the function Grahn.m

where BECI is the Earth’s magnetic field vector in the ECI frame and uSun is
the Sun vector in the spacecraft frame.

There are a few distinct discrepancies between the simulation code
described above and the actual satellite control implementation. The first
difference lies in the way signals from the magnetometer and Sun sensor are
sampled; in the simulation they are sampled once for each time step, i.e.
every ∼  0.1 seconds, while the satellite only samples a few times per minute.
This means that the magnetic field vector and the Sun vector in the orbiting
Victoria need to be recalculated in the payload computer, using the previous
orientation and rates of rotation. However, errors introduced due to
numerical computations in the satellite should not reach sufficiently high
values to interfere with attitude control.

The second difference involves assumptions made about the Sun sensor
in the simulation. In the code, the FOV of the sensor is assumed to be an
ideal 180 degrees, while it in actuality is limited to 40° (or ± 20°). If a
narrow FOV Sun sensor is used in Victoria it becomes crucial to initiate the
spin rate at just the right time (with an angle α < 40° between the spin axis
and the Sun vector) to avoid ’lost in space’-scenarios where the satellite
cannot find the Sun.

3.3 SIMPLIFIED SIMULATION

To verify the main program and its functions, a series of somewhat
simplified simulations were run in which the Earth’s magnetic field was
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approximated by a dipole (the specifics are discussed in Section (3.3.1)).
Below, a flowchart of the Matlab simulation code, describing its contents
step by step, is show as Fig. (3.5):

Figure 3.5. Flowchart of the simulation code

The majority of the steps have been described in previous sections, with
one exception: ’Visualize Victoria’s Movement in 3D’, which executes a
real-time visualization of the satellite’s rotations, based upon the saved
quaternions from each time step.

In the present configuration and with the inertia matrix of Eq. (3.5), the
simulation failes to produce a converged solution with a decreasing α angle,
regardless of the time step size. The result obtained for α can be viewed in
Fig. (3.6) as a function of the simulation time. However, the problem of
divergence can be solved, giving the desired attitude control behaviour, as is
shown in Section (3.3.2).
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Figure 3.6. The angle between the spin axis and the Sun vector does not converge.

3.3.1 Approximation of the Magnetic Field

The Earth is essentially a gigantic magnet with poles called the North and
South magnetic poles. These poles are located near the geographic North and
South poles, respectively. The North magnetic pole attracts the north pole of
a compass needle, so it is actually the south pole of the Earth magnet.
Similarly, the South magnetic pole is the north pole of the Earth magnet
since it repels the north pole of a compass needle. The magnetic field at the
surface of the Earth, known as the geomagnetic field, varies in strength from
0.3 gauss to 0.6 gauss (the unit of magnetic induction or magnetic flux
density, 10 000 gauss equals one tesla). As a comparison of magnitudes; the
field near the poles of a small horseshoe magnet may be several hundred
gauss and the fields of magnets used in industrial applications may measure
more than 20 000 gauss (2 tesla).

It is the Earth’s inner structure that creates the mentioned geomagnetic
field. The crust of the Earth is the outermost portion on which we live and
beneath it lies a rocky mantle. Under the mantle is a dense core, which has a
solid inner part and a liquid outer part. Scientists believe that the motion of
electric charges in the liquid outer core produces the geomagnetic field. The
Earth’s magnetic field also extends into space beyond the atmosphere, where
it is called the magnetosphere. The magnetosphere interacts with a flow of
charged particles from the Sun called the solar wind (see Section (2.4.1)).
This interaction is the cause of different phenomena such as auroras and a
zone of charged particles around the Earth known as the Van Allen-belts.
Furthermore, the impact of the solar wind causes the magnetic field lines
facing sunward to compress, while the lines facing away from the Sun
stream back to form the Earth’s so-called magnetotail. Hence, the
magnetosphere is shaped like a teardrop, with the point extending away from
the Sun, see Fig. (2.7). The magnetosphere extends into the vacuum of space
from approximately 80 to 60 000 kilometers on the side towards the Sun,
and trails out more than 300 000 kilometers away from the Sun.

In its most basic magnetic form, Earth can be thought of as a dipole
magnet (bar magnet). The “best fit” of this dipole to the observed magnetic
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field is obtained by placing a dipole of magnetic moment 8⋅1022 Am2 about
400 km from the center of the Earth, with the axis of the dipole at an angle
of 11.5° relative to the Earth’s axis of rotation. Although this magnetic field
is symmetrical unlike the magnetic field of Earth, it provides a reasonably
accurate approximation. This can be motivated by the fact that Victoria will
be orbiting at the relatively low altitude of 700 km above sea level, where
the actual field is fairly symmetrical. Also, the strength of the nondipolar
field (the difference between the actual field and the “best fit” dipole field)
is, on average, only about 5% of the total field (although there can be much
greater local anomalies).

The attitude control algorithm was tested using the simple dipole model
and proved to be stable for many different initial values of the attitude, as
will be shown further ahead. In Section (3.4), simulations are run using
functions provided by SCT for more accurate modeling of the magnetic field
(see Fig. (3.7)), where actual measurements of the Earth’s magnetic field are
read from a data file based on the IGRF model described in [10].

Figure 3.7. The oscillating lines with the singularities represent the advanced IGRF magnetic field model,
while the other ones show magnitudes of the dipole approximation components.

3.3.2 Inertia Matrix Adjustments

In this first paragraph, a few facts about the inertia matrix are recapitulated
to facilitate understanding of the second paragraph, where the adjustments
are described. It can be shown that there is one unique orientation of axes x-
y-z for a given origin for which the products of inertia vanish and the
moments of inertia Ixx, Iyy and Izz assume stationary values. For this
orientation, the inertia matrix (or inertia tensor) takes on the form of Eq.
(3.5). This diagonal matrix contains the principal moments of inertia, which
were calculated by treating the sections (core body + five sun panels) of the
satellite as boxes or rectangular paralleleppipedes. That model is a good
approximation for the inertia tensor if the satellite has an even
(homogeneous) mass distribution. The actual inertia tensor is difficult to
predict and should therefore be measured on the actual satellite in a lab
environment. Such tests have not been carried out (as this report is being
written), which motivates an even-mass-distribution approximation of the
satellite. For a spinning satellite to be stable, the mass distribution needs to
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resemble that of a disc (with the spin axis in the same direction as the normal
of the disc). This is an important consideration when constructing a spin-
stabilized satellite.

In the case where the satellite is symmetrical around the spin axis (Ixx =
Iyy), the moment of inertia ratio λ should be greater than 1.1, where λ =
Izz/Ixx. The inertia matrix of Eq. (3.5) is more similar to a sphere than to a
disc, making the satellite somewhat unstable. However, note that the stability
parameter for a spin-stabilized satellite is satisfied in this matrix (λ = Izz/Ixx >
1.1). Nevertheless, the moment of inertia ratio λ was increased by reducing
the magnitudes of Ixx and Iyy to half their initial magnitudes, while at the
same time Izz was increased with a factor of two. Increasing λ by a factor of
four proved to be sufficient to stabilize the satellite, as can be seen in Figs.
(3.9) – (3.12). Physically, this can be achieved by positioning weights at the
outer edges of the solar panels (see Fig. (3.8)) or reducing the height of the
core box considerably. The adjusted inertia matrix yields the benign attitude
behaviour presented in Figs. (3.9) & (3.10):

Figure 3.9. Starting with an α of ∼  67°, Victoria succesfully aligns within αmin = 5°  of  the Sun vector.

Figure 3.10. The satellite maintains its attitude at α ≈ 5°.
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Figure 3.8. Point masses can
increase the oblateness.
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3.4 REALISTIC SIMULATION

In order to further increase the accuracy of the dynamic behaviour of
Victoria during attitude control, a somewhat more complex simulation than
the one presented in Section (3.3) was executed. It incorporated the use of
the realistic magnetic field model demonstrated in Fig. (3.7), in which the
field vector has a slightly larger magnitude than the vector in the dipole
approximation. If the magnitude of the current remains unchanged compared
to the previous simulations, this yields a stronger torque on the satellite. The
resulting solutions showed a tendency to diverge in a fashion similar to Fig.
(3.6) above, but could be made to converge under certain conditions: Most
importantly, the inertia matrix adjustments made under Section (3.3.2) were
required in the realistic simulation as well. Furthermore, a weaker current
could be used to slow down the attitude change of the satellite and thereby
avoid divergence (this was not required in the simulations shown below in
Figs. (3.11) & (3.12)).

Figure 3.11. Victoria aligns with the Sun vector from an initial 24° α angle.

Figure 3.12. Even with the oscillative magnetic field model, the satellite manages to hold its attitude.
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3.4.1 Sources of Instabilities

The Runge-Kutta propagation of the satellite’s attitude quaternions relies on
numerical methods to compute the dynamics for the next time step. This
numerical solution to the governing differential equations depends on
parameters fed to the computer in the form of time step size h, coil current,
spin rate and magnetic field vector. For a computation based on an equal
time step size (i.e. h is constant), an upper bound for the error introduced by
the numerical method can be calculated using the so-called Composite
Simpson’s rule which is given by:

( ) 44

2880
hab

M
ECS −≤ (3.6)

where M4 is a bound for the fourth derivative of the equation used and b – a
is the length of the interval for the current time step. Employing Simpson’s
rule, the numerical error could be kept arbitrarily small as long as the fourth
derivative M4 is known. However, for the application at hand, a simpler
method for veryfying the accuracy of the numerical results can be used: By
running the the same simulation several times in a row and only changing
the time step h, the convergence of the obtained solutions can be tested. If
the computations vary sufficiently little, a suitable h has been found.

Other sources that can cause divergence in the computations are the coil
current and the magnetic field vector magnitude. If either one of these
becomes too large, the torque affecting the satellite reaches values that
attempt to rotate it at a higher rate, equivalent to increasing the interval b – a
above, and thereby increasing the error. Thus, a slower settling behaviour is
more accurately computed than a rapid one.

3.5 POWER CONSUMPTION

While adjusting the attitude of Victoria, the electromagnetic coil consumes a
certain amount of power in the form of supplied current. This power
consumption can be calculated for different scenarios (starting at angles α of
67°, 24° or as low as 5°) and different time periods. The time periods can be
chosen as one orbit, one average orbit, one hour or the time needed to reach
a desired α.

The power calculations are primarily used to verify that the total
average orbit power of the satellite (16-20 W) is not exceeded. Furthermore,
comparisons of the effectiveness of different actuators (3 coils, 1 coil,
reaction wheels) are facilitated, which can help determine the most suitable
means of control. The equation governing consumption of power P in any
electrical device is given by:

IUP = (3.7)

where I is the current in amperes and U is the voltage. If the electrons in the
current are moving through a resistive medium, such as a conductor, the
relation U = IR gives the following:
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2
2 == (3.8)

with R being the resistance in ohms. The SI-unit for power is the watt (W),
and power during a time period is usually measured in wattseconds (Ws) or
watthours (Wh).

For power efficiency comparisons, a number of simulations have been
carried out, starting at three different α angles and using both magnetic field
models. Computations of the power consumption were done under the
assumption that the coil voltage measured approximately 10 V while
engaged and the target α was set to 5°. As long as the satellite has not
reached the 5° target angle, it is working with a constant power consumption
of 10 Watts. As a result, an initial angle of 67° produces a settling time of
approximately 1 hour, while for an angle of 24° the satellite takes roughly 15
min to settle (16 min for the dipole model and 12 min for the realistic
model). The results are presented in the following table:

Power Consumption [W]
Initial α Angle Dipole Magnetic Field Realistic Magnetic Field

>5° 10 10
∼ 5° 1 (average) 0.6 (average)

Table 3.2. Power consumptions for different initial attitude scenarios

where the average power is computed by dividing the total energy
consumption (Ws) by the simulation time (s).

It is apparent that the realistic magnetic field model produces a higher
field strength, leading to a greater torque. It therefore requires less power to
control the attitude.
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4 CONCLUSIONS

The most fundamental conclusion that can be drawn from our simulations is
that the Sun-pointing algorithm by Sven Grahn successfully aligns the spin
axis of Victoria with the direction to the Sun. One of the strong points of this
algorithm is its simplicity in implementation, requirering only a few
mathematical operations in the payload computer at each time step. Another
strength is the ability to accomplish with one coil what usually is done with
two or three coils - namely controlling the attitude of Victoria in a stable
manner. Furthermore, the satellite is for an arbitrary angle α able to reach
that angle in a short amount of time and maintain that attitude without
diverging.

The importance of an oblate mass configuration, i.e. a shape that closer
resembles a disc than a sphere, became apparent during the simulations as
the satellite showed tendencies to be unstable. However, by redistributing
Victoria's mass and thereby modifying the inertia matrix, stability could be
achieved. Other factors to consider in order to obtain a stable behavior in the
simulations were the time step size in the Runge-Kutta method, the dipole
moment of the actuator coil (governed by the magnitude of the current), the
spin rate and the magnitude of the magnetic field vector.

The disturbance forces acting on the satellite all measured at least one
magnitude less than the attitude control torque, a fact that was verified using
the Spacecraft CAD functions in the SCT. Long term effects of these minute
disturbance forces need not be considered for this basic application as the
control algorithm counteracts any deviation from the assigned α, regardless
of its origin.

Choosing the current magnitude was done by investigating the magnetic
dipole moment generated by actuators of similar satellites. This resulted in a
first assumption for the coil current of 1 Ampere, that with a voltage of 10 V
in the coil yielded the maximum 10 Watt power consumption. Combined
with the realistic magnetic field model, the time for Victoria to settle at α =
5° from an initial angle of 67° then became approximately 1 hour.

Average orbit power differs between the two magnetic field models due
to the mentioned discrepancy in field strength magnitude. Simulations with
the IGRF model consumes 60% of the power used with the dipole
approximation. Another factor determining the power consumed to maintain
a desired attitude is the inertia matrix components (smaller moments of
inertia results in increased mobility but also raises susceptibility to
disturbances). Note that the computed power usage of 0.6 W is based on a
number of approximations, but nevertheless provides a reasonable basis for
comparisons with other control methods.
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APPENDIX A – EULER ANGLES

It is convenient to specify the motion of a rigid body relative to a set of
coordinate axes coinciding with the principal axes which are fixed in the
body and consequently rotate as the body rotates. The orientation of the
satellite is given by a series of three consecutive rotations, the Euler angles,
whose order are important (there are several conventions governing the order
and orientation of the rotations, for instance z-x-z' or z-y-x). These rotations
are relative to the inertial space axes, which are fixed in space. The satellite
is initially imagined to be oriented so that its axes are parallel to those fixed
in space. The following rotations are then applied (see Fig. (A.1)):

1. A rotation φ about the z-axis of both the inertial and body frame.
2. A rotation θ  about the new x-axis (at A) of the body frame.
3. A rotation ψ about the z'-axis of the body frame.

Figure A.1. The line OA is referred to as the Line of Nodes (see Fig. (2.2)).

This makes it possible to transform a vector in the ECI (Earth-Centered
Inertial) coordinates into body fixed coordinates (satellite coordinates). For
example, consider the magnetic field vector BECI defined in the space axes.
This vector can be represented in body fixed coordinates BBF through a
series of transformation matrices. These matrices shown below:

( )














 −
=

100

0cossin

0sincos

1 φφ
φφ

φL (A.1)

( )















−=

θθ
θθθ

cossin0

sincos0

001

2L (A.2)
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( )














 −
=

100

0cossin

0sincos

3 ψψ
ψψ

ψL (A.3)

which yields the following transformation from the ECI frame to the body
fixed frame:

( ) ( ) ( ) ECI123 BLLLB ⋅⋅⋅= φθψBF  (A.4)

where the order of the matrices is crucial. However, some sequences of
rotations will result in the same orientation. For example, considering a book
laying on a table face up, define the x-axis to the right, y-axis up, and the z-
axis normal to the tabletop. A rotation of π radians about the y-axis will turn
the book so that the back cover is now facing up. Another way to achieve the
same orientation would be to rotate the book π radians about the x-axis, and
then π radians about the z-axis. To avoid ambiguities, the Euler angles are
limited to:

-π ≤ φ < π or 0 ≤ φ ≤ 2π

-π / 2 ≤ θ ≤ π / 2

-π ≤ ψ < π or 0 ≤ ψ ≤ 2π

The angles will then be unique for most orientations of the satellite, but
for a continuous steady rotation, around one of the principal axes, the time
variation of one of the angles is a discontinuous sawtooth function. This,
along with other troublesome phenomena, can be avoided by using
quaternions (see Appendix B) to define the orientation and rotation of the
satellite. A quaternion is another way of representing the orientation of one
frame with respect to another. Propagations of orientation are most
efficiently done with quaternions and they are often used for numerical
integration, due to the fact that quaternions have only 4 elements instead of
the 9 transformation matrix elements. The Euler angles are still employed,
since they give a physical picture of the satellite’s attitude in contrast to the
quaternions (which are impossible to visualize).
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APPENDIX B – QUATERNION ROTATION

While it is possible to rotate objects in three dimensions using
transformation matrices (as described in Appendix A), propagating rotations
of a satellite governed by differential equations is easier done with
quaternions. The basis of quaternion theory comes from complex numbers,
where it is known that i represents the square root of –1, giving

1−=⋅ ii (B.1)

Any complex number can then be expressed in terms of real numbers, using
a real and a complex part:

biaz += (B.2)

Quaternions are an extension of complex numbers. Instead of just i, three
different numbers i, j, k are introduced, all equal to the square root of –1:

1

1

1

−=⋅
−=⋅

−=⋅

kk

jj

ii
(B.3)

When multiplied together in pairs, these numbers behave similarly to cross
products of the unit basis vectors.

jkiik

ijkkj

kijji

=⋅−=⋅
=⋅−=⋅

=⋅−=⋅
(B.4)

The conjugate and magnitude of a quaternion are calculated in
practically the same way as complex conjugate and magnitude. For an
arbitrary quaternion q they become:

zkyjxiw +++=q (B.5)

zkyjxiw −−−=′q (B.6)
2222 zyxw +++=′⋅= qqq (B.7)

Quaternions are associative ( ) ( )321321 qqqqqq ⋅⋅=⋅⋅ (B.8)

Quaternions are not commutative 1221 qqqq ⋅≠⋅ (B.9)

The inverse of a unit quaternion (length 1) is equal to its conjugate, q-1 = q’.
A quaternion can be represented in a number of ways, of which three

are shown here:

1. as a linear combination of 1, i, j, k,
2. as a vector of the four coefficients in this linear combination,
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3. or as a scalar for the coefficient of 1 and a vector for the
coefficients of the imaginary terms:

[ ] ( )

[ ]zyx

ws

swzyxzkyjxiw

=
=

==+++=

v

vq ,
(B.10)

To compute rotations using quaternions, a unit vector u around which
the rotation is performed will be needed, as well as an angle θ. By first
constructing the quaternion q = (s, v), where

2
sin

2
cos

θ

θ

uv =

=s
(B.11)

and then carrying out a standard matrix multiplication to rotate an arbitrary
point p in space (employing the temporary quaternion P = (0, p)), the rotated
point is obtained:

1−= qPqProtated (B.12)

Recalling that for a unit quaternion, the inverse is equal to the
conjugate, the computation is simplified further. If several contributions q1,
q2, … to a rotation need to be concatenated into one step the following
method is used (similar to matrix transformation):

1
2

1
112

−−= qPqqqProtated (B.13)

For further theory on the subject of quaternions, see [11].
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APPENDIX C – MATLAB FUNCTIONS

Below, the matlab files written by the authors and employed in the
simulations are listed along with a short description of their contents:

Grahn.m The Sun-Pointing Algorithm by Sven Grahn
implemented as described in Fig. (3.4).

Victoria3D.m Animates the attitude change due to the applied
torques by transforming an initial model of the
satellite with the saved quaternions from the main
simulation loop.

VictoriaEnergy.m Computes the energy consumed by Victoria during
the entire simulation as described in Section (3.5).

VictoriaInert.m Delivers the inertia matrix along with the center of
gravity for a Victoria model based on the
dimensions and masses of the main components.

VictoriaSim.m The main program, which defines constants and
calls on each one of the functions described above.
This code contains the core loop that performs the
Runge-Kutta 4th order propogation of the Euler
equations and the quaternions.
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