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Abstract. Aninterpretation of the cosmological redshift in terms of a cosmic ether is given. We study

a Robertson-Walker cosmology in which the ether is phenomenologically defined by a homogeneous
and isotropic permeability tensor. The speed of light becomes so a function of cosmic time like in a
dielectric medium. However, the cosmic ether is dispersion free, it does not lead to a broadening of
spectral lines. Locally, in Euclidean frames, the scale factors of the permeability tensor get absorbed
in the fundamental constants. Mass and charge scale with cosmic time, and so do atomic energy
levels. This substantially changes the interpretation of the cosmological redshift as a Doppler shift.
Photon frequencies are independent of the expansion factor; their time scaling is determined by the
permeability tensor. The impact of the ether on the luminosity-distance, on the distance-redshift
relation, and on galactic number counts is discussed. The Hubble constant is related to the scale
factors of the metric and the permeability tensor. We study the effects of the ether at first in comoving
Robertson-Walker coordinates, and then, in the context of a flat but expanding space-time, in the
globally geodesic rest frames of galactic observers.
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E § We consider the possibility to generate the cosmological redshift by means of a
E N cosmic ether (Whittaker, 1951; Tomaschitz, 1998,b,c), contrary to the commonly
N

accepted explanation in terms of a space expansion. The spacetime geometry is de-
scribed by a Robertson-Walker (RW) line element, but the dynamics of light rays is
determined by a permeability tensor. This tensor is homogeneous and isotropic, and
defined by two scale factors depending on cosmic time. The speed of light becomes
so a function of cosmic time, but phase and group velocity still coincide. There is
no dispersion in the direction of propagation, as in vacuum electrodynamics.

We study the effects of the ether on distance measurement and source counts.
This can be done in the framework of ray optics. The eikonal equation reads like
in a curved space, but the spacetime metric is replaced by the permeability tensor.
So the dynamics of rays gets completely detached from the spacetime metric.

In the cosmology presented here the semiclassical approximation for light rays
is exact. The eikonal is the phase of the plane wave solutions of Maxwell's equa-
tions. Thus we can derive from the eikonal the exact cosmic time dependence of
the frequency, and, via the Einstein relation, the energy of photons. The photon
frequency as well as the Hubble constant depend on the scale factors of the perme-

<)

L Astrophysics and Space Scien289: 255-277, 1998.
i~ © 1998Kluwer Academic Publishers. Printed in the Netherlands.


https://core.ac.uk/display/25331935?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

256 ROMAN TOMASCHITZ

ability tensor. The Hubble constant is defined via the asymptotic distance-redshift
relationdy ~ cOH(;lz, whered, is the metric distance between source and observer
at arrival time, and is the present value of the speed of light.

In Section 2 electrodynamics in the ether is defined. We derive a condition on
the scale factors of the permeability tensor and the metric which renders the ether
dispersion free. The time evolution of the electromagnetic energy is shown to be
strictly proportional to frequency, and we demonstrate in this way that the Planck
constant is independent of cosmic time. The Coulomb potential of a static point
source in the ether is calculated, and it is demonstrated that in the Kepler problem
the scale factors of the permeability tensor can be absorbed in the fundamental
constants, which become functions of cosmic time. The scaling laws for the speed
of light, mass, and charge are derived. The fine structure constant, a moderate
dimensionless ratio (Dirac, 1938; 1973) does not scale in cosmic time, contrary
to atomic energy levels.

In Section 3 we discuss the redshift. It is an effect caused by the cosmic scaling
of atomic energy levels as well as the scaling of the photon frequencies. The photon
frequency is independent of the expansion factor in the RW metric, the ether is
perfectly capable of producing redshifts in a static spacetime geometry. We identify
the Hubble constant, which is inversely proportional to the age of the universe.
The luminosity-distance is derived, and the deceleration parameter is related to the
exponents of the scale factors of metric and permeability tensor.

In Sections 4 and 6 we study various source counting functions, in particular the
number of galaxies of redshift smaller thanThis function gives information on
the time evolution of the galactic density. Due to evolutionary effects, this density
need not scale with the inverse cube of the expansion factor, aNdz3meed not
be monotonous. Redshift surveys of quasars (Hartwick and Schade, 1990) indicate
a peak ofN (z). We discuss under which conditions a maximum can emerge, and
relate it to the scaling exponents of the galactic density and the scale factors.

In Sections 3 and 4 we consider the luminosity-distance and number counts in
comoving RW coordinates. In this frame all galaxies have constant space coordi-
nates, and by virtue of these coordinates a universal rest frame and a unique cosmic
time shared by all galactic observers is defined. In Sections 5 and 6 individual
geodesic rest frames of galactic observers are investigated. Galaxies or galactic
observers are not affected by the ether, unlike other massive particles, as they are
at rest in the universal rest frame. We study a RW cosmology with linear expan-
sion factor and negatively curved 3-space. The spacetime geometry is isometric
to the forward light cone, and so globally geodesic rest frames can be introduced
for galactic observers. In each of these frames the galactic background is radially
receding, every galaxy with constant speed. The geodesic rest frames are related
by Lorentz boosts.

In Section 5 we study the world lines of photons in globally geodesic frames,
and how the ether effects their speed and energy. The ether generates double images
of photons in individual galactic rest frames. Redshifts depend on the speed of the
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receding galaxies, but unlike Doppler shifts, also on the proper time of the observer.
We derive the luminosity-distance relation in globally geodesic coordinates, and
show its equivalence with that obtained in the universal frame of rest. In Section 6
we study the galactic density in globally geodesic coordinates, the spatial density
as well as velocity and redshift distribution functions. In Section 7 we present our

conclusions.

2. Electromagnetism and Massive Particles in the Ether

We discuss electrodynamics in the ether, the hypothetical material substance of
space (Whittaker, 1951; Tomaschitz, 1998b,c), which macroscopically manifests
by a symmetric permeability tensgfv. Quite analogously to a dielectric medium,

the following formalism is based on two symmetric tensor fields, the space-time
metric g,,, (inverseg”’, determinanfg), and the permeability tenscgriv (inverse
gP~v determinang?). Action and Lagrangian for the electromagnetic potentials
we define as

1
S= [+ A VTRddT, L= =g FuFupg” g™, 2.1)
andF,, = A, — A, ,. Introducing the tensor
HM = ngl,uanglvﬁFaﬂ’ (22)

we may write the field equations as

1 o(/—gH™ 1

( g ) — j/,L’ _S)Laﬂ}/Faﬂ;V — 0 (23)
Jog  ox’ Nar

The continuity equationj“;u = 0, follows from the inhomogeneous equations in

(2.3). The energy-momentum tensor reads

v

1
T "= —F, H" + 21(ngo{ﬂH“ﬁ, (2.4)

which is the usual definition of electromagnetic energy in a dielectric medium.

We consider electromagnetic waves freely propagating in a perfectly isotropic
and homogeneous cosmic ether, in the context of an open RW universe with line
elements

ds?> = —c?dt? + a?(1)do?, (2.5)
ds3 = —c®h?(t)dt? + b*(t)do?, (2.6)

defining g,,, and g:v, respectively. We assume that the 3-space is open and nega-
tively curved, but this is not really essential for most of the following. We use the
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Poincaré half-space representation of hyperbolic geoméiry:= R%u~2(|d&|? +
du?) in the half-spaceH3: (£,u), &£ € G u > 0, cf., e.g., Magnus (1974} =
(t,&,u). R is a dummy constant of the dimension of length, needed for dimen-
sional reasons, like in the line elements (2.5) and (2.8)° endowed withdo?
has constant sectional curvaturd/R?. The dimensionless scale factersh and
h actually depend oz, A := c¢R~%, but in the following calculations we put
c=R=1.

We solve Equations (2.3){ = 0) with the transversality condition
(—g) " Y?3(/—gg""A,)/dx* = 0 and the Coulomb gaugé, = 0. The homo-
geneous equations in (2.3) are already satisfied by the potential representation of
F,,. We are interested in plane waves propagating alongtemi-axis, and use
the separation ansatf; = ¢(7)u’*, Ag = A, = A3z = 0. (There is a second
transversal set of plane waves obtained by interchangingnd A,; these two
sets are orthogonal.) With this ansatz the transversality condition is satisfied. The
u = 0,2,3 components of the inhomogeneous equations (2.3) are identically
satisfied, and the = 1 component gives the equation fofr),

b*d [ a® d )
= ==— =0 2.7
2 dr (thZdr )H‘” ’ 2.7)
o(m)u'*(1,0,0) ande(t)u* (0, 1, 0) constitute a complete set of tansversal plane
waves propagating along theaxis. A complete set propagating in any other direc-
tion is obtained by applying to them symmetry transformation& &f The energy
density of a plane wave has the time dependence
3 12 2
0 a’ (l¢'l° | el
TO \/? ~ ﬁ ( h2 + ? :

A wave packet composed of a Gaussian average (with respect to the spectral
variables) over the plane waveg(t, s)u'* (1, 0, 0) will in general show dispersion
(Tomaschitz, 1992a, 1997b) since group and phase velocity differ in a dielectric
medium. This is very contrary to the vacuum formalism, which is recovered in the
caser = 1 andb = a (Tomaschitz, 1993b). In vacuum the phase of the electromag-
netic spectral waves linearly depends on the spectral parameter, therefore phase and
group velocities coincide and are identical with the speed of rays obtained from
the eikonal equation; there is no dispersion along the direction of propagation.
Dispersion leads to a broadening of spectral lines, which is not observed (Sandage,
1988). If

(2.8)

h(z) ~ a®(v) /b*(2), (2.9)

then

¢ = exp(:Fis / hbldr> , (2.10)
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is an exact solution of (2.7), and the phase is linear in the spectral variable like
in vacuum electrodynamics. Thus there is no dispersion in the ether if the pro-
portionality (2.9) holds. The phase of the spectral elementary waves evidently
reads

V=s (Iogu T / hb‘ldr> . (2.11)
This coincides with the exact solution of the eikonal equation

"My, =0, (2.12)

for rays along the-semi-axis. From (2.11) we obtain the frequency of the spectral
waves aso = Als|hb~ (A = cR™1). From (2.8) and (2.10) we obtaify °,/y ~
w, which suggests for the photon energy the relatitfn) = 7w (1), with 7 inde-
pendent of cosmic time. For the wave vector we then obtain from (2,13)s/u;
photon momentum and wave length read= %k, andx = |k,|~* = aR|s| ™,
respectively, so that the speed of light in the ethé(i9 = wX = cab~1h.

Next we calculate the potential of a static point sourcdBecause of the spher-
ical symmetry of the potential we use as coordinate representation of the cosmic
3-space the ball modé#® of hyperbolic geometry. We then have in (2.5) and (2.6)
do? = 4(1 — |x|?/R?~2dx? (Cartesian coordinates in the ball < R). B® is
isometric toH® (Magnus, 1974). We puR = ¢ = 1, andx* = (r,X). The
potential must solve (2.3) with the currefft = e,y ~28(x), j* = 0, of a static
point sourcez, located ak = 0. (y denotes the determinant of the 3-metrido ?).
We try the ansatag = 7%b%a3¢(r), Ax = 0. The homogeneous equations and the
spatial components of the inhomogeneous set of equations in (2.3) are identically
solved in this way. Thee = 0 component gives

0 2 9
Ik (mw‘ﬂ(ﬂ) = ¢,8(X), (2.13)
and so we obtain asymptotically
e, h°b?
A = d/(Ra)). 2.14
0(1.X) = = 3= T + 0(d/(Ra)) (2.14)

Hered(z, X) denotes the distance nffrom the point source; atx = 0,

14+ |X|/R

d(t, X) = Ra(t) |Og m

(2.15)
Ra() is the curvature radius of the cosmic 3-space, whedéasx) is, for exam-
ple, an atomic length if we study the scaling in the Rutherford model, therefore the
asymptotic formula (2.14) is by all standards sufficient.

From the eikonal equation (2.12) it is clear how to define the mechanics of
classical particles in the ether, namely by the Hamilton-Jacobi equation
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g s S, = —m?, (2.16)

(Tomaschitz, 1998b,c). This corresponds to the Lagrange function

L(s) = —m,/—gf X", (2.17)

with the actionS = [ Lds. We study geodesic motion along theaxis of H3.
This does not mean any restriction, HS is homogeneous. From the Lagrange
equations we immediately have two integrals of motion along:thsis,

h2t2(s) — b?(i(s)/u)®> = 1, b%iju = v, (2.18)
with a real integration constamt so that

dlogu = vhb~1(b? +v?)"Y2dt, ds = hb(b* +v>)Ydx. (2.19)
The generalized 4-momentum reads

py =0L/0%" = 3S/0x" = mi"(s)g},. (2.20)

x* .= (r, & = 0,u), and the energy of a particle moving in the ether we define as
E = —po = p°. From (2.18) and (2.19) we obtain (after restoring the natural units
c andR)

~ A2
E=—"C%  — ueh/1+ 22 (2.21)
V1—|v|2/c?

¢ = ca(m)b YN o)h(t), m =ma ?()b*(T)h (1), (2.22)

Vv

N/ YA

Equations (2.22) constitute the scaling laws for speed of light and rRassandm

are bare constants, whereRis= Ra(t) (curvature radius of the 3-spacé)ands

are the measured quantitiéss of course the same as already derived after (2.12).
The coupling of a particle of chargeto the electromagnetic potential is ef-

fected by minimal substitutior§ , — S, — eA,, in (2.16). This amounts to add

the termeA & to the Lagrangian (2.17). The zero-component of the generalized

momentum now reads, withg as in (2.14),po = —E,

V| = aRu~Ydu/dt = ch% (2.23)

o me L 1
V1= |v2/é2 A d(t,x)’

é = eh(v)b(v)a (7). (2.25)

(2.24)
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This is the scaling law for the electric charge. The fine structure constant
é? /4 hié evidently does not scale, becausés independent of cosmic time and
because of the proportionality (2.9), which renders the ether dispersion free.

E in (2.24) is the Hamiltonian of the relativistic Kepler problem/ifr, x) and
|v| are identified with the Euclidean radial coordinate and velocity. CleBrdy,not
any more an integral of motion because of the time dependence of the constants,
but on the time scale of an orbital period the time variation of the fundamental
constants is adiabatic. The angular momentum is still a constant of motion. By
means of the Bohr quantization rules for the hydrogen atom, we obtain for the
energy levels, the Bohr radii, the orbital velocity and period the scaling laws

N a2 6 2.2 4
B 1 b h 1
Ey=—m () 2~ =t~ 2L (2.26)
2r° \ 4 ) n? a® mee;, hb*
hn 2b2 r2mi 1 a
v, = ’/hrn ~h ;, Tn = 27'[ hn ~ ﬁﬁ (227)

Because of relation (2.9), they all scale with powers of the scale factor These
scaling laws can as well be derived from the Schrddinger equation, which reads
as usual, but with time dependent mass and charge. This scaling of atomic energy
levels holds for all atomic spectra because of the adiabatic variation of the scale
factors, which means that time derivatives of the constants are negligible in leading
asymptotic order.

In the following we choose the scale factors of metric and permeability tensor
as power laws,

a(t) = A(A7)%, b(r) = B(AT)?, h(r) = H(AT)". (2.28)

Remark:Apart from the fine structure constant there is a second dimensionless
ratio, hZHO/(kcm3), which is of moderate magnitude, if we take farthe mass of
an elementary patrticle (Dirac, 1938). If we require this ratio to be constant, then we
must chooser = —1. This follows from the scaling of the gravitational constant,
k = kh*(v)a?(x)b=2(t). A detailed derivation of this scaling law, based on the
gravitational theory developed in Tomaschitz (1998c), will be given elsewhere. We
will not make explicit use of the gravitational constant in this paper, but we will
mainly discuss the choicg = —1 in (2.28), which is strongly suggested by the
indicated scaling ok. We also assume thg@ > 0, which is the condition for
redshifts to occur; a negatiyewould result in blueshifts, as we will see in the next
Section.

Integrating (2.19) with the scale factors (2.28) ang= —1, we obtain

u = k exp(—Avv2r=2f + B2), A:= H/(BBv), (2.29)

which can also be derived from the action

H (1
S(z, u) = vmlogu — m? / =Vv2r2 1 B24r. (2.30)
T
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The eikonal equation (2.12) is solved by
v =s(logu + At~?), A:=+H/(Bp). (2.31)

Heres is an integration parameter identical with the spectral variable in (2.11), and
the rays read

u=rkexp(—Ar?). (2.32)

As the semiclassical approximation is exact, we attach to the rays a photon energy
(h=c=1)

E=g%,=sApr ", (2.33)

see the discussion following (2.12). FBrto be positive, we choose the integration
parametes in (2.31) so thatA > 0.

3. Effects of the Ether on the Redshift-Distance Relation in a General RW
Cosmology

In traditional RW cosmology the redshift can be defined by 1 = E(z..,)/
E(z...), With E(t) = Aw(t). However, this is not the case in the ether, even though

h remains independent of cosmic time. Not only the photon frequency scales in
cosmic time, but also the measuring rods, the atomic energy levels. This is taken
into account by expressing the photon energy in units of these varying rods, i.e.,
if we replaceE (7) in the redshift-energy relation by (t)/E,(t), whereE, (t) ~
h3b%a—® is some atomic energy level, cf. (2.26). Sineer) = Als|h(t)b~ (1) as
pointed out after (2.12), we have

1+ 2= R(tree)/R(Tem), R(z) :=h?b"a"". (3.1)

This is a crucial relation, and very different from the standard theory, gitce
is a scale factor of the permeability tensor. The energy of the photon emitted by
the source at time,,, is AE, (z..,), namely the difference of two atomic energy
levels. Its energy when received at time. iS AE, (Ton) @ (Tree) /@ (Tep); this is
a consequence of light propagation through the ether. The redshift (3.1) is then
obtained by comparing this energy to the energy of a photon emitted by a reference
atom in the same transition. The energy of this reference photaijsz,..).

In the following we use the Poincaré half-spda¢é as coordinate representation
of the hyperbolic 3-space, see after (2.6). We consider a galactic source of radiation
at(¢ = 0,u = 1), and a galactic observer sitting @ = 0, u = ug). A photon
is emitted at timer,,, and reaches at a later instant. the observer; it has the
world-line

u(t) = exp[sign(uo -1 /r RPl(‘[)dT:| . Rp(x) :=b@)h (7). (3.2)
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Clearly, ug andrm are related byc(rm) = ug. Also note that we have to choose
the sign ofA in (2.32) so that S|g(14) = sign(ug — 1), otherwise the photon cannot
reach the observer. If a second photon is emitted by the source a little later, at
Tom + ATon, it will arrive at 7. + AT, and we have

ATroe Rp (Tree) = ATom Ry (Tom) (3.3)

(McVittie, 1965). In the following we specify the scale factors of metric and per-
meability tensor as in (2.28). We obtain from (3.1)

Tree/Tem = L+ 2)Y°, 81 =2y +78 — 6a, (3.4)

A(Tree)/A(Tem) = A+ Z)a/é’ Rp(Trec)/ Rp(Tem) = a+ Z)(ﬁ—y)/B’

Ep(Tree) ) En(Tom) = (L4 z)@rH0A=00/5 (3.5)
and from (3.2)
|loguo| = / RN (0)dT = D(Tree) (L + ) Fr 0 1), (3.6)
Co 1 1)
D(Tyee) i= — , 3.7
(r ) HO Ra(rrec) IB -y - 1 ( )
co = 2T Rt /R (o) = /e (3.8)
RP(trec)

8 > 0 is evidently the condition that a redshift occurs. In (3.7) and (3.8) we have
restored the units and R. We assume thab(z,..) > 0, sothatd —y — 1 > 0.

This meansglogug| — oo for z — oo, and thug8 —y — 1 > 0 is the condition that

no horizon appears. The metric distance [with respect to the line elenenio

on the cosmic 3-space] between source:(at 1) and observer (at = ug) reads

d(t) = a(®)|loguol, d(Ten) = L+ 2)"*"d(T,cc). (3.9)

With these prerequisites the redshift-distance relation (Tolman, 1930; 1934;
Robertson, 1938; Sandage, 1961; Robertson and Noonan, 1968; Weinberg, 1972)
can easily be derived. The source located &t 1 is isotropically emitting at time
7., (Within an intervalAz,,,) a swarm of photons. Its absolute luminosity, i.e., the
total emitted energy per unit time in the rest frame of the source is thusY)

_ Erad(tem)/En(Tem)
Afem/j;l (Tem)

s E N (Ta) = i (Tem). (3.10)
k

Heren, denotes the number of emitted photons of frequengdyt) = |sk|R;1(r).
Energy and time are measured in units of some atomic energy i&\ve) and
periodT, (1), cf. (2.26) and (2.27). The apparent luminosity is defined as the energy
absorbed by the observer’s antenna (placed perpendicular ipdRis) per unit
time and unit area,
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_ 1 Emd(rrec)/En (Trec)
B areé(uo, Trec) ATFEC/T;‘L (Trec)

Here areéug, 1,..) denotes the area of the hyperbolic sphere centered at the source
atu = 1 and passing through the observernat ug. The antenna is assumed to

be a tiny cap of this sphere, and the radiation is isotropic. The light rays emitted
atu = 1 pass of course orthogonally through the sphere. Because of the space
expansion the area of the sphere scales with the square of the expansion factor. For
the area we obtain

(3.11)

Lapp

areduo, 1) = 4ra’(t)|loguol?d?, d; :=|loguo|~tsinh(|loguol). (3.12)

[This is the area of a sphere with hyperbolic centetéat= 0, u = 1), intersect-
ing the u-axis atuétl. It is easiest calculated in thB3-model, see after (2.12).]
Assembling equations (3.10)—(3.12) and (3.3), we arrive at

L
Loy = —, 3.13
bp 471d1% ( )
1 RP (Trec) 7—;‘1 (Tem)Erad(Tem)En (Trec)
d? = —areduo, Tre . 3.14
L 47T auo K )RP (Tem)Tn (Trec)Erad(Trec)En (Tem) ( )
The luminosity distancé; may be written as

d; = Ra(Te.)(1+ z)|loguold,, (3.15)

with | loguo| as in (3.6) and (3.7). Note that we can safely gut 1, since
d(Tre) = Ra(Tree) D(Tree) (L4 2) P77 700 — 1) (3.16)

[cf. (3.9)], and since&i(t,..) < Ra(t...) (curvature radius of the 3-space), and
because the redshift factor @(1) for presently accessible redshifts. Therefore
D(t..c) < 1 holds, andi;, ~ 1 follows from (3.6) and (3.12). By substituting
(3.6) for|logug| in (3.15), we can identify the deceleration paramater

_A4+y-8)
=0

1
dy = -2z <l+ sd—@z+ 0(z2)> R

e (3.17)

Because of condition (2.9) on the scale factors and becauge-ef—1, cf. the
Remark following (2.28), we have among the exponents the relafionse =

1/3 ands = B. Thus the prediction ig = —1 for the deceleration parameter,
like in steady state cosmology. However, the universe has a finite age, cf. (3.8).
If the expansion is linear theh = 4/3, which means that its age is just twice
that predicted by the standard theory with= 1/2, cf. Sandage (1988). Linear
expansion is extensively discussed in Sections 5 and 6.
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4. Source Counts in the Ether

For the following considerations we use as coordinate representation of the cosmic
3-space the ball modd&? of hyperbolic space as introduced after (2.12). We denote
by p () the galactic density, i. e., the number of galaxies per unit volume in the 3-
space, and consider a thin spherical shelBf centered ax = 0, with Euclidean
radiusr,,, and thicknesgr,,,. At time t,,,, the number of galaxies in this shell is

rezmdrfm
(1—-r2)%
The light emitted by these galaxies @}, reaches an observer sittingxat= 0 at

time 7,... The rays inB? are calculated fromds2 = 0, cf. (2.6), and we obtain in
this way

dN(TEm’ rem) = p(fem)dVOI(rem, Tem) = 3277"613(.[6/”)/)(1—2”1) (4'1)

free 0 1 em
f R)(tydt =2 | 1-r?"dr =log 1+r = ry. (4.2)

Tem — Fem

We keepr,.. fixed in (4.2) and regard,,, andz,,, as functions of the parametey.
Equation (4.1) may thus be written

dN(Tem (I’H), VYem (rH)) = ﬁ(fem (rH))arearH)drHa (43)
(1) == a3(v)p(r), aredry) = 4x sinkf(ry). (4.4)

Sincery = |logug|, we obtain from (3.4) and (3.6)

1/(B—y-D
Tree _ (1+ il ) . (4.5)

Tem D(Trec)
We assume fop a power law,

Ao . ra\ 2+ Ay =)
P ~T% p(Tem) = P(Trec) (l+ D) . (4.6)
The number of galaxies of redshift smaller thareads
ry(z)
N(z) = / dN(rp), () = D(Tre)(L+2) P77 D0 — 1), (4.7)
0
- 20/ (A4+y—pB)
AN(ri) = 47 p(t00) 0212 (1 n %”) ey 4.8)

[The source counting functiov (z) is extensively discussed for RW cosmology
by, e.g., Sangdage (1961), McVittie (1965), and Weinberg (1972).] The extrema of
the integrandIN (ry)/dry are determined by the zeros of

rg 1

1+-2

D = 5718 = 1 tanf’(rH). (49)
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It is geometrically evident that this equation has either none or two solutions. As
D(z,..) is very small, the first solution will be a maximumsmtmay = O (D) and

the second a minimum ag; miny = O(1), befored N /dry exponentially diverges
because of théf-factor. However, only the maximum is observationally acces-
sible. [We can always assurdg ~ 1, as pointed out after (3.16).] To calculate
rH(max, We may replace in (4.9) tamfy by ry, i.e., we pud, = 1indN/dry. So

we obtain as solution of (4.9)

TH(max B—y—1
= O (D). 4.10
5 A—w—y—b+ (D) (4.10)

This maximum corresponds via (4.7) to a redshift

(14 zmad " PP =14 (y +1- B)/A. (4.11)

As$ > 0andg — y — 1 > 0 [pointed out after (3.8)], we have as condition on the
density exponent for a maximum to occur

AMPB—-—y—-1>1 (4.12)
Redshift surveys of quasars show a peald 8f/dz in the range 2 < zmax < 2.4
(Hartwick and Schade, 1990). If we choase= 1, 8 = 4/3, andy = —1, cf. the
end of Section 3 and the beginning of Section 5, we obitain 1.9 for zmax ~ 2.3.

The galactic density then scales@s) ~ t#3, cf. (4.4) and (4.6).
The integral in (4.7) is elementary if we palif = 1,

N(2) = 47 p(1r00) (RD)® [i((l 4 o) gy
nw—+3

2 1
——— (1 +2v _ 9 1 (nt+Dv _ 1 1 D2
M+2(( +2) )+M+1(( +2) )i|( + 0(D")),

pwi=221+y—-p7 YL vi=B-y—-1/5 v=>0. (4.13)

If u = -1, -2, -3, N(z) is defined by an obvious limit procedure. We obtain for
z — 0 the Euclidean result

4 —y—1\°. 4
N(z) ~ ?7[ <RD(trec)ZﬂTy> P (Tree) ~ ?ﬂds(frec)p(frecl (414)

[The second asymptotic equivalence is evident from (3.16) and (4.4.Hfs =
4/3,v = —1, andx = 2, then we obtain from (4.13)

N(z) = 47Tﬁ(frec)(RD(Trec))3 (Iog(l +2)—z (1 + ;Z> 1+ Z)z) . (415)



ETHER, LUMINOSITY AND GALACTIC SOURCE COUNTS 267

Remark:An observationally more tractable quantity thaiiiz) is N(z, L,p,), the
number of galaxies with redshift smaller thamand luminosity greater thah,,,,.

In this case both density and luminosity evolution are taken into account (Sandage,
1988). The galactic density becomes in this way an unknown function of two vari-
ables,o(t, L), Which requires a further integration over the absolute luminosity
in the integral representation of(z, L,,,) (Weinberg, 1972). In this paper we
content ourselves Wit (z) = N(z, L,,, = 0), which evidently is an upper bound
onN(z, L,p,), and disregard the possibility of luminosity evolution.

5. Ether and Luminosity-Distance in an Expanding Minkowskian Universe

The universe defined by the RW line element (2.5) is isometric to the forward
light coner? — |x|? > 0,¢t > 0, X = (x, y, z), provided the expansion factor is
linear [A = @ = 1in (2.28)] and the cosmic 3-space is negatively curved (Infeld
and Schild, 1945). In this way globally geodesic coordinates can be introduced for
every galactic observer. The coordinate change mapping the line element (2.5) into
the Minkowski metricy,,, = diag(—1, 1, 1, 1) is given by

(f) = P+ a1 D), (50 = (e, £
X 2u u

2 2
r= VA u= g = 2D (5.1)

so that theu-semi-axis of H3 [defined after (2.6)] is mapped onto theaxis.
Because of the homogeneity of the light cone it is sufficient to focus on world-
lines along thec-axis. (All other trajectories can be obtained by applying Lorentz
transformations onto them). We therefore gut= 0 in (5.1). The world line

u = ug of a galactic observer [see Section 4] is mapped by (4.1) onto vt,

V = (u3 — 1)(u3 + 1)~L. In particular the light source at = 1 is mapped onto

x =0.

The actionS(z, x) for massive particles moving in the ether reads as in (2.30),
with (5.1) ¢ = 0) substituted. After all§ is a scalar, and it is understood that the
permeability tensor as defined in (2.6) is mapped by (5.1) into the forward light
cone (Tomaschitz, 1998b). Energy and momentum is then defined i, the
frame ask = %S, p = S... In particular, if a particle is at rest [= 0 in (2.19)
and (2.23)], we obtain for its rest energy

Ht
2 _ 2"
At the galaxyx = 0 we thus have the scalingy = mc?h(t). [y = —1in (2.28).]

Since atc = 0 we haver = ¢, u = 1, all scaling laws derived in Section 2 remain
valid at the galaxy, just by replacingby ¢. (The forward light cone coordinates
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are also the locally geodesic ones, of course.) Let us consider that for the speed of
light.
The world-lines of photons as calculated in (2.32) are mapped by (5.1) into

Vi + )@ —x)1 = kexp(—A(? — x?)F1?), (5.3)

with A = +H/(BB). The general solution (¢, x) of the eikonal equation in the
forward light cone is obtained by the same substitution in (2.31). For photon energy
and momentum we obtain

E(t.x)=—y, = % (; +BAGE—xDH), (5.4)

st

_ _ X2 2v-p2
p_l/f)x_tz_x2<l+,3At(t x2) ) (5.5)

The speed of light reads?, x) = —v /v .. Clearly,
let, ) = %o, o =¥, &=y, (5.6)

c(t,x =0) = BAr°. (5.7)

This is the scaling already derived in (2.22)zifs identified withz. [Note that the
exponents in (2.28) now read= —y = 1]. For the energy of a photon at= 0
we obtain

E =sApt—F1L. (5.8)

As pointed out after (2.33), we choose the sign of a way thatE is positive.

A photon is emitted by the sourae= 0 at some time,,,. Then the integration
constant in (5.3) is determined as= exp(At;,,’fj ). Insertingx = vr into (5.3), we
obtain for the absorption of the photon by the observer the coordinates

1+v
1—-v

5 1 -1/B
trec(tem, V) = <tem - —lo ) y Xrec = Vtrec(tema V)a 5.9
Y 7 109 (5.9)
with y := (1 — v3)~Y/2. Note that signd) = sign(v) = sign(ug — 1), otherwise
the ray cannot reach the observer in the comoving frame, see the discussion after
(3.2) and the relation betweerandug pointed out after (5.1).
The rest frame of the galactic observer is denoted by coordigtas), so that

' =y —vx), x'=y(x—Vi). (5.10)

[The (¢, x)-frame is the rest frame of the source placed at 0.] This observer
is located ate’ = 0. For emission and absorption event we have in this frame the
coordinates

-1
1 = Vlems Xow = —VVlems b =V trec, Xipe = 0. (5.11)

rec
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Let us suppose that a second photon is emitted by the source a little latgy,-at
At.,, x = 0). In the rest frame of the source the two photons arrive at the galactic
observer separated by the time interval (proper time of the source)
8trec tema V
Alrpe = ¥Atm. (5.12)
atem

In the proper time of the observer the time differences at which the two photons
are emitted, and absorbed read

0tyec(tem, V
Além — )/Atem, At/ _ -1 rec( em )

rec — atem

Atep. (5.13)

At the time of emission the distance between observer and source is, in the rest
frame(z, x) of the sourceRr,,, = |v|t.... At the time of absorption.., the distance

IS Rree = |Vltree(tem, V) In this frame. In the rest framé’, x’) of the galactic
observer we have at emission timj¢ the distanceR,, = |v|yt.,. The trajectory

of the source reads in these coordinates: —vt’. Thus, at the time of absorption

t' the source is located atvt’, , and the distance between source and observer is

rec rec!

R, =y YVltrec(tom, V). Inverting (5.9), we have

rec

1-v

! -1( -8B 1 -8
R,, = VIYVten(trec, V), tem(trec, V) = ¥ Loe T ﬁy log
(5.14)

From (5.8) we know thaE,, ~ fur ”, E... ~ t.o”.If we calculate the

redshift, we have to normalize these energies with the energy of atomic energy
levels, cf. (3.1), which scale &, ~ h(t) ~ t~1. (We assume& = 1, 8 = 4/3,

y = —1, cf. the end of Section 3.) For the normalized energies weﬁa,yev t;,f,

E ~ t,';f , SO that the redshift reads as

rec

E '\
l4z7=—"= (—) . (5.15)
E, tem

rec

From (5.11) and (5.14) we obtain

1+v
1—v

1
7= _ t;/zc lo 5.16
=3 g ( )

Clearly,z > 0 sinceg > 0 and sigitAv) = 1, see after (5.9). We may now write

t;ec = (l + Z)l/ﬁtemv At,. = (1 + Z)l+l/'BAlem. (517)

rec

Remark:The redshift definition (5.15) coincides with that in comoving coordi-
nates, namely with ¥ z = (T.ec/Tem)?, cf. (3.4). [In (3.4) we havé = B as
pointed out at the end of Section 3]. The photon is emitte¢t.gt ©« = 1) and
received by the observer @t..., uo); therefore
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up = exp(—A(r . — %)) = exp(Ar 7). (5.18)

rec

Moreover,ug = \/(1+v)(1 —v)~landx = vz, as pointed out after (5.1). The
signs ofA, v andug — 1 coincide, see after (5.9). Thus (5.18) is equivalent to (5.16)
providedr,.. = t/,.. This identification follows fromt/,. = y (t;ec — VX;ec), if We
expresst ., Xrec) interms of(z, .., ug) via the transformation (5.1)zJ,, coincides

with z,,, atx = 0, cf. (5.1).]

With these prerequisites it is now very easy to compile the luminosity-distance
relation, as we already did in Section 3 for a general RW cosmology without spec-
ifying the exponents of the scale factors in (2.28). We measure time in units of
T, ~ h™1(t) ~ 1, cf. (2.27), and we write\r = A¢/¢. So we have

Atl,. = (14 2) Aty (5.19)
Energy we normalize as in the redshift definition (5.18)= E/E,.

The source at = 0 isotropically emits at time,,,, during the intervalAz,,, a
swarm of photons of total energg’é? = " nww; and frequenciesy, =
scABtor 1 cf. (5.8) and after (5.14). The observer is assumed to carry an antenna,
a disk of radius placed orthogonal to the-axis, which therefore collects a very
tiny fraction r3z /(4w R%,) of the isotropically emitted photons,.. is defined
after (5.13). The photons hit the antenna orthogonally, of course. The energy which
the observer receives in his rest frame on his antenrig, atx’ = 0) during the

interval At/,., cf. (5.17), is
A A 1 rin
/(antenna) __ yrrad 0
Erec - Eem 1+ z 47TR2 ) (520)

rec

where we used (5.15). The apparent luminogity,, is defined as the energy per
unit time and unit area absorbed by the antenna in its rest frame. Combining (5.19)
and (5.20), we obtain

EAw/(a‘ntenna) E'rad
Lapp 1= =7 = : (5.21)
rénAtl,, A1+ 2)?At,,RZ,

The intrinsic luminosity of the source 5 = E“g;;ﬂ/&rem, i.e., the total energy
emitted by the source in its rest frame per unit time. Thus we may write
Lyp 1
L Ard?’

dp = (14 2)Ryec. (5.22)

We haver,.. = |v|yt,,., see after (5.13) and (5.11). Inverting (5.16), we obtain

v = tanh(Ar-%z), y = coshAr Fz), (5.23)

rec rec

so that the luminosity-distance in the forward light cone reads
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B o |A|z
dp =c(1+2)t,,. smh((Aﬂ )ﬁ> . (5.24)

rec

We have restored here the unitand A = cR~2. Sincet/,, is identified withz,,.,

cf. the Remark following (5.17), this coincides with as calculated in (3.15).
Clearly,

Ho= B/t co=lc(t,..x =0)|=clA|(Ar,.)", (5.25)
see (5.7).
Remark In Minkowski space there is no obvious analogue to the metric distance

d(t...) between source and observer at the time of absorption, cf. (3.16). As met-
rical distance at the time of absorption we may either t&ke or R/, ., see after

rec!

(5.13). The relation between metrical and luminosity distance then reads
dp = (14 2)Rree = 1+ 2)R.,, cOSHAL P 7). (5.26)

Finally we discuss the appearance of the photon defined by the trajectory (5.3)
in the rest frame of the observer. In the, x’)-frame the trajectory (5.3) is given
by the same equation, apart franbeing replaced by’ = « (1 — v)2(1+v)~ Y2,
We introduce a parameter representation, writing (¢’> — x'’2)~#/2,

'(A) = A~YF coshAr — logk’), x'(A) = —A~YP sinh(Ax — logk”),
K= (1 -2 +v) V2expArP),
)\im’t = t;mf} = )/ﬂté;/s, )\term = t;;cﬂ = yﬂt;ef‘ (527)

We havelr;,i: > Aierm, Cf. (5.17). The time coordinaté(i) may have a minimum
in the interval[A;,i;, Arerm]; the condition for an extremum reads

. 1 1 .
coth( AL — £,7) + = log TV = BAX, (5.28)
2 1-v
and from (5.9) we obtain the identity
n 1. 14v
APl —1P) + = =0. 2
(yrt r tem)+zogl_v 0 (5.29)

Note thatg > 0, and in the following discussion we also assuine 0,v > 0, see
after (5.9). The casd < 0,v < 0 can be treated analogously. It is geometrically
evident that (5.28) has always a unique solution for positiughich corresponds
to a minimum oft’(1). However, the solution lies in the relevant raf@g;,, Arerm]
only if

1 1+v A
= Z - —B
= coth(2 log 1 v) < BAt,) (5.30)
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holds. We denote this solution Ry,.

Thus, ifv > (,BA)*ltfm, there appear two photons in the primed frame. One
parametrized in the intervghmin, A:er ], @nd another corresponding to the para-
meter rang€imin, Ainiz]. The observer sees in his frame of r@&tx’) two tachyons
emerging at('(Amin), X' (Amin)), one reaches him af,. = t'(A;rm), Whereas
the other reaches the sourcergt = #'(1;,;,). During the time intervalt’ (Amin),
min(z,,,, t/,.)] there appear in this frame two images of the photon that connects
source and observer in the comoving frame. Multiple images of photons which
appear at different places at the same time are extensively discussed in Tomaschitz
(1998b). A similar phenomenon occurs if one considers superluminal particles
(Feinberg, 1967) in individual geodesic rest frames of galactic observers (Toma-
schitz, 1997a, 1998a).

It is easy to see thaf,. < r,, if v is sufficiently close to one, cf. (5.9) and
(5.12). [In the rest fram¢, x) of the source we always hayg, < ..., of course.]

If, however,v < (ﬁA)—ltfm, then there is no minimum in the ran@e,.;;, Aerml,
and we have,, < t/,.; there is only one ray moving straight from the source to

the observer. This can be seen as follows. The inequgljty ¢/, is via (5.9) and
(5.11) equivalent to

1 | 1+v

—p
t < —= (0] )
2A(yP — 1) Y1V

em

(5.31)

andv < (BA)~42, is equivalent ta,,” < (vBA)~1y~#, cf. (5.11). The assertion
then follows from

1 1 1+v

I ) 5.32
vByP T 2(/F -1 P1-v 5:32)
It is easy to see that this inequality holds, if we write it as
1 (L—v?)»~2
g(log(l +V) —log(L =) — = + % - 0. (5.33)

This is indeed valid for8 > 0, which can be shown by differentiation and by
inspecting the limitsy — 0, 1. The appearance of the photon in the individual
geodesic rest frames of galactic observers may be quite different compared to the
photon trajectory in the comoving frame, but it always arrives at the observer at
x’ = 0 with positive energy, see (5.8) and after (5.14).

6. Effects of the Ether on Source Counts in the Forward Light Cone

We start with the line elements (2.5), (2.6), in comoving coordinates and use the
Poincaré ball representatid? for the hyperbolic 3-space, wittho? defined after
(2.12); CartesiamB3-coordinates are denoted Ryn this section. Introducing polar
coordinates?, 9, ¢) in B2, we have
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8sinddvder?dr

NG = PO 3

(6.1)

as the number of galaxies in the solid angletsit#dg betweerv andr + dr, cf.
(4.1). The line elements? in (2.5) witha(r) = T anddo? as defined after (2.12)
(with x replaced by) is mapped ontds? = —dt? + dx? in the forward light cone
by the transformation (Infeld and Schild, 1945)

T= VPP, § = (1= VP IXP);

1+ %% . 2%
Cx = 6.2
1—%2 " T1I-Rp (6.2)

i

|2

Introducing polar coordinate@, ¥, ¢) also in the forward light cone, we obtain

dr 1 t
ai_ 1 (—dr - dt) , (6.3)
r 2 —y2 \r
and therefore
sindddd
AN(T,%) = p (\/t2 — |x|2) SNVAVID 2dr — rdr), (6.4)
(12 — r2)2

To understand the meaning of this formula, we repléeé by the isometric line
element

ViV;

1 o
dUz = m (8,] + 1_ V2> a’v’dv’, (65)

lv| < 1. This is the projective modet ® of hyperbolic geometry, (Magnus, 1974;
Fock, 1959) obtained from82 by the isomorphism
) i ) 2%
f= (1— J1- |v|2) = . (6.6)

Ve 1+ %72

Therefore we may write (6.1) as

vI%d|v|

dN(t,%) = p(1) Sinzﬁ‘a’zﬁ‘dgo(l_—Mz)z‘

6.7)

The isometry which maps the line elemeht in (2.5) witha(r) = r anddo? as
in (6.5) onto the forward light cone reads

X T TV
T=VI2— X% V=—) 1= ——, X= ——. (6.8)
t V1—|v|2 V1—|v|?

Thus,V is just the velocity of a galaxy &t, x). By means of the third equation in
(6.8) we write (6.7) as
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3

d
AN(7,%) = p (t\/l — |v|2) (1_7&"2)2 —: dN(t, V). (6.9)

dN (t,V) is the number of galaxies with velocities in the rarfgev + dv) at time
t. Equation (6.4) may therefore be written as

dN(t,Vv) =dN(t,X) —dn(t,r, 9, @), (6.10)
where
td>x
— A 2 __ 2 S
dN(t,X) :=p (\/t IX] ) X2 (6.11)

is the number of galaxies in the range x + dx) at timet, and

3
dn(t,r, 9, ¢) = p <\/t2 - r2> sinz?dz?dgamdt (6.12)

is the number of galaxies pouring through the surface elenfesihyd9de of a
sphere of radius during the intervalt, t + dt).

Remark:The line element in (6.5) is diagonal in polar coordinates, ¥, ¢), and
its volume element igvol(K3®) = (1 — |v|?)~2d3v. To obtain the symmetry group
of (6.5) we consider a Lorentz boost along thaxis of the forward light cone,
X =y —ut), ! =yt —ux),y =y, 7 =2z,y = (1 —u?>~Y? which relates
the rest framdt, x) of the galaxy atr = 0 to the rest framé:’, x’) of a galaxy
moving with speed: (x = ur) along thex-axis. If we writev = x/t, V' = X'/t/,
this transformation reads

V1 — U 1 V23
1 ’ )

I = == ) 6.13
T o 28 y1—vu (6.13)

The symmetry group of 3 is generated by rotations and the transformations (6.13).
The curious fact that the special relativistic addition law for velocities can be
realized as symmetry transformations &f was pointed out by Fock (1959),
and is much less curious in this cosmological context. Since the volume element
dvol(K?3) is invariant under (6.13), it follows thatN (', V') = dN(t, V).

With p(t) as in (4.6) we can calculate from (6.11) the number of galaxies in a
ball of radiusr, r < ¢, as

N(t,r) =4 p(t)t 2+t f drr?(t* — r?)*—2
0

= %”ﬁ(r)(r/t)?’ 2F1(2— 1, 3/2,5/2; (r/1)?). (6.14)
Also note that

N(t,r = |V|t) =/ dN(t,V) (6.15)

Vi<vl
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is the number of galaxies with velocity smaller thahat a given time. If A > 1,
the integral (6.14) converges also foe ¢,

r—1 .
3/2
TATLUD 1/2),0(1). (6.16)

We obtain from (6.14), writing = r/1,

N, r=t)=m

v 1IO 1+v
1—2 2971,

N(t,r,A =0 =21 ( ) 0, p = const, (6.17)

N(t,rh=2) = gn,é(t)v3. (6.18)

Integrating (6.12), we obtain

n(t,r) = 4rr’ /Oo b (\/z2 — |x|2> (12 — r®)~2dr (6.19)

as the number of galaxies which pass through the spkete r within the interval
(z, 00). This integral converges i < 3/2 andr > r. Note thatn(z, r, A = 0) =
N(t, r, » = 0), which means that the number of galaxies is conserved; all galaxies
which lie at timer within a sphere of radius will later pour through this sphere,
and only these. I > 0 new galaxies are formed in this sphere, and ik 0
the galactic density decreases in the cosmic evolution. As pointed out at the end of
Section 4, we do not consider luminosity evolution here.

Finally, we derive the source counting function (4.7) in the forward light cone.
From (6.9) we obtain

. v|%d|v|
— _ 2
AN G, VD = 47 (1o T= V) (72 (6.20)
as the number of galaxies with velocities ranging|w, |v| + d|v|) at timet,,,.
Note that observer and source are interchanged compared to Section 5; the primed
coordinates of Section 5 correspond to thex)-frame here. With (5.23), (5.17)
and (5.11) we may write (6.20) as

AN (trec, 2) = A | Al L pltre) (L + 2) 2P sintP(| Al f2)dz, (6.21)

with 8 = 4/3. By integration we arrive at (4.7), singe. = ... as pointed out in
the Remark following (5.17), andi |zt = D(t..), cf. (3.6).

7. Conclusion
The purpose of this paper is to demonstrate that the cosmological redshift and

all that goes with it may be a consequence of a cosmic ether rather than a space
expansion. What is locally perceived as vacuum speed of light is actually varying
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in cosmic time, as is the Hubble constant. However, this does not necessarily mean
that the 3-space is static. In Section 5 we consider a flat spacetime and geodesic co-
ordinates in which the redshift is a Doppler shift, a combined effect of the galactic

recession and the permeability of the ether. The ether as introduced here does not
induce dispersion that could lead to a dimming of remote sources (Sandage, 1988).

The cosmology developed here is based on two symmetric tensor fields, a space-
time metric, and a symmetric permeability tensor representing the world ether. This
tensor we assume as homogeneous and isotropic; it is determined by two scale
factorsh () andb(t), both functions of cosmic time like the expansion faet6r)
in the RW metric. Electromagnetic fields are coupled to the permeability tensor as
in a dielectric medium, cf. Section 2. Classical mechanics in the ether is defined by
replacing in the Hamilton-Jacobi equation the spacetime metric by the permeability
tensor. Hamiltonian mechanics in Minkowski space works because in this local
limit we can accommodate the effects of the ether in the fundamental constants,
which become so adiabatically varying functions of cosmic time.

The ether is introduced in a completely phenomenological way, in terms of a
macroscopic permeability tensor defined by two scaling functions. If the ether re-
ally exists, it must be regarded as the carrier of electromagnetic and quantum fields,
and as the physical substance of cosmic space, whose microscopic structure makes
wave propagation at all possible. Minkowski space and vacuum electrodynamics
as well as the constancy of the speed of light are local geometric idealizations.

Varying fundamental constants are not compatible with Einstein’s equations; a
gravitational theory in which perihelion shifts are generated by a scalar gravita-
tional potential and the permeability tensor of the ether has recently been proposed
in Tomaschitz (1998c). As for cosmology, the possibilities of evolution in an open
universe go far beyond what is predictable by Einstein’s equations (Dyson, 1979;
Tomaschitz, 1996; 1997c).

In Sections 5 and 6 we consider a RW cosmology that is flat and isometric to
the forward light cone. In this cosmology globally geodesic coordinates can be
introduced for individual galactic observers. In a general RW cosmology a similar
reasoning holds in locally geodesic coordinate frames. We then have to restrict
ourselves to infinitesimal Lorentz boosts. Calculations then get even simpler, be-
cause infinitesimal neighborhoods are a good excuse for linearization, though this
is against the spirit of cosmology, which deals, after all, with the global structure
of the Universe. For the same reason we did not introduce in Section 3 systematic
power series expansions for the cosmic scale factors to derive the luminosity-
distance, as is usually done in RW cosmology. By assuming power laws for the
cosmic scale factors, we can obtain the distance-redshift relation for large distances
and redshifts, where local power series expansions are meaningless.

The ether has a substantial impact on the source counting fungtioy as
the exponents of the scale factors significantly enter in the location of the peak
of dN(z)/dz. In the case of linear expansion, the scaling exponent of the galactic
density is determined by this peak.
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