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Abstract. An interpretation of the cosmological redshift in terms of a cosmic ether is given. We study
a Robertson-Walker cosmology in which the ether is phenomenologically defined by a homogeneous
and isotropic permeability tensor. The speed of light becomes so a function of cosmic time like in a
dielectric medium. However, the cosmic ether is dispersion free, it does not lead to a broadening of
spectral lines. Locally, in Euclidean frames, the scale factors of the permeability tensor get absorbed
in the fundamental constants. Mass and charge scale with cosmic time, and so do atomic energy
levels. This substantially changes the interpretation of the cosmological redshift as a Doppler shift.
Photon frequencies are independent of the expansion factor; their time scaling is determined by the
permeability tensor. The impact of the ether on the luminosity-distance, on the distance-redshift
relation, and on galactic number counts is discussed. The Hubble constant is related to the scale
factors of the metric and the permeability tensor. We study the effects of the ether at first in comoving
Robertson-Walker coordinates, and then, in the context of a flat but expanding space-time, in the
globally geodesic rest frames of galactic observers.

1. Introduction

We consider the possibility to generate the cosmological redshift by means of a
cosmic ether (Whittaker, 1951; Tomaschitz, 1998,b,c), contrary to the commonly
accepted explanation in terms of a space expansion. The spacetime geometry is de-
scribed by a Robertson-Walker (RW) line element, but the dynamics of light rays is
determined by a permeability tensor. This tensor is homogeneous and isotropic, and
defined by two scale factors depending on cosmic time. The speed of light becomes
so a function of cosmic time, but phase and group velocity still coincide. There is
no dispersion in the direction of propagation, as in vacuum electrodynamics.

We study the effects of the ether on distance measurement and source counts.
This can be done in the framework of ray optics. The eikonal equation reads like
in a curved space, but the spacetime metric is replaced by the permeability tensor.
So the dynamics of rays gets completely detached from the spacetime metric.

In the cosmology presented here the semiclassical approximation for light rays
is exact. The eikonal is the phase of the plane wave solutions of Maxwell’s equa-
tions. Thus we can derive from the eikonal the exact cosmic time dependence of
the frequency, and, via the Einstein relation, the energy of photons. The photon
frequency as well as the Hubble constant depend on the scale factors of the perme-
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256 ROMAN TOMASCHITZ

ability tensor. The Hubble constant is defined via the asymptotic distance-redshift
relationd0 ∼ c0H

−1
0 z, whered0 is the metric distance between source and observer

at arrival time, andc0 is the present value of the speed of light.
In Section 2 electrodynamics in the ether is defined. We derive a condition on

the scale factors of the permeability tensor and the metric which renders the ether
dispersion free. The time evolution of the electromagnetic energy is shown to be
strictly proportional to frequency, and we demonstrate in this way that the Planck
constant is independent of cosmic time. The Coulomb potential of a static point
source in the ether is calculated, and it is demonstrated that in the Kepler problem
the scale factors of the permeability tensor can be absorbed in the fundamental
constants, which become functions of cosmic time. The scaling laws for the speed
of light, mass, and charge are derived. The fine structure constant, a moderate
dimensionless ratio (Dirac, 1938; 1973) does not scale in cosmic time, contrary
to atomic energy levels.

In Section 3 we discuss the redshift. It is an effect caused by the cosmic scaling
of atomic energy levels as well as the scaling of the photon frequencies. The photon
frequency is independent of the expansion factor in the RW metric, the ether is
perfectly capable of producing redshifts in a static spacetime geometry. We identify
the Hubble constant, which is inversely proportional to the age of the universe.
The luminosity-distance is derived, and the deceleration parameter is related to the
exponents of the scale factors of metric and permeability tensor.

In Sections 4 and 6 we study various source counting functions, in particular the
number of galaxies of redshift smaller thanz. This function gives information on
the time evolution of the galactic density. Due to evolutionary effects, this density
need not scale with the inverse cube of the expansion factor, and soN(z) need not
be monotonous. Redshift surveys of quasars (Hartwick and Schade, 1990) indicate
a peak ofN(z). We discuss under which conditions a maximum can emerge, and
relate it to the scaling exponents of the galactic density and the scale factors.

In Sections 3 and 4 we consider the luminosity-distance and number counts in
comoving RW coordinates. In this frame all galaxies have constant space coordi-
nates, and by virtue of these coordinates a universal rest frame and a unique cosmic
time shared by all galactic observers is defined. In Sections 5 and 6 individual
geodesic rest frames of galactic observers are investigated. Galaxies or galactic
observers are not affected by the ether, unlike other massive particles, as they are
at rest in the universal rest frame. We study a RW cosmology with linear expan-
sion factor and negatively curved 3-space. The spacetime geometry is isometric
to the forward light cone, and so globally geodesic rest frames can be introduced
for galactic observers. In each of these frames the galactic background is radially
receding, every galaxy with constant speed. The geodesic rest frames are related
by Lorentz boosts.

In Section 5 we study the world lines of photons in globally geodesic frames,
and how the ether effects their speed and energy. The ether generates double images
of photons in individual galactic rest frames. Redshifts depend on the speed of the
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receding galaxies, but unlike Doppler shifts, also on the proper time of the observer.
We derive the luminosity-distance relation in globally geodesic coordinates, and
show its equivalence with that obtained in the universal frame of rest. In Section 6
we study the galactic density in globally geodesic coordinates, the spatial density
as well as velocity and redshift distribution functions. In Section 7 we present our
conclusions.

2. Electromagnetism and Massive Particles in the Ether

We discuss electrodynamics in the ether, the hypothetical material substance of
space (Whittaker, 1951; Tomaschitz, 1998b,c), which macroscopically manifests
by a symmetric permeability tensorgPµν . Quite analogously to a dielectric medium,
the following formalism is based on two symmetric tensor fields, the space-time
metricgµν (inversegµν , determinantg), and the permeability tensorgPµν (inverse
gP−1µν , determinantgP ). Action and Lagrangian for the electromagnetic potentials
we define as

S =
∫
(L+Aµjµ)√−gdxdτ, L = −1

4
FµνFαβg

P−1µαgP−1νβ, (2.1)

andFµν = Aν,µ − Aµ,ν . Introducing the tensor

Hµν := gP−1µαgP−1νβFαβ, (2.2)

we may write the field equations as

1√−g
∂(
√−gHµν)

∂xν
= jµ, 1√−g ε

λαβγFαβ;γ = 0. (2.3)

The continuity equation,jµ;µ = 0, follows from the inhomogeneous equations in
(2.3). The energy-momentum tensor reads

T µ
ν := −FναHµα + 1

4
δµν FαβH

αβ, (2.4)

which is the usual definition of electromagnetic energy in a dielectric medium.
We consider electromagnetic waves freely propagating in a perfectly isotropic

and homogeneous cosmic ether, in the context of an open RW universe with line
elements

ds2 = −c2dτ2+ a2(τ)dσ 2, (2.5)

ds2
P = −c2h2(τ)dτ2 + b2(τ)dσ 2, (2.6)

defininggµν andgPµν , respectively. We assume that the 3-space is open and nega-
tively curved, but this is not really essential for most of the following. We use the
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258 ROMAN TOMASCHITZ

Poincaré half-space representation of hyperbolic geometry;dσ 2 = R2u−2(|dξ |2+
du2) in the half-space:H 3: (ξ, u), ξ ∈ CI, u > 0, cf., e.g., Magnus (1974).xµ =
(τ, ξ, u). R is a dummy constant of the dimension of length, needed for dimen-
sional reasons, likec in the line elements (2.5) and (2.6);H 3 endowed withdσ 2

has constant sectional curvature−1/R2. The dimensionless scale factorsa, b and
h actually depend on3τ , 3 := cR−1, but in the following calculations we put
c = R = 1.

We solve Equations (2.3) (jµ = 0) with the transversality condition
(−g)−1/2∂(

√−ggµνAν)/∂xµ = 0 and the Coulomb gaugeA0 = 0. The homo-
geneous equations in (2.3) are already satisfied by the potential representation of
Fµν . We are interested in plane waves propagating along theu-semi-axis, and use
the separation ansatzA1 = ϕ(τ)uis , A0 = A2 = A3 = 0. (There is a second
transversal set of plane waves obtained by interchangingA1 andA2; these two
sets are orthogonal.) With this ansatz the transversality condition is satisfied. The
µ = 0,2,3 components of the inhomogeneous equations (2.3) are identically
satisfied, and theµ = 1 component gives the equation forϕ(τ),

b4

a3

d

dτ

(
a3

h2b2

d

dτ
ϕ

)
+ s2ϕ = 0, (2.7)

ϕ(τ)uis(1,0,0) andϕ(τ)uis(0,1,0) constitute a complete set of tansversal plane
waves propagating along theu-axis. A complete set propagating in any other direc-
tion is obtained by applying to them symmetry transformations ofH 3. The energy
density of a plane wave has the time dependence

T 0
0
√
γ ∼ a3

b2

( |ϕ′|2
h2
+ |ϕ|

2

b2

)
. (2.8)

A wave packet composed of a Gaussian average (with respect to the spectral
variables) over the plane wavesϕ(τ, s)uis(1,0,0) will in general show dispersion
(Tomaschitz, 1992a, 1997b) since group and phase velocity differ in a dielectric
medium. This is very contrary to the vacuum formalism, which is recovered in the
caseh = 1 andb = a (Tomaschitz, 1993b). In vacuum the phase of the electromag-
netic spectral waves linearly depends on the spectral parameter, therefore phase and
group velocities coincide and are identical with the speed of rays obtained from
the eikonal equation; there is no dispersion along the direction of propagation.
Dispersion leads to a broadening of spectral lines, which is not observed (Sandage,
1988). If

h(τ) ∼ a3(τ)/b3(τ), (2.9)

then

ϕ = exp

(
∓is

∫
hb−1dτ

)
, (2.10)
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is an exact solution of (2.7), and the phase is linear in the spectral variable like
in vacuum electrodynamics. Thus there is no dispersion in the ether if the pro-
portionality (2.9) holds. The phase of the spectral elementary waves evidently
reads

ψ = s
(

logu∓
∫
hb−1dτ

)
. (2.11)

This coincides with the exact solution of the eikonal equation

gP−1µνψ,µψ,ν = 0, (2.12)

for rays along theu-semi-axis. From (2.11) we obtain the frequency of the spectral
waves asω = 3|s|hb−1(3 = cR−1). From (2.8) and (2.10) we obtainT 0

0
√
γ ∼

ω, which suggests for the photon energy the relationE(τ) = h̄ω(τ), with h̄ inde-
pendent of cosmic time. For the wave vector we then obtain from (2.11)ku = s/u;
photon momentum and wave length readpu = h̄ku andλ− = |ku|−1 = aR|s|−1,
respectively, so that the speed of light in the ether isĉ(τ ) = ωλ− = cab−1h.

Next we calculate the potential of a static point sourcees . Because of the spher-
ical symmetry of the potential we use as coordinate representation of the cosmic
3-space the ball modelB3 of hyperbolic geometry. We then have in (2.5) and (2.6)
dσ 2 = 4(1− |x|2/R2)−2dx2 (Cartesian coordinates in the ball|x| < R). B3 is
isometric toH 3 (Magnus, 1974). We putR = c = 1, andxµ = (τ, x). The
potential must solve (2.3) with the currentj0 = esγ

−1/2δ(x), jk = 0, of a static
point sourcees located atx = 0. (γ denotes the determinant of the 3-metrica2dσ 2).
We try the ansatzA0 = h2b2a−3ϕ(r),Ak = 0. The homogeneous equations and the
spatial components of the inhomogeneous set of equations in (2.3) are identically
solved in this way. Theµ = 0 component gives

∂

∂xk

(
2

1− r2

∂

∂xk
ϕ(r)

)
= esδ(x), (2.13)

and so we obtain asymptotically

A0(τ, x) = − es
4π

h2b2

a2

1

d(τ, x)
+O(d/(Ra)). (2.14)

Hered(τ, x) denotes the distance ofx from the point sourcees atx = 0,

d(τ, x) = Ra(τ) log
1+ |x|/R
1− |x|/R . (2.15)

Ra(τ) is the curvature radius of the cosmic 3-space, whereasd(τ, x) is, for exam-
ple, an atomic length if we study the scaling in the Rutherford model, therefore the
asymptotic formula (2.14) is by all standards sufficient.

From the eikonal equation (2.12) it is clear how to define the mechanics of
classical particles in the ether, namely by the Hamilton-Jacobi equation
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260 ROMAN TOMASCHITZ

gP−1µνS,µS,ν = −m2, (2.16)

(Tomaschitz, 1998b,c). This corresponds to the Lagrange function

L(s) = −m
√
−gPµνẋµẋν , (2.17)

with the actionS = ∫
Lds. We study geodesic motion along theu-axis ofH 3.

This does not mean any restriction, asH 3 is homogeneous. From the Lagrange
equations we immediately have two integrals of motion along theu-axis,

h2τ̇2(s)− b2(u̇(s)/u)2 = 1, b2u̇/u = ν, (2.18)

with a real integration constantν, so that

d logu = νhb−1(b2 + ν2)−1/2dτ, ds = hb(b2+ ν2)−1/2dτ. (2.19)

The generalized 4-momentum reads

pν = ∂L/∂ẋν = ∂S/∂xν = mẋµ(s)gPµν, (2.20)

xµ := (τ, ξ = 0, u), and the energy of a particle moving in the ether we define as
E = −p0 = p0. From (2.18) and (2.19) we obtain (after restoring the natural units
c andR)

E = m̂ĉ2√
1− |v|2/ĉ2

= mc2h
√

1+ ν2b−2, (2.21)

ĉ = ca(τ)b−1(τ)h(τ), m̂ = ma−2(τ)b2(τ)h−1(τ), (2.22)

|v| = aRu−1du/dτ = cha
b

ν√
b2+ ν2

. (2.23)

Equations (2.22) constitute the scaling laws for speed of light and mass.R, c andm
are bare constants, whereasR̂ = Ra(τ) (curvature radius of the 3-space),ĉ andm̂
are the measured quantities.ĉ is of course the same as already derived after (2.12).

The coupling of a particle of chargee to the electromagnetic potential is ef-
fected by minimal substitution,S,µ → S,µ − eAµ, in (2.16). This amounts to add
the termeAµẋµ to the Lagrangian (2.17). The zero-component of the generalized
momentum now reads, withA0 as in (2.14),p0 = −E,

E = m̂ĉ2√
1− |v|2/ĉ2

+ êês
4π

1

d(τ, x)
, (2.24)

ê = eh(τ)b(τ)a−1(τ). (2.25)
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This is the scaling law for the electric charge. The fine structure constantα =
ê2/4πh̄ĉ evidently does not scale, becauseh̄ is independent of cosmic time and
because of the proportionality (2.9), which renders the ether dispersion free.
E in (2.24) is the Hamiltonian of the relativistic Kepler problem ifd(τ, x) and

|v| are identified with the Euclidean radial coordinate and velocity. Clearly,E is not
any more an integral of motion because of the time dependence of the constants,
but on the time scale of an orbital period the time variation of the fundamental
constants is adiabatic. The angular momentum is still a constant of motion. By
means of the Bohr quantization rules for the hydrogen atom, we obtain for the
energy levels, the Bohr radii, the orbital velocity and period the scaling laws

En = − m̂

2h̄2

(
êês

4π

)2 1

n2
∼ h3b

6

a6
, rn = 4π

h̄2n2

m̂êês
∼ 1

h

a4

b4
, (2.26)

vn = h̄n

m̂rn
∼ h2b

2

a2
, Tn = 2π

r2
nm̂

h̄n
∼ 1

h3

a6

b6
. (2.27)

Because of relation (2.9), they all scale with powers of the scale factorh(τ). These
scaling laws can as well be derived from the Schrödinger equation, which reads
as usual, but with time dependent mass and charge. This scaling of atomic energy
levels holds for all atomic spectra because of the adiabatic variation of the scale
factors, which means that time derivatives of the constants are negligible in leading
asymptotic order.

In the following we choose the scale factors of metric and permeability tensor
as power laws,

a(τ) = A(3τ)α, b(τ) = B(3τ)β, h(τ) = H(3τ)γ . (2.28)

Remark:Apart from the fine structure constant there is a second dimensionless
ratio, h̄2H0/(kcm3), which is of moderate magnitude, if we take form the mass of
an elementary particle (Dirac, 1938). If we require this ratio to be constant, then we
must chooseγ = −1. This follows from the scaling of the gravitational constant,
k̂ = kh4(τ)a2(τ)b−2(τ). A detailed derivation of this scaling law, based on the
gravitational theory developed in Tomaschitz (1998c), will be given elsewhere. We
will not make explicit use of the gravitational constant in this paper, but we will
mainly discuss the choiceγ = −1 in (2.28), which is strongly suggested by the
indicated scaling ofk. We also assume thatβ > 0, which is the condition for
redshifts to occur; a negativeβ would result in blueshifts, as we will see in the next
Section.

Integrating (2.19) with the scale factors (2.28) andγ = −1, we obtain

u = κ exp(−Ã
√
ν2τ−2β + B2), Ã := H/(Bβν), (2.29)

which can also be derived from the action

S(τ, u) = νm logu− mH
B

∫
1

τ

√
ν2τ−2β + B2dτ. (2.30)
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262 ROMAN TOMASCHITZ

The eikonal equation (2.12) is solved by

ψ = s(logu+ Âτ−β), Â := ±H/(Bβ). (2.31)

Heres is an integration parameter identical with the spectral variable in (2.11), and
the rays read

u = κ exp(−Âτ−β). (2.32)

As the semiclassical approximation is exact, we attach to the rays a photon energy
(h̄ = c = 1)

E = g00ψ,τ = sÂβτ−β−1, (2.33)

see the discussion following (2.12). ForE to be positive, we choose the integration
parameters in (2.31) so thatsÂ > 0.

3. Effects of the Ether on the Redshift-Distance Relation in a General RW
Cosmology

In traditional RW cosmology the redshift can be defined by 1+ z = E(τem)/

E(τrec), withE(τ) = h̄ω(τ). However, this is not the case in the ether, even though
h̄ remains independent of cosmic time. Not only the photon frequency scales in
cosmic time, but also the measuring rods, the atomic energy levels. This is taken
into account by expressing the photon energy in units of these varying rods, i.e.,
if we replaceE(τ) in the redshift-energy relation byE(τ)/En(τ), whereEn(τ) ∼
h3b6a−6 is some atomic energy level, cf. (2.26). Sinceω(τ) = 3|s|h(τ)b−1(τ) as
pointed out after (2.12), we have

1+ z = R̃(τrec)/R̃(τem), R̃(τ) := h2b7a−6. (3.1)

This is a crucial relation, and very different from the standard theory, sinceb(τ)

is a scale factor of the permeability tensor. The energy of the photon emitted by
the source at timeτem is 1En(τem), namely the difference of two atomic energy
levels. Its energy when received at timeτrec is 1En(τem)ω(τrec)/ω(τem); this is
a consequence of light propagation through the ether. The redshift (3.1) is then
obtained by comparing this energy to the energy of a photon emitted by a reference
atom in the same transition. The energy of this reference photon is1En(τrec).

In the following we use the Poincaré half-spaceH 3 as coordinate representation
of the hyperbolic 3-space, see after (2.6). We consider a galactic source of radiation
at (ξ = 0, u = 1), and a galactic observer sitting at(ξ = 0, u = u0). A photon
is emitted at timeτem and reaches at a later instantτrec the observer; it has the
world-line

u(τ) = exp
[
sign(u0− 1)

∫ τ

τem

R−1
P (τ)dτ

]
, RP (τ) := b(τ)h−1(τ). (3.2)
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Clearly,u0 andτrec are related byu(τrec) = u0. Also note that we have to choose
the sign ofÂ in (2.32) so that sign(Â) = sign(u0−1), otherwise the photon cannot
reach the observer. If a second photon is emitted by the source a little later, at
τem +1τem, it will arrive at τrec +1τrec, and we have

1τrecR
−1
P (τrec) = 1τemR−1

P (τem) (3.3)

(McVittie, 1965). In the following we specify the scale factors of metric and per-
meability tensor as in (2.28). We obtain from (3.1)

τrec/τem = (1+ z)1/δ, δ : = 2γ + 7β − 6α, (3.4)

a(τrec)/a(τem) = (1+ z)α/δ, RP (τrec)/RP (τem) = (1+ z)(β−γ )/δ,
En(τrec)/En(τem) = (1+ z)(3γ+6β−6α)/δ, (3.5)

and from (3.2)

| logu0| =
∫ τrec

τem

R−1
P (τ)dτ = D(τrec)((1+ z)(β−γ−1)/δ − 1), (3.6)

D(τrec) := c0

H0

1

Ra(τrec)

δ

β − γ − 1
, (3.7)

c0 := c a(τrec)
RP (τrec)

, H0 := ˙̃R(τrec)/R̃(τrec) = δ/τrec. (3.8)

δ > 0 is evidently the condition that a redshift occurs. In (3.7) and (3.8) we have
restored the unitsc andR. We assume thatD(τrec) > 0, so thatβ − γ − 1 > 0.
This means| logu0| → ∞ for z→∞, and thusβ−γ −1> 0 is the condition that
no horizon appears. The metric distance [with respect to the line elementa(τ)dσ

on the cosmic 3-space] between source (atu = 1) and observer (atu = u0) reads

d(τ) = a(τ)| logu0|, d(τem) = (1+ z)−α/δd(τrec). (3.9)

With these prerequisites the redshift-distance relation (Tolman, 1930; 1934;
Robertson, 1938; Sandage, 1961; Robertson and Noonan, 1968; Weinberg, 1972)
can easily be derived. The source located atu = 1 is isotropically emitting at time
τem (within an interval1τem) a swarm of photons. Its absolute luminosity, i.e., the
total emitted energy per unit time in the rest frame of the source is thus (h̄ = 1)

L = Erad(τem)/En(τem)

1τem/Tn(τem)
, Erad(τem) =

∑
k

nkωk(τem). (3.10)

Herenk denotes the number of emitted photons of frequencyωk(τ) = |sk|R−1
P (τ).

Energy and time are measured in units of some atomic energy levelEn(τ) and
periodTn(τ), cf. (2.26) and (2.27). The apparent luminosity is defined as the energy
absorbed by the observer’s antenna (placed perpendicular to theu-axis) per unit
time and unit area,
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264 ROMAN TOMASCHITZ

Lapp = 1

area(u0, τrec)

Erad(τrec)/En(τrec)

1τrec/Tn(τrec)
. (3.11)

Here area(u0, τrec) denotes the area of the hyperbolic sphere centered at the source
at u = 1 and passing through the observer atu = u0. The antenna is assumed to
be a tiny cap of this sphere, and the radiation is isotropic. The light rays emitted
at u = 1 pass of course orthogonally through the sphere. Because of the space
expansion the area of the sphere scales with the square of the expansion factor. For
the area we obtain

area(u0, τ ) = 4πa2(τ)| logu0|2d̃2
L, d̃L := | logu0|−1 sinh(| logu0|). (3.12)

[This is the area of a sphere with hyperbolic center at(ξ = 0, u = 1), intersect-
ing theu-axis atu±1

0 . It is easiest calculated in theB3-model, see after (2.12).]
Assembling equations (3.10)–(3.12) and (3.3), we arrive at

Lapp = L

4πd2
L

, (3.13)

d2
L =

1

4π
area(u0, τrec)

RP (τrec)Tn(τem)E
rad(τem)En(τrec)

RP (τem)Tn(τrec)Erad(τrec)En(τem)
. (3.14)

The luminosity distancedL may be written as

dL = Ra(τrec)(1+ z)| logu0|d̃L, (3.15)

with | logu0| as in (3.6) and (3.7). Note that we can safely putd̃L ≈ 1, since

d(τrec) = Ra(τrec)D(τrec)((1+ z)(β−γ−1)/δ − 1) (3.16)

[cf. (3.9)], and sinced(τrec) � Ra(τrec) (curvature radius of the 3-space), and
because the redshift factor isO(1) for presently accessible redshifts. Therefore
D(τrec) � 1 holds, andd̃L ≈ 1 follows from (3.6) and (3.12). By substituting
(3.6) for | logu0| in (3.15), we can identify the deceleration parameterq,

dL = c0

H0
z

(
1+ 1

2
(1− q)z +O(z2)

)
, q := (1+ γ − β)

δ
. (3.17)

Because of condition (2.9) on the scale factors and because ofγ = −1, cf. the
Remark following (2.28), we have among the exponents the relationsβ − α =
1/3 andδ = β. Thus the prediction isq = −1 for the deceleration parameter,
like in steady state cosmology. However, the universe has a finite age, cf. (3.8).
If the expansion is linear thenδ = 4/3, which means that its age is just twice
that predicted by the standard theory withq = 1/2, cf. Sandage (1988). Linear
expansion is extensively discussed in Sections 5 and 6.
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4. Source Counts in the Ether

For the following considerations we use as coordinate representation of the cosmic
3-space the ball modelB3 of hyperbolic space as introduced after (2.12). We denote
by ρ(τ) the galactic density, i. e., the number of galaxies per unit volume in the 3-
space, and consider a thin spherical shell inB3, centered atx = 0, with Euclidean
radiusrem and thicknessdrem. At time τem the number of galaxies in this shell is

dN(τem, rem) = ρ(τem)dvol(rem, τem) = 32πa3(τem)ρ(τem)
r2
emdrem

(1− r2
em)

3
. (4.1)

The light emitted by these galaxies atτem reaches an observer sitting atx = 0 at
time τrec. The rays inB3 are calculated fromds2

P = 0, cf. (2.6), and we obtain in
this way∫ τrec

τem

R−1
P (τ)dτ = −2

∫ 0

rem

(1− r2)−1dr = log
1+ rem
1− rem =: rH . (4.2)

We keepτrec fixed in (4.2) and regardrem andτem as functions of the parameterrH .
Equation (4.1) may thus be written

dN(τem(rH ), rem(rH )) = ρ̂(τem(rH ))area(rH )drH , (4.3)

ρ̂(τ ) := a3(τ)ρ(τ), area(rH ) := 4π sinh2(rH ). (4.4)

SincerH = | logu0|, we obtain from (3.4) and (3.6)

τrec

τem
=
(

1+ rH

D(τrec)

)1/(β−γ−1)

. (4.5)

We assume for̂ρ a power law,

ρ̂ ∼ τ2λ, ρ̂(τem) = ρ̂(τrec)
(
1+ rH

D

)2λ/(1+γ−β)
. (4.6)

The number of galaxies of redshift smaller thanz reads

N(z) =
∫ rH (z)

0
dN(rH ), rH (z) = D(τrec)((1+ z)(β−γ−1)/δ − 1), (4.7)

dN(rH ) = 4πρ̂(τrec)d̃
2
Lr

2
H

(
1+ rH

D

)2λ/(1+γ−β)
drH . (4.8)

[The source counting functionN(z) is extensively discussed for RW cosmology
by, e.g., Sangdage (1961), McVittie (1965), and Weinberg (1972).] The extrema of
the integranddN(rH )/drH are determined by the zeros of

1+ rH
D
= 1

D

λ

β − γ − 1
tanh(rH ). (4.9)
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It is geometrically evident that this equation has either none or two solutions. As
D(τrec) is very small, the first solution will be a maximum atrH(max) = O(D) and
the second a minimum atrH(min) = O(1), beforedN/drH exponentially diverges
because of thẽd2

L-factor. However, only the maximum is observationally acces-
sible. [We can always assumẽdL ≈ 1, as pointed out after (3.16).] To calculate
rH(max), we may replace in (4.9) tanhrH by rH , i.e., we putd̃L = 1 in dN/drH . So
we obtain as solution of (4.9)

rH(max)

D
= β − γ − 1

λ− (β − γ − 1)
+O(D). (4.10)

This maximum corresponds via (4.7) to a redshift

(1+ zmax)
(γ+1−β)/δ = 1+ (γ + 1− β)/λ. (4.11)

As δ > 0 andβ − γ − 1> 0 [pointed out after (3.8)], we have as condition on the
density exponentλ for a maximum to occur

λ/(β − γ − 1) > 1. (4.12)

Redshift surveys of quasars show a peak ofdN/dz in the range 2.2 < zmax < 2.4
(Hartwick and Schade, 1990). If we chooseα = 1, β = 4/3, andγ = −1, cf. the
end of Section 3 and the beginning of Section 5, we obtainλ ≈ 1.9 for zmax≈ 2.3.
The galactic density then scales asρ(τ) ∼ τ2λ−3, cf. (4.4) and (4.6).

The integral in (4.7) is elementary if we putd̃L = 1,

N(z) = 4πρ̂(τrec)(RD)
3

[
1

µ+ 3
((1+ z)(µ+3)ν − 1)

− 2

µ+ 2
((1+ z)(µ+2)ν − 1)+ 1

µ+ 1
((1+ z)(µ+1)ν − 1)

]
(1+O(D2)),

µ := 2λ(1+ γ − β)−1, ν := (β − γ − 1)/δ, ν > 0. (4.13)

If µ = −1,−2,−3,N(z) is defined by an obvious limit procedure. We obtain for
z→ 0 the Euclidean result

N(z) ∼ 4π

3

(
RD(τrec)z

β − γ − 1

δ

)3

ρ̂(τrec) ∼ 4π

3
d3(τrec)ρ(τrec). (4.14)

[The second asymptotic equivalence is evident from (3.16) and (4.4).] Ifβ = δ =
4/3, γ = −1, andλ = 2, then we obtain from (4.13)

N(z) = 4πρ̂(τrec)(RD(τrec))
3

(
log(1+ z)− z

(
1+ 3

2
z

)
(1+ z)−2

)
. (4.15)
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Remark:An observationally more tractable quantity thanN(z) is N(z,Lapp), the
number of galaxies with redshift smaller thanz and luminosity greater thanLapp.
In this case both density and luminosity evolution are taken into account (Sandage,
1988). The galactic density becomes in this way an unknown function of two vari-
ables,ρ(τ, Labs), which requires a further integration over the absolute luminosity
in the integral representation ofN(z,Lapp) (Weinberg, 1972). In this paper we
content ourselves withN(z) = N(z,Lapp = 0), which evidently is an upper bound
onN(z,Lapp), and disregard the possibility of luminosity evolution.

5. Ether and Luminosity-Distance in an Expanding Minkowskian Universe

The universe defined by the RW line element (2.5) is isometric to the forward
light conet2 − |x|2 > 0, t > 0, x = (x, y, z), provided the expansion factor is
linear [A = α = 1 in (2.28)] and the cosmic 3-space is negatively curved (Infeld
and Schild, 1945). In this way globally geodesic coordinates can be introduced for
every galactic observer. The coordinate change mapping the line element (2.5) into
the Minkowski metricηµν = diag(−1,1,1,1) is given by(

t

x

)
= τ

2u
(|ξ |2+ u2± 1), (y, z) = τ

u
(ξ1, ξ2);

τ =
√
t2− |x|2, u =

√
t2 − |x|2
t − x , (ξ1, ξ2) = (y, z)

t − x , (5.1)

so that theu-semi-axis ofH 3 [defined after (2.6)] is mapped onto thex-axis.
Because of the homogeneity of the light cone it is sufficient to focus on world-
lines along thex-axis. (All other trajectories can be obtained by applying Lorentz
transformations onto them). We therefore putξ = 0 in (5.1). The world line
u = u0 of a galactic observer [see Section 4] is mapped by (4.1) ontox = vt ,
v = (u2

0 − 1)(u2
0 + 1)−1. In particular the light source atu = 1 is mapped onto

x = 0.
The actionS(t, x) for massive particles moving in the ether reads as in (2.30),

with (5.1) (ξ = 0) substituted. After all,S is a scalar, and it is understood that the
permeability tensor as defined in (2.6) is mapped by (5.1) into the forward light
cone (Tomaschitz, 1998b). Energy and momentum is then defined in the(t, x)-
frame asE = η00S,t , p = S,x. In particular, if a particle is at rest [ν = 0 in (2.19)
and (2.23)], we obtain for its rest energy

E0 = m Ht

t2 − x2
. (5.2)

At the galaxyx = 0 we thus have the scalingE0 = mc2h(t). [γ = −1 in (2.28).]
Since atx = 0 we haveτ = t , u = 1, all scaling laws derived in Section 2 remain
valid at the galaxy, just by replacingτ by t . (The forward light cone coordinates
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are also the locally geodesic ones, of course.) Let us consider that for the speed of
light.

The world-lines of photons as calculated in (2.32) are mapped by (5.1) into√
(t + x)(t − x)−1 = κ exp(−Â(t2− x2)−β/2), (5.3)

with Â = ±H/(Bβ). The general solutionψ(t, x) of the eikonal equation in the
forward light cone is obtained by the same substitution in (2.31). For photon energy
and momentum we obtain

E(t, x) = −ψ,t = st

t2 − x2

(x
t
+ βÂ(t2− x2)−β/2

)
, (5.4)

p = ψ,x = st

t2− x2

(
1+ βÂx

t
(t2− x2)−β/2

)
. (5.5)

The speed of light readsc(t, x) = −ψ,t/ψ,x . Clearly,

|c(t, x)| = λ−ω, ω = |ψ,t |, λ− = |ψ,x|−1, (5.6)

c(t, x = 0) = βÂt−β . (5.7)

This is the scaling already derived in (2.22), ifτ is identified witht . [Note that the
exponents in (2.28) now readα = −γ = 1]. For the energy of a photon atx = 0
we obtain

E = sÂβt−β−1. (5.8)

As pointed out after (2.33), we choose the sign ofs in a way thatE is positive.
A photon is emitted by the sourcex = 0 at some timetem. Then the integration

constant in (5.3) is determined asκ = exp(Ât−βem ). Insertingx = vt into (5.3), we
obtain for the absorption of the photon by the observer the coordinates

trec(tem, v) = γ
(
t−βem −

1

2Â
log

1+ v
1− v

)−1/β

, xrec = vtrec(tem, v), (5.9)

with γ := (1− v2)−1/2. Note that sign(Â) = sign(v) = sign(u0 − 1), otherwise
the ray cannot reach the observer in the comoving frame, see the discussion after
(3.2) and the relation betweenv andu0 pointed out after (5.1).

The rest frame of the galactic observer is denoted by coordinates(t ′, x′), so that

t ′ = γ (t − vx), x′ = γ (x − vt). (5.10)

[The (t, x)-frame is the rest frame of the source placed atx = 0.] This observer
is located atx′ = 0. For emission and absorption event we have in this frame the
coordinates

t ′em = γ tem, x′em = −γ vtem; t ′rec = γ −1trec, x
′
rec = 0. (5.11)
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Let us suppose that a second photon is emitted by the source a little later, at(tem +
1tem, x = 0). In the rest frame of the source the two photons arrive at the galactic
observer separated by the time interval (proper time of the source)

1trec = ∂trec(tem, v)
∂tem

1tem. (5.12)

In the proper time of the observer the time differences at which the two photons
are emitted, and absorbed read

1t ′em = γ1tem, 1t ′rec = γ −1∂trec(tem, v)
∂tem

1tem. (5.13)

At the time of emission the distance between observer and source is, in the rest
frame(t, x) of the source,Rem = |v|tem. At the time of absorptiontrec, the distance
is Rrec = |v|trec(tem, v) in this frame. In the rest frame(t ′, x′) of the galactic
observer we have at emission timet ′em the distanceR′em = |v|γ tem. The trajectory
of the source reads in these coordinatesx′ = −vt ′. Thus, at the time of absorption
t ′rec the source is located at−vt ′rec, and the distance between source and observer is
R′rec = γ −1|v|trec(tem, v). Inverting (5.9), we have

R′em = |v|γ tem(trec, v), tem(trec, v) = γ −1

(
t−βrec +

1

2Â
γ −β log

1+ v
1− v

)−1/β

.

(5.14)

From (5.8) we know thatEem ∼ t
−1−β
em , E′rec ∼ t

′−1−β
rec . If we calculate the

redshift, we have to normalize these energies with the energy of atomic energy
levels, cf. (3.1), which scale asEn ∼ h(t) ∼ t−1. (We assumeα = 1, β = 4/3,
γ = −1, cf. the end of Section 3.) For the normalized energies we haveÊem ∼ t−βem ,
Ê′rec ∼ t ′−βrec , so that the redshift reads as

1+ z = Êem

Ê′rec
=
(
t ′rec
tem

)β
. (5.15)

From (5.11) and (5.14) we obtain

z = 1

2Â
t ′βrec log

1+ v
1− v

. (5.16)

Clearly,z > 0 sinceβ > 0 and sign(Âv) = 1, see after (5.9). We may now write

t ′rec = (1+ z)1/βtem, 1t ′rec = (1+ z)1+1/β1tem. (5.17)

Remark:The redshift definition (5.15) coincides with that in comoving coordi-
nates, namely with 1+ z = (τrec/τem)

β , cf. (3.4). [In (3.4) we haveδ = β as
pointed out at the end of Section 3]. The photon is emitted at(τem, u = 1) and
received by the observer at(τrec, u0); therefore
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u0 = exp(−Â(τ−βrec − τ−βem )) = exp(Âτ−βrec z). (5.18)

Moreover,u0 =
√
(1+ v)(1− v)−1 andx = vt , as pointed out after (5.1). The

signs ofÂ, v andu0−1 coincide, see after (5.9). Thus (5.18) is equivalent to (5.16)
providedτrec = t ′rec. This identification follows fromt ′rec = γ (trec − vxrec), if we
express(trec, xrec) in terms of(τrec, u0) via the transformation (5.1). [τem coincides
with tem atx = 0, cf. (5.1).]

With these prerequisites it is now very easy to compile the luminosity-distance
relation, as we already did in Section 3 for a general RW cosmology without spec-
ifying the exponents of the scale factors in (2.28). We measure time in units of
Tn ∼ h−1(t) ∼ t , cf. (2.27), and we writê1t = 1t/t. So we have

1̂t ′rec = (1+ z)1̂tem. (5.19)

Energy we normalize as in the redshift definition (5.15),Ê = E/En.
The source atx = 0 isotropically emits at timetem during the interval1tem a

swarm of photons of total energyEradem = ∑
k nkωk and frequenciesωk =

skÂβt
−β−1
em , cf. (5.8) and after (5.14). The observer is assumed to carry an antenna,

a disk of radiusr0 placed orthogonal to thex-axis, which therefore collects a very
tiny fraction r2

0π/(4πR
2
rec) of the isotropically emitted photons.Rrec is defined

after (5.13). The photons hit the antenna orthogonally, of course. The energy which
the observer receives in his rest frame on his antenna at(t ′rec, x′ = 0) during the
interval1t ′rec, cf. (5.17), is

Ê′(antenna)rec = Êradem

1

1+ z
r2
0π

4πR2
rec

, (5.20)

where we used (5.15). The apparent luminosityLapp is defined as the energy per
unit time and unit area absorbed by the antenna in its rest frame. Combining (5.19)
and (5.20), we obtain

Lapp := Ê′(antenna)rec

r2
0π1̂t

′
rec

= Êradem

4π(1+ z)21̂temR2
rec

. (5.21)

The intrinsic luminosity of the source isL = Êradem /1̂tem, i.e., the total energy
emitted by the source in its rest frame per unit time. Thus we may write

Lapp

L
= 1

4πd2
L

, dL = (1+ z)Rrec. (5.22)

We haveRrec = |v|γ t ′rec, see after (5.13) and (5.11). Inverting (5.16), we obtain

v = tanh(Ât ′−βrec z), γ = cosh(Ât ′−βrec z), (5.23)

so that the luminosity-distance in the forward light cone reads
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dL = c(1+ z)t ′rec sinh

(
|Â|z

(3t ′rec)β

)
. (5.24)

We have restored here the unitsc and3 = cR−1. Sincet ′rec is identified withτrec,
cf. the Remark following (5.17), this coincides withdL as calculated in (3.15).
Clearly,

H0 = β/t ′rec, c0 = |c(t ′rec, x′ = 0)| = c|Â|β(3t ′rec)−β, (5.25)

see (5.7).

Remark: In Minkowski space there is no obvious analogue to the metric distance
d(τrec) between source and observer at the time of absorption, cf. (3.16). As met-
rical distance at the time of absorption we may either takeRrec or R′rec, see after
(5.13). The relation between metrical and luminosity distance then reads

dL = (1+ z)Rrec = (1+ z)R′rec cosh(Ât ′−βrec z). (5.26)

Finally we discuss the appearance of the photon defined by the trajectory (5.3)
in the rest frame of the observer. In the(t ′, x′)-frame the trajectory (5.3) is given
by the same equation, apart fromκ being replaced byκ ′ = κ(1− v)1/2(1+ v)−1/2.
We introduce a parameter representation, writingλ = (t ′2− x′2)−β/2,

t ′(λ) = λ−1/β cosh(Âλ− logκ ′), x′(λ) = −λ−1/β sinh(Âλ− logκ ′),

κ ′ := (1− v)1/2(1+ v)−1/2 exp(Ât−βem ),

λinit = t−βem = γ βt ′−βem , λterm = t ′−βrec = γ βt−βrec . (5.27)

We haveλinit > λterm, cf. (5.17). The time coordinatet ′(λ) may have a minimum
in the interval[λinit , λterm]; the condition for an extremum reads

coth

(
Â(λ− t−βem )+

1

2
log

1+ v
1− v

)
= βÂλ, (5.28)

and from (5.9) we obtain the identity

Â(γ βt−βrec − t−βem )+
1

2
log

1+ v
1− v

= 0. (5.29)

Note thatβ > 0, and in the following discussion we also assumeÂ > 0,v > 0, see
after (5.9). The casêA < 0, v < 0 can be treated analogously. It is geometrically
evident that (5.28) has always a unique solution for positiveλ, which corresponds
to a minimum oft ′(λ). However, the solution lies in the relevant range[λinit , λterm]
only if

1

v
≡ coth

(
1

2
log

1+ v
1− v

)
< βÂt−βem (5.30)
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holds. We denote this solution byλmin.
Thus, if v > (βÂ)−1t

β
em, there appear two photons in the primed frame. One

parametrized in the interval[λmin, λterm], and another corresponding to the para-
meter range[λmin, λinit ]. The observer sees in his frame of rest(t ′, x′) two tachyons
emerging at(t ′(λmin), x

′(λmin)), one reaches him att ′rec = t ′(λterm), whereas
the other reaches the source att ′em = t ′(λinit ). During the time interval[t ′(λmin),

min(t ′em, t ′rec)] there appear in this frame two images of the photon that connects
source and observer in the comoving frame. Multiple images of photons which
appear at different places at the same time are extensively discussed in Tomaschitz
(1998b). A similar phenomenon occurs if one considers superluminal particles
(Feinberg, 1967) in individual geodesic rest frames of galactic observers (Toma-
schitz, 1997a, 1998a).

It is easy to see thatt ′rec < t ′em if v is sufficiently close to one, cf. (5.9) and
(5.11). [In the rest frame(t, x) of the source we always havetem < trec, of course.]
If, however,v < (βÂ)−1t

β
em, then there is no minimum in the range[λinit , λterm],

and we havet ′em < t ′rec; there is only one ray moving straight from the source to
the observer. This can be seen as follows. The inequalityt ′em < t ′rec is via (5.9) and
(5.11) equivalent to

t ′−βem <
1

2Â(γ β − 1)
log

1+ v
1− v

, (5.31)

andv < (βÂ)−1t
β
em is equivalent tot ′−βem < (vβÂ)−1γ −β , cf. (5.11). The assertion

then follows from

1

vβγ β
<

1

2(γ β − 1)
log

1+ v
1− v

. (5.32)

It is easy to see that this inequality holds, if we write it as

β

2
(log(1+ v)− log(1− v))− 1

v
+ (1− v2)β/2

v
> 0. (5.33)

This is indeed valid forβ > 0, which can be shown by differentiation and by
inspecting the limitsv → 0,1. The appearance of the photon in the individual
geodesic rest frames of galactic observers may be quite different compared to the
photon trajectory in the comoving frame, but it always arrives at the observer at
x′ = 0 with positive energy, see (5.8) and after (5.14).

6. Effects of the Ether on Source Counts in the Forward Light Cone

We start with the line elements (2.5), (2.6), in comoving coordinates and use the
Poincaré ball representationB3 for the hyperbolic 3-space, withdσ 2 defined after
(2.12); CartesianB3-coordinates are denoted byx̂ in this section. Introducing polar
coordinates(r̂, ϑ, ϕ) in B3, we have
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dN(τ, x̂) = ρ̂(τ )8 sinϑdϑdϕr̂2dr̂

(1− r̂2)3
(6.1)

as the number of galaxies in the solid angle sinϑdϑdϕ betweenr̂ andr̂ + dr̂, cf.
(4.1). The line elementds2 in (2.5) witha(τ) = τ anddσ 2 as defined after (2.12)
(with x replaced bŷx) is mapped ontods2 = −dt2+ dx2 in the forward light cone
by the transformation (Infeld and Schild, 1945)

τ =
√
t2− |x|2, x̂i = xi

|x|2
(
t −

√
t2− |x|2

)
;

t = τ 1+ |x̂|2
1− |x̂|2 , x

i = 2τ x̂i

1− |x̂|2 . (6.2)

Introducing polar coordinates(r, ϑ, ϕ) also in the forward light cone, we obtain

dr̂

r̂
= 1√

t2− r2

(
t

r
dr − dt

)
, (6.3)

and therefore

dN(τ, x̂) = ρ̂
(√
t2− |x|2

) sinϑdϑdϕ

(t2 − r2)2
r2(tdr − rdt). (6.4)

To understand the meaning of this formula, we replacedσ 2 by the isometric line
element

dσ 2 = 1

1− v2

(
δij + vivj

1− v2

)
dvidvj , (6.5)

|v| < 1. This is the projective modelK3 of hyperbolic geometry, (Magnus, 1974;
Fock, 1959) obtained fromB3 by the isomorphism

x̂i = vi

|v|2
(
1−

√
1− |v|2

)
; vi = 2x̂i

1+ |x̂|2 . (6.6)

Therefore we may write (6.1) as

dN(τ, x̂) = ρ̂(τ ) sinϑdϑdϕ
|v|2d|v|
(1− |v|2)2 . (6.7)

The isometry which maps the line elementds2 in (2.5) witha(τ) = τ anddσ 2 as
in (6.5) onto the forward light cone reads

τ =
√
t2− |x|2, v = x

t
; t = τ√

1− |v|2 , x = τv√
1− |v|2 . (6.8)

Thus,v is just the velocity of a galaxy at(t, x). By means of the third equation in
(6.8) we write (6.7) as
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dN(τ, x̂) = ρ̂
(
t
√

1− |v|2
) d3v
(1− |v|2)2 =: dN(t, v). (6.9)

dN(t, v) is the number of galaxies with velocities in the range(v, v+ dv) at time
t . Equation (6.4) may therefore be written as

dN(t, v) = dN(t, x) − dn(t, r, ϑ, ϕ), (6.10)

where

dN(t, x) := ρ̂
(√
t2− |x|2

) td3x
(t2 − |x|2)2 (6.11)

is the number of galaxies in the range(x, x+ dx) at timet , and

dn(t, r, ϑ, ϕ) := ρ̂
(√
t2 − r2

)
sinϑdϑdϕ

r3

(t2− r2)2
dt (6.12)

is the number of galaxies pouring through the surface elementr2 sinϑdϑdϕ of a
sphere of radiusr during the interval(t, t + dt).

Remark:The line element in (6.5) is diagonal in polar coordinates(|v|, ϑ, ϕ), and
its volume element isdvol(K3) = (1− |v|2)−2d3v. To obtain the symmetry group
of (6.5) we consider a Lorentz boost along thex-axis of the forward light cone,
x′ = γ (x − ut), t ′ = γ (t − ux), y′ = y, z′ = z, γ = (1− u2)−1/2, which relates
the rest frame(t, x) of the galaxy atx = 0 to the rest frame(t ′, x′) of a galaxy
moving with speedu (x = ut) along thex-axis. If we writev = x/t , v′ = x′/t ′,
this transformation reads

v′1 =
v1− u
1− v1u

, v′2,3 =
1

γ

v2,3

1− v1u
. (6.13)

The symmetry group ofK3 is generated by rotations and the transformations (6.13).
The curious fact that the special relativistic addition law for velocities can be
realized as symmetry transformations ofK3 was pointed out by Fock (1959),
and is much less curious in this cosmological context. Since the volume element
dvol(K3) is invariant under (6.13), it follows thatdN(t ′, v′) = dN(t, v).

With ρ̂(τ ) as in (4.6) we can calculate from (6.11) the number of galaxies in a
ball of radiusr, r < t , as

N(t, r) = 4πρ̂(t)t−2λ+1
∫ r

0
drr2(t2− r2)λ−2

= 4π

3
ρ̂(t)(r/t)3 2F1(2− λ,3/2;5/2; (r/t)2). (6.14)

Also note that

N(t, r = |v|t) =
∫
|ṽ|<|v|

dN(t, ṽ) (6.15)
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is the number of galaxies with velocity smaller than|v| at a given timet . If λ > 1,
the integral (6.14) converges also forr = t ,

N(t, r = t) = π3/2 0(λ− 1)

0(λ+ 1/2)
ρ̂(t). (6.16)

We obtain from (6.14), writingv = r/t ,

N(t, r, λ = 0) = 2π

(
v

1− v2
− 1

2
log

1+ v
1− v

)
ρ̂, ρ̂ = const., (6.17)

N(t, r, λ = 2) = 4

3
πρ̂(t)v3. (6.18)

Integrating (6.12), we obtain

n(t, r) = 4πr3
∫ ∞
t

ρ̂
(√
t2− |x|2

)
(t2 − r2)−2dt (6.19)

as the number of galaxies which pass through the sphere|x| = r within the interval
(t,∞). This integral converges ifλ < 3/2 andt > r. Note thatn(t, r, λ = 0) =
N(t, r, λ = 0), which means that the number of galaxies is conserved; all galaxies
which lie at timet within a sphere of radiusr will later pour through this sphere,
and only these. Ifλ > 0 new galaxies are formed in this sphere, and ifλ < 0
the galactic density decreases in the cosmic evolution. As pointed out at the end of
Section 4, we do not consider luminosity evolution here.

Finally, we derive the source counting function (4.7) in the forward light cone.
From (6.9) we obtain

dN(tem, |v|) = 4πρ̂
(
tem
√

1− |v|2
) |v|2d|v|
(1− |v|2)2 (6.20)

as the number of galaxies with velocities ranging in(|v|, |v| + d|v|) at time tem.
Note that observer and source are interchanged compared to Section 5; the primed
coordinates of Section 5 correspond to the(t, x)-frame here. With (5.23), (5.17)
and (5.11) we may write (6.20) as

dN(trec, z) = 4π |Â|t−βrec ρ̂(trec)(1+ z)−2λ/β sinh2(|Â|t−βrec z)dz, (6.21)

with β = 4/3. By integration we arrive at (4.7), sincetrec = τrec as pointed out in
the Remark following (5.17), and|Â|t−βrec = D(trec), cf. (3.6).

7. Conclusion

The purpose of this paper is to demonstrate that the cosmological redshift and
all that goes with it may be a consequence of a cosmic ether rather than a space
expansion. What is locally perceived as vacuum speed of light is actually varying
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in cosmic time, as is the Hubble constant. However, this does not necessarily mean
that the 3-space is static. In Section 5 we consider a flat spacetime and geodesic co-
ordinates in which the redshift is a Doppler shift, a combined effect of the galactic
recession and the permeability of the ether. The ether as introduced here does not
induce dispersion that could lead to a dimming of remote sources (Sandage, 1988).

The cosmology developed here is based on two symmetric tensor fields, a space-
time metric, and a symmetric permeability tensor representing the world ether. This
tensor we assume as homogeneous and isotropic; it is determined by two scale
factorsh(τ) andb(τ), both functions of cosmic time like the expansion factora(τ)

in the RW metric. Electromagnetic fields are coupled to the permeability tensor as
in a dielectric medium, cf. Section 2. Classical mechanics in the ether is defined by
replacing in the Hamilton-Jacobi equation the spacetime metric by the permeability
tensor. Hamiltonian mechanics in Minkowski space works because in this local
limit we can accommodate the effects of the ether in the fundamental constants,
which become so adiabatically varying functions of cosmic time.

The ether is introduced in a completely phenomenological way, in terms of a
macroscopic permeability tensor defined by two scaling functions. If the ether re-
ally exists, it must be regarded as the carrier of electromagnetic and quantum fields,
and as the physical substance of cosmic space, whose microscopic structure makes
wave propagation at all possible. Minkowski space and vacuum electrodynamics
as well as the constancy of the speed of light are local geometric idealizations.

Varying fundamental constants are not compatible with Einstein’s equations; a
gravitational theory in which perihelion shifts are generated by a scalar gravita-
tional potential and the permeability tensor of the ether has recently been proposed
in Tomaschitz (1998c). As for cosmology, the possibilities of evolution in an open
universe go far beyond what is predictable by Einstein’s equations (Dyson, 1979;
Tomaschitz, 1996; 1997c).

In Sections 5 and 6 we consider a RW cosmology that is flat and isometric to
the forward light cone. In this cosmology globally geodesic coordinates can be
introduced for individual galactic observers. In a general RW cosmology a similar
reasoning holds in locally geodesic coordinate frames. We then have to restrict
ourselves to infinitesimal Lorentz boosts. Calculations then get even simpler, be-
cause infinitesimal neighborhoods are a good excuse for linearization, though this
is against the spirit of cosmology, which deals, after all, with the global structure
of the Universe. For the same reason we did not introduce in Section 3 systematic
power series expansions for the cosmic scale factors to derive the luminosity-
distance, as is usually done in RW cosmology. By assuming power laws for the
cosmic scale factors, we can obtain the distance-redshift relation for large distances
and redshifts, where local power series expansions are meaningless.

The ether has a substantial impact on the source counting functionN(z), as
the exponents of the scale factors significantly enter in the location of the peak
of dN(z)/dz. In the case of linear expansion, the scaling exponent of the galactic
density is determined by this peak.
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