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bInfoCodex SA, av. Louis-Casaï 18, CH-1209 Geneva, Switzerland

acristina.diamantinitrugenberger@cern.ch
bca.trugenberger@InfoCodex.com

(February 27, 2002)

We show that, contrary to previous string models, the
high-temperature behaviour of the recently proposed confin-
ing strings reproduces exactly the correct large-N QCD result,
a necessary condition for any string model of confinement.

PACS: 11.25Pm

Although fundamental strings [1] can be quantized
only in critical dimensions, strings in four space-time di-
mensions are of great interest since there is a large body
of evidence [2], recently confirmed by numerical tests [3],
that they can describe the confining phase of non-Abelian
gauge theories. However, a consistent quantum theory
describing these strings has not yet been found: the sim-
plest model, the Nambu–Goto string, can be quantized
only in space-time dimension D = 26 or D ≤ 1 because of
the conformal anomaly; it is inappropriate to describe the
expected smooth strings dual to QCD [4], since large Eu-
clidean world-sheets are crumpled. In the rigid string [5],
the marginal term proportional to the square of the ex-
trinsic curvature, introduced to cure this problem, turns
out to be infrared irrelevant and, thus, unable to prevent
crumpling.

Both these models also fail to describe the correct high-
temperature behaviour of large-N QCD [6]. As shown
in [7], the deconfining transition in QCD is due to the
condensation of Wilson lines, and the partition function
of QCD flux tubes can be continued above the decon-
fining transition; this high-temperature continuation can
be evaluated perturbatively. So, any string theory that is
equivalent to QCD must reproduce this behaviour. How-
ever, the Nambu–Goto action has the wrong tempera-
ture dependence, while the rigid string has the correct
high-temperature behaviour but with a wrong sign and
an imaginary part signalling a world-sheet instability [6].
At low temperatures, the behaviour of the rigid string
was studied in [8].

Recently, two new models have been proposed: a first
one, the confining string [9], is based on an induced string
action explicitly derivable for compact QED [10] and for
Abelian-projected SU(2) [11]; a second one, originally
proposed in [12], is based on a five-dimensional, curved
space-time string action with the quarks living on a four-
dimensional horizon [13]. The interrelation between these
two models has been analysed in [14].

The confining string action possesses, in its world-sheet

formulation, a non-local action with a negative stiffness
[10,15] that can be expressed as a derivative expansion
of the interaction between surface elements. To perform
an analytic analysis of the geometric properties of these
strings, this expansion must be truncated: this clearly
makes the model non-unitary, but in a spurious way.
Moreover, since the stiffness is negative, a stable trun-
cation must, at least, include a sixth-order term in the
derivatives [16]. In [16,17] it was shown that, in the large-
D approximation, this model has an infrared fixed point
at zero stiffness, corresponding to a tensionless smooth
string whose world-sheet has Hausdorff dimension 2, ex-
actly the desired properties to describe QCD flux tubes.
As first noticed in [18], the long-range orientational order
in this model is due to an antiferromagnetic interaction
between normals to the surface, a mechanism confirmed
by numerical simulations [19]. Moreover, it was shown
in [17] that this infared fixed point does not depend on
the truncation and is present for all ghost- and tachyon-
free truncations, and that the effective theory describing
the infrared behaviour is a conformal field theory with
central charge c = 1.

In this paper we will study the high-temperature be-
haviour of the string model defined in [16]. We will show
that this model has a high-temperature behaviour that
agrees in temperature dependence, sign and reality prop-
erties with the large-N QCD result [6]. This result de-
pends entirely on the higher order term and is totally
independent of the stiffness. Finite-temperature confin-
ing strings in (2+1) dimensions and in the presence of
D0-branes have been studied in [20].

In Euclidean space, the action proposed in [16] is:

S =
∫

d2ξ
√

ggabDaxµ

(
t− sD2 +

1
M2
D4

)
Dbxµ , (1)

where Da are covariant derivatives with respect to the
induced metric gab = ∂axµ∂bxµ on the surface x(ξ0, ξ1).
The first term in the bracket provides a bare surface ten-
sion 2t, while the second accounts for the rigidity, with a
stiffness parameter s that we set to its fixed-point value
s = 0. In the third term, M is a new mass scale. Since
this term contains the square of the gradient of the ex-
trinsic curvature matrices, it suppresses the formation of
spikes on the world-sheet. In the large-D approximation
it generates a string tension proportional to M2, which
takes control of the fluctuations where the orientational
correlation dies off. To perform the large-D analysis we
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introduce a Lagrange multiplier [21] λab that forces the
induced metric ∂axµ∂bxµ to be equal to the intrinsic met-
ric gab, extending the action (1) to:

S → S +
∫

d2ξ
√

g
[
λab(∂axµ∂bxµ − gab)

]
. (2)

We parametrize the world-sheet in a Gauss map by
xµ(ξ) = (ξ0, ξ1, φ

i(ξ)), i = 2, ..., D − 2. The value of
the periodic coordinate ξ0 is −β/2 ≤ ξ0 ≤ β/2 with
β = 1/T and T the temperature. Note that at high
temperatures (β � 1), the scale M2 can be temperature-
dependent. This is not unusual in closed string theory as
has been shown by Atick and Witten [22]. The value of ξ1

is −R/2 ≤ ξ1 ≤ R/2; φi(ξ) describe the D− 2 transverse
fluctuations. We look for a saddle-point solution with
a diagonal metric gab = diag (ρ0, ρ1), and a Lagrange
multiplier of the form λab = diag (λ0/ρ0, λ1/ρ1). The
action then becomes:

S= S0 + S1

S0= Aext
√

ρ0ρ1 [ t

(
ρ0 + ρ1

ρ0ρ1

)
+ λ0

(
1− ρ0

ρ0

)

+λ1

(
1− ρ1

ρ1

)
] ,

S1=
∫

d2ξ
√

ggab∂aφi

(
t +

1
M2
D4

)
∂bφ

i , (3)

where βR = Aext is the extrinsic, projected area in coor-
dinate space, and S0 is the tree-level contribution. Inte-
grating over the transverse fluctuations in the one-loop
term S1, we obtain, in the limit R→∞:

S1=
D − 2

2
R
√

ρ1

+∞∑
n=−∞

∫
dp1

2π
ln [ t

(
ω2

n + p2
1

)

+ p2
1λ1 + ω2

nλ0 +
1

M2

(
ω2

n + p2
1

)3
] , (4)

where ωn = 2π
β
√

ρ0
n. At high temperatures, satisfying

(M2β2)(tβ2)� 1 , (5)

the sixth-order term in the derivatives dominates in the
one-loop term S1 when n 6= 0. Using analytic regulariza-
tion ∫

reg

dx ln(x2 + a2) = 2πa ,

and analytic continuation of the formula

∞∑
n=1

n−z = ζ(z) ,

for the Riemann zeta function, with ζ(−1) = −1/12, we
obtain for the n 6= 0 contribution:

D − 2
2

R
√

ρ1

+∞∑
n=−∞

∫
dp1

2π
ln

(
ω2

n + p2
1

)3

M2

=
D − 2

2

√
ρ1

ρ0
12π

R

β

+∞∑
n=1

√
n2 =

D − 2
2

√
ρ1

ρ0
12π

R

β
ζ(−1)

= −D − 2
2

√
ρ1

ρ0

πR

β
. (6)

For n = 0, instead, rewriting

ln
[
p2
1(t + λ1) +

1
M2

p6
1

]
= ln

[
p2
1

M2

(
M2(t + λ1) + p4

1

)]

= ln
[
(p2

1 + iM
√

λ1 + t) (p2
1 − iM

√
λ1 + t)

]
+ ln

p2
1

M2
,

we obtain:

D − 2
2

R
√

ρ1

∫
dp1

2π
ln

[
p2
1(t + λ1) +

1
M2

p6
1

]

=
D − 2

2
R
√

ρ1

∫
dp1

2π
2Re ln(p2

1 + iM
√

λ1 + t)

=
D − 2

2
R
√

ρ1

√
2M(λ1 + t)1/4 . (7)

The action S = (S0 + S1) then becomes

S = S0 +
D − 2

2
R
√

ρ1

[√
2M (λ1 + t)1/4 − π

β
√

ρ0

]
.

(8)

The factor D−2
2 in (S0 + S1) ensures that, for large D,

the fields ρ0, ρ1, λ0 and λ1 are extremal and thus satisfy
the four-gap equations:

1− ρ0

ρ0
= 0 , (9)

1
ρ1

= 1− D − 2
2

1
4β

√
2M

(λ1 + t)3/4
, (10)[

1
2
(t− λ1) +

1
2ρ1

(λ1 + t)− t− λ0

]
+

D − 2
2

π

2β2
= 0 , (11)

(t− λ1)−
1
ρ1

(λ1 + t) +

D − 2
2

1
β

[√
2M (λ1 + t)1/4 − π

β2

]
= 0 . (12)

Substituting (12) into (8) we obtain a simplified form of
the effective action:

Seff = AextT
√

ρ0

ρ1
, (13)

with T = 2(λ1 + t) representing the physical string ten-
sion.

By inserting (10) into (12), we obtain an equation for
(λ1 + t) alone:
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(λ1 + t)− D − 2
2

5
8β

√
2M (λ1 + t)1/4

+
D − 2

2
π

2β2
− t = 0 . (14)

Without loss of generality we set

(λ1 + t)1/4 =

√
2M

γ
, (15)

where γ is a dimensionless parameter. It is possible to
show that, at high temperatures, when

tβ2 � D − 2
2

, (16)

we can completely neglect t in (14). Indeed, as we now
show, λ1 is proportional to (D− 2)/β2. Note that this is
compatible with the condition (5) used before. We can
thus rewrite (14) as:

λ1 −
D − 2

2
5
8β

γλ
1/2
1 +

D − 2
2

π

2β2
= 0 . (17)

We now restrict to the regime

25
64

γ2

(
D − 2

2

)2

− 2π
D − 2

2
> 0 , (18)

for which (17) admits two real solutions:

(λ1
1)

1/2=
5

16β
γ

D − 2
2

+
1
2β

√
25
64

γ2

(
D − 2

2

)2

− 2π
D − 2

2
, (19)

(λ2
1)

1/2=
5

16β
γ

D − 2
2

− 1
2β

√
25
64

γ2

(
D − 2

2

)2

− 2π
D − 2

2
. (20)

In both cases λ1 is proportional to (D − 2)/β2, which
justifies neglecting t in (14) and implies that the scale M2

must be chosen proportional to 1/β2. Moreover, since
the physical string tension is real we are guaranteed that
M2 > 0, as required by the stability of our model. Any
complex solutions for T would have been incompatible
with the stability of the truncation.

Let us start by analysing the first solution (19). By
inserting (19) in (11), we obtain the following equation
for ρ1:

1
ρ1

= 1− 4

5 +
√

25− 128π
γ2 D−2

2

. (21)

Owing to the condition (18), 1/ρ1 is positive and, since
λ2

1 is real, the squared free energy is also positive:

F 2(β) ≡ S2
Eff

R2
=

1
β2

(
5
16

γ
D − 2

2

− 1
2

√
25
64

γ2

(
D − 2

2

)2

− 2π
D − 2

2




4

×

×


1− 4

5 +
√

25− 128π
γ2 D−2

2


 . (22)

In this case the high-temperature behaviour is the same
as in QCD, but the sign is wrong, exactly as for the rigid
string. There is, however, a crucial difference: (22) is
real, while the squared free energy for the rigid string is
imaginary, signalling an instability in the model.

If we now look at the behaviour of ρ1 at low tempera-
tures, below the deconfining transition [17], we see that
1/ρ1 is positive. The deconfining transition is indeed de-
termined by the vanishing of 1/ρ1 at β = βdec. In the
case of (19) this means that 1/ρ1 is positive below the
Hagedorn transition, touches zero at βdec and remains
positive above it. Exactly the same will happen also for
F 2, which is positive below βdec , touches zero at βdec and
remains positive above it. This solution thus describes an
unphysical “mirror” of the low-temperature behaviour of
the confining string, without a real deconfining Hagedorn
transition. For this reason we discard it.

Let us now study the solution (20). Again, by inserting
(20) in (11), we obtain for ρ1 the equation:

1
ρ1

= 1− 4

5−
√

25− 128π
γ2 D−2

2

. (23)

In this case, when

γ > 4
√

π

3

(
D − 2

2

)−1/2

, (24)

1/ρ1 becomes negative. The condition (24) is consistent
with (18) and will be taken to fix the values of the range
of parameter γ that enters in (15). We will restrict to
those that satisfy (24). Since ρ0 = 1 and λ1 is real and
proportional to 1/β2, we obtain the following form of the
squared free energy:

F 2(β)= − 1
β2

(
5
16

γ
D − 2

2

− 1
2

√
25
64

γ2

(
D − 2

2

)2

− 2π
D − 2

2




4

×

×


 4

5−
√

25− 128π
γ2 D−2

2

− 1


 . (25)

In the range defined by (24) this is negative. For this so-
lution, thus, both 1/ρ1 and F 2 pass from positive values
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at low temperatures to negative values at high temper-
atures, exactly as one would expect for a string model
undergoing the Hagedorn transition at an intermediate
temperature. In fact this is also what happens in the
rigid string case, but there, above the Hagedorn tran-
sition, there is a second transition above which, at high
temperature, λ1 becomes large and essentially imaginary,
giving a positive squared free energy. This second tran-
sition is absent in our model.

A consistency check is made to look if the two solutions
(19) and (20), together with (15) and (24) are compatible
with the validity range (5) of our high-temperature ap-
proximation. Ignoring numerical factors and subleading
terms in D−2

2 , (5) becomes

tβ2 � D − 2
2

, (26)

which is exactly the condition (16).
Let us now compare the result (25) with the corre-

sponding one for large-N QCD [7]:

F 2(β)QCD = −2g2(β)N
π2β2

, (27)

where g2(β) is the QCD coupling constant. First of all
let us simplify our result by choosing large values of γ:

γ �
√

128π

25

(
D − 2

2

)−1/2

.

In this case (25) reduces to

F 2(β) = − 1
β2

8π3

125
D − 2

γ2
. (28)

This corresponds exactly to the QCD result (27) with the
identifications

g2∝ 1
γ2

,

N∝ D − 2 .

The weak β-dependence of the QCD coupling g2(β) can
be accommodated in the parameter γ. Note that our
result is valid at large values of γ, i.e. small values of
g2, as it should be for QCD at high temperatures [23].
Note also the interesting identification between the order
of the gauge group and the number of transverse space-
time dimensions. Moreover, since the sign of λ1 does not
change at high temperatures, the field xµ is not unsta-
ble. The contrary happens in the rigid string case [6],
where the change of sign of λ1 gives rise to a world-sheet
instability.
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