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Abstract. A pre-relativistic cosmological approach to electromagnetism and gravitation is explored
that leads to a cosmic time variation of the fundamental constants. Space itself is supposed to have
physical substance, which manifests by its permeability. The scale factors of the permeability tensor
induce a time variation of the fundamental constants. Atomic radii, periods, and energy levels scale
in cosmic time, which results in dispersionless redshifts without invoking a space expansion. Hubble
constant and deceleration parameter are reviewed in this context. The time variation of the gravit-
ational constant at the present epoch can be expressed in terms of these quantities. This provides
a completely new way to restrain the deceleration parameter from laboratory bounds on the time
variation of the gravitational constant. This variation also affects the redshift dependence of angular
diameters and the surface brightness, and we study in some detail the redshift scaling of the linear
sizes of radio sources. The effect of the varying constants on source counts is discussed, and an
estimate on the curvature radius of the hyperbolic 3-space is inferred from the peak in the quasar
distribution. The background radiation in this dispersionless, permeable space-time stays perfectly
Planckian. Cosmic time is discussed in terms of atomic and gravitational clocks, as well as cosmo-
logical age dating, in particular how the age of the Universe relates to the age of the Galaxy in a
permeable space-time.

1. Introduction

If the speed of light is varying in the cosmic evolution, it is tempting to model
this variation by a permeability tensor (Whittaker, 1951; Tomaschitz, 1998a-c). We
assume that cosmic space as generated by the expanding galatic grid is not a mere
geometric construct, but has itself substance. This substance, the ether, manifests
by its permeability.

The speed of electromagnetic waves is determined, like in a dielectric me-
dium, by a permeability tensor which, with the usual appeal to cosmic homo-
geneity and isotropy, takes the formds2

P = −c2h2(τ )dτ 2 + b2(τ )dσ 2, with two
scale factorsh(τ) andb(τ). This complements the Robertson-Walker (RW) metric
ds2 = −c2dτ 2+a2(τ )dσ 2. (The line elementdσ 2 on the 3-space induces constant
curvature.) Maxwell’s equations read

H
µν

;ν = c−1jµ, (−g)−1/2ελαβγFαβ;γ = 0, (1.1)

with Hµν := gP−1µαgP−1νβFαβ . The permeability tensorgPµν and the space-time
metricgµν are defined by the line elementsds2

P andds2, respectively. The tensor
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gP−1µν denotes the inverse ofgPµν . Covariant derivatives (;) are defined with the
metricgµν .

There are, however, two important differences compared to electrodynamics in
a dielectric medium. The speed of light, being a function of cosmic time, scales as
ĉ = c/n(τ), with the refractive indexn = √εµ, ε := a2b−2h−2 andµ := b4a−4.
For the ether to be dispersion free, electric and magnetic permeability must be
proportional (Tomaschitz, 1998c), which requiresh to be proportional toa3/b3. In
the following we will require

h(τ) = a3(τ )/b3(τ ), a(τ0) = b(τ0) = 1; (1.2)

τ0 is the present epoch. If (1.2) holds, then there is no dispersion in the direction of
propagation, which could lead to a dimming of spectral lines (Sandage, 1988). The
time evolution of the classical electromagnetic energy in the ether is proportional
to the time scaling of frequency,ω ∼ h(τ)b−1(τ ). Thus, if we take the Einstein
relationE = h̄ω for granted, Planck’s constant is independent of cosmic time,
h̄ ∝ 1. Moreover,λ− ∼ a(τ), and ĉ = ωλ−. At τ0, ds2

P andds2 coincide, so that
ĉ(τ0) = c, the presently measured speed of light.

The second difference to a dielectric medium is, that the ether does not only
affect electromagnetic waves but also massive particles and the gravitational field;
hence, not only the speed of light scales, but also the measuring rods. The ether
is the medium of electromagnetic wave propagation (Whittaker, 1951), and the
same holds for matter waves, and therefore it affects classical point particles as
well, as a consequence of the semiclassical limit. The dynamics of point particles
in the ether is defined by extending the eikonal equation,gP−1µνψ,µψ,ν = 0, to a
Hamilton-Jacobi equation,gP−1µνS,µS,ν = −c2m2.

The potential of a static electric point chargees in the ether was calculated
in Tomaschitz (1998c). We derived from the Hamilton-Jacobi equation(S,µ →
S,µ − eAµ) the energy of a chargee moving in this potential,

E = m̂ĉ2√
1− v2/ĉ2

+ êês
4π

1

r
, (1.3)

ĉ(τ ) = ch4/3, m̂(τ ) = mh−5/3, ê(τ ) = eh2/3. (1.4)

Equations (1.4) constitute the scaling laws for the speed of light, mass, and charge.
[c, m, ande are the presently measured values, ash(τ0) = 1.] It follows from
(1.2) and (1.4) that the fine structure constantα = ê2/(4πh̄ĉ) does not scale in
cosmic time, if the ether is dispersion free. The universality of the scaling law for
mass is supported by the fact that the ratios of electron, proton, and neutron masses
are apparently constant (Varshalovich and Potekhin, 1995), and there are also tight
bounds on the variation of the fine structure constant (10−13 − 10−17 yr−1 for the
logarithmic time derivative), derived from atomic clocks (Prestageet al., 1995),
quasar spectra (Varshalovich and Potekhin, 1995), and the Oklo natural reactor
(Shlyakhter, 1976; Irvine, 1983).
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By means of the Bohr quantization rules for the hydrogen atom, one can readily
write down the scaling laws for the energy levels, the Bohr radii, and the orbital
velocity and period (Tomaschitz, 1998c),

En = − m̂

2h̄2

(
êês

4π

)2 1

n2
∝ h(τ), rn = −4π

êês

h̄2n2

m̂
∝ h1/3(τ ),

vn = h̄n

m̂rn
∝ h4/3(τ ), Tn = 2π

r2
nm̂

h̄n
∝ h−1(τ ). (1.5)

We use the Poincaré half-space representation of hyperbolic geometry; the spatial
line element in the permeability tensor is then defined bydσ 2 = R2t−2(|dξ |2+dt2)
in the half-spaceH 3, (ξ, t), ξ ∈ C|, t > 0, xµ = (τ, ξ, t). H 3 endowed with
dσ 2 has constant sectional curvature−1/R2, so that the cosmic 3-space has the
curvature radiusa(τ)R. Clearly, atomic radii and periods vary in time, and if we
measure the speed of light in these varying units, it stays constant, that is, as long
as we can neglect the gravitational potential. In fact, if we disregard gravitation
for the moment, then the cosmology defined by the two line elementsds2

P , ds2 is
equivalent to a standard RW cosmology

ds2
RW = −c2dt2+ a2

RW(t)dσ
2, aRW (t) := b(τ(t)), t =

∫ τ

const

h(τ)dτ. (1.6)

The Hubble parameter then readsHRW(t) = ḃ(τ )/(hb) =: H(τ)/h(τ). Because
dt = h(τ)dτ , we can identifyt with atomic time, counting periods as defined
in (1.5), cf. the end of Section 2. As for the Hubble constant, we findH0 :=
HRW(t0) = H(τ0), sincedt = dτ at the present epoch, cf. (1.2). Conservation
of the galaxy number requiresρRW(t) ∝ a−3

RW (t), and thusρ(τ) ∝ b−3(τ )h−1(τ );
in the steady state case,ρRW(t) ∝ 1 andρ(τ) ∝ h−1. ρRW(t) is justρ(τ)measured
in atomic units, cf. (1.5), and the same holds forHRW(t) andH(τ), cf. Section 3.
The quantities in (1.4) as well asH(τ) andρ(τ) must always be accompanied
by a measurement prescription, a set of units (nuclear, atomic, or gravitational, cf.
Sections 2 and 6). The scale factors of metric and permeability tensor define the
time variation of all fundamental constants without reference to a specific set of
measuring rods. This is not trivial, as in a theory of varying constants conversion
factors are time dependent.

Equation (1.6) demonstrates, that an expanding space-time is equivalent to a
static space-time in which the measuring rods are contracting. The cosmological
redshift can be described either by an expanding galaxy background, or by a time
variation of the constants of nature, which is such, that all local physical systems
contract at the same rate. We may describe the cosmological redshift either by
the assumption that the distance between the galaxies increases and the size of
the atoms stays constant(h(τ) ≡ 1), or by the assumption that the atomic radii
contract and the distance between the galaxies stays constant,(a(τ) ≡ 1). It is
here of course understood, that the radii of all local systems, nuclear, atomic, and
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gravitational, including galaxy diameters, contract at the same rate, which, as we
will argue, does not happen. So, the speed of light depends on the rods, by which
we measure it, and there is in fact no rod that makes it constant throughout the
cosmic evolution. The redshift is not only determined by the time variation of the
photon frequency, but also by the cosmic scaling of atomic energy levels, which
serve as measuring rods.

In Section 2 the scaling law for the gravitational constant is derived. In To-
maschitz (1998b) a theory of gravity was developed which is based on a scalar
gravitational field coupled to the permeability tensor like the electromagnetic field.
In this context we study the Kepler problem and derive scaling laws for planetary
orbits. If we assumeH0 = 100h0 km s−1 Mpc−1, h0 ≈ 0.7 (HST Key Project, cf.
Mould et al., 2000), we find

h̄2H0

kcmempmn
≈ 0.49, (1.7)

and there is the coincidencēh2H0/(kcm
3
π) = 1/(4π) for h0 ≈ 0.6802 (which

happens to be the supernovae estimate of the Key Project Group) and a pion mass
of 139.567 MeV/c2. We keep this ratio constant in the cosmic evolution, which
actually means a variation of the large ratioe2/(4πkmemp) ≈ 2.27× 1039, and
this is the point where the deviation from standard RW cosmology occurs. The
time variation of this ratio is such that it converges to zero forτ → 0. Hence,
in this limit, the atomic Coulomb potential will be ultimately overpowered by the
Newton potential. Otherwise, in an epoch where the gravitational interaction can
be neglected in microscopic interactions, weak and strong interactions define units
that scale at the same rate like the atomic rods (1.5), cf. Section 6. Asĉ(τ ) scales
like vn in (1.5), the speed of light is really constant in these units, but not so in
gravitational units, see after (2.14).

In Section 3, we sketch the luminosity-distance in a permeable space-time, and
relate the Hubble constant and the deceleration parameter to the scale factors of
the metric and the permeability tensor. We then derive a relation between the log-
arithmic time derivative of the gravitational constant, the Hubble constant, and the
deceleration parameter, based on the constancy of the ratio (1.7),

k̇0/k0 = −H0(1+ q0), (1.8)

in atomic units. Observational bounds on the variation of this ratio, steming from
a variety of sources listed at the end of Section 3, give a much tighter bound onq0

than obtained from the luminosity distance or angular diameters.
In Section 4, we discuss the redshift scaling of angular diameters and surface

brightness, as well as of the linear sizes of radio sources, and we point out the
implications of the varying gravitational constant on cosmological age dating. The
variation ofk scales linear diameters in a way that angular diameters decrease for
high z. We also indicate the reconstruction of the scale factors of the metric and
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the permeability tensor from thez-dependence of the angular diameters and the
surface brightness.

Source counts are studied in Section 5, based on a scaling law for the number
density derived from the constancy of the moderate ratio�m. We estimate, from the
maximum in the quasar distribution, the present curvature radius of the hyperbolic
3-space,R ≈ 6.3c/H0. In the Conclusion, Section 6, the scaling laws for the Fermi
constant and the strong interaction are derived, and we discuss the scaling laws for
black-body radiation in a dispersionless, permeable space-time.

2. The Scaling Law for the Gravitational Constant

To derive the scaling law fork, it is sufficient to consider a Newtonian potential
capable of producing Kepler ellipses; a gravitational theory that includes the per-
meability tensor as a dynamical variable and produces the right perihelion shifts
can be found in Tomaschitz (1998b). In the Newtonian limit, the action of the
gravitational potential reads as

Sϕ =
∫
Lϕ
√−gdx, Lϕ = − c3

8πα2k
gP−1µνϕ,µϕ,ν; (2.1)

the tensorsgµν and gPµν are defined at the beginning of the Introduction. The
gravitational potential is coupled to the permeability tensor quite similarly as the
electromagnetic field, cf. (1.1), and the Lagrangian and the action of a particle
moving in this potential reads

Lp(s) = −mcG(ϕ)
√
−gPµνẋµẋν , Lp(x) =

∫
Lp(s)

δ(x − x(s))√−g ds,

G(ϕ) := 1− α̃−1ϕ +O(ϕ2), Sp =
∫
Lp(s)ds =

∫
Lp(x)

√−gdx. (2.2)

The numerical constant̃α in G(ϕ) gets important if we consider perihelion shifts,
but in the Newtonian limits studied here it does not really enter, as it can be scaled
into ϕ. (In this section we denote, as usual, derivatives with respect tos by a dot,
andτ -derivatives by a prime.)

The source counts discussed in Section 5 provide evidence for a negatively
curved 3-space. We choose as coordinate representation of the hyperbolic 3-space
the Poincaré ballB3 with metricdσ 2 = 4(1− |x|2/R2)−2dx2, |x| < R (Cartesian
coordinates), so thatxµ = (τ, x) anddx = dxdτ in (2.2). This line element is
isometric to that defined after (1.5).

We consider a static point source of massms, located atx = 0, so thatds =
ch(τ)dτ , in (2.2), and therefore

Lp(τ, x) = −msc2h(τ)G(ϕ)
δ(x)√−g ,

δLp(τ, x)
δϕ

= msch(τ)

α̃

δ(x)√
γ
, (2.3)
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whereγ is the determinant of the 3-space metrica2(τ )dσ 2. We obtain from (2.1)(
δLϕ

δϕ,µ

)
;µ
= − c3

4πα̃2k

1√−g
∂(
√−ggP−1µνϕ,ν)

∂xµ
. (2.4)

The Lagrange equation for the potential of a static point sourcems is derived from
the combined actionSϕ + Sp,

− 1

c2a3

∂

∂τ

(
a3

h2

∂ϕ

∂τ

)
+ 1

b2
1Bϕ = −4πα̃kmsh

c2a3

δ(x)√
γ B
, (2.5)

which immediately follows from (2.3) and (2.4).1B denotes the Laplace-Beltrami
operator andγ B the determinant of theB3-metricdσ 2 as defined after (2.2). Since
the time variation is adiabatic, we drop the term with the time derivatives in (2.5).
The Poisson equation inB3,1Bϕ̃ = −4πδ(x)/

√
γ B , is solved by

ϕ̃ = 1

2R

(
R

r
+ r

R
− 2

)
= 1

R

(
Ra(τ)

d(τ, x)
+O

(
d

Ra

))
, (2.6)

whered(τ, x) is the spatial distance from the source located atx = 0, cf. To-
maschitz (1998c). AsRa(τ) is the curvature radius of the 3-space, we may take
the asymptotic limit in (2.6) for granted. Hence, the Newtonian potential of a static
point sourcems reads as

ϕ = α̃kms

c2

b2h

a2

1

d(τ, x)
. (2.7)

Next we consider a particle in this potential. Introducing cosmic time as curve
parameter, we have from (2.2)

Lp(s)ds = −mc2h(1− α̃−1ϕ + . . .)
√

1− b2h−2c−2γ Bij x
′ix ′jdτ, (2.8)

whereγ Bij denotes theB3-metric. The velocity reads as|v|2 = a2γ Bij x
′ix
′j . In the

Newtonian limit, we obtain from (2.8) the Lagrangian

L = −mc2h+ 1

2

mb2

a2h
|v|2+ 1

α̃
mc2hϕ, (2.9)

with ϕ as in (2.7). We may write this as

L = −m̂ĉ2+ 1

2
m̂|v|2 + k̂m̂m̂s

d(τ, x)
, (2.10)

with m̂ andĉ defined in (1.4) and

k̂(τ )

ĉ2(τ )
= k

c2
h2(τ ). (2.11)

If we expressk in terms of the Hubble constant via (1.7), we obtain the scaling law
for the gravitational constant,
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k̂(τ ) = k0κ(τ)h
14/3(τ ), κ(τ) := 1

h(τ)

H(τ)

H0
, (2.12)

The identification ofH(τ) := ḃ(τ )/b(τ) as Hubble parameter in a permeable
space-time was already derived in Tomaschitz (1998c), see also Section 3.k0 is
the present-day value of the gravitational constant. The exponent 14/3 can also be
guessed on dimensional grounds. In atomic units as defined in (1.5), we find the
time variation of the gravitational constant ask(t) = k0κ(τ(t)).

We identifyd(τ, x) in (2.10) with the Euclidean radial coordinater and|v| with
the Euclidean velocity. In polar coordinates, we have|v|2 = r ′2+r2θ

′2. The angular
momentum,M = m̂r2θ ′, is still conserved, but not any more the energy,

E(τ) = m̂ĉ2+ 1

2
m̂r

′2+ M2

2m̂r2
− k̂m̂m̂s

r
. (2.13)

The constants in (2.13) vary adiabatically on the time scale of a planetary period,
of course.E(τ) is minimized by a circular orbit, whose radius, orbital velocity, and
period scale as

r = M2

k̂m̂2m̂s
∝ κ−1h1/3, |v| = rθ ′ ∝ κh4/3, T ∝ κ−2h−1. (2.14)

Remarks: (1) Relation (2.12) actually constitutes the fundamental departure from
standard RW cosmology. In fact, if we require the ratioe2/(km2) to be constant
instead of (1.7), this would mean to putκ(τ) ≡ 1, independent of the Hubble
constant. Then gravitational measuring rods scale exactly at the same rate as atomic
ones, and we recover standard RW cosmology in the formalism of varying rods as
discussed in Section 1. (2) The scaling stated in (2.14) for the orbital radius holds
for the size of any gravitating system kept together by Newtonian potentials, in par-
ticular for galaxy diameters, which readily follows from the virial theorem (Teller,
1948). The scaling (2.14) is of course adiabatic, the orbit is not really closed. If the
speed of light is measured in gravitational units (2.14), we findĉ(τ ) ∝ κ−1|v|, cf.
(1.4), and thusc(τ) = cκ−1. In atomic units (1.5), we have of course a constant
speed of light,c(τ) = c, and the planetary orbital velocity (2.14) scales as|v| ∝ κ.
The scale factors are chosen in a way, that atomic and gravitational units coincide
at the present epoch, cf. (1.2).

As pointed out in (1.5), atomic periods scale asT ∝ h−1. However, this only
holds if the Newtonian potential can be neglected. If the gravitational constant
diverges forτ → 0, then the Newtonian potential will overpower the Coulomb
potential at some point, and atoms will be kept together, if at all, by gravitational
forces in this limit. The atomic period evidently scales asTat. ∝ (−ee′/(4π) +
κ(τ)kmm′)−2h−1(τ ), with present-day constants, and we have in the indicated limit
Tat. ∼ Tgrav. ∝ κ−2h−1, cf. (2.14). Time may be defined by counting either gravit-
ational or atomic periods; in any case it is related to the cosmic time parameter via
dt ∝ T −1(τ )dτ . If we count time in siderial years, we have to put
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dt = κ2(τ )h(τ)dτ = (H(τ)/H0)
2h−1(τ )dτ, (2.15)

and if time means the counting of atomic periods as defined by a hyperfine trans-
ition frequency, we have

dt =
(
1+ κ(τ) kmm′

−ee′/(4π)
)2

(
1+ kmm′

−ee′/(4π)
)2 h(τ)dτ. (2.16)

At the present epoch,dt anddτ coincide in either case, and the fundamental con-
stants in (2.15) and (2.16) are present-day values. In Section 4, we will demonstrate
that for most part of the cosmic evolution atomic time relates to cosmic time as
dt ≈ h(τ)dτ , i.e., the effect of the Newton potential can be neglected. However, in
the limit τ → 0, atomic time coincides with gravitational time, provided one finds
a suitable periodic system to count time in this limit.

Equations (1.4) and (2.12) constitute the scaling laws forc, m, e, andk; h̄ and
the small ratiosα and (1.7) do not scale. In the next three sections we discuss the
observational consequences of this time scaling, and then turn in Section 6 to the
nuclear constants.

3. Hubble Constant and Deceleration Parameter in a Permeable Space-Time

The luminosity-distance relation (Weinberg, 1972; Sandage, 1988) readsLapp =
L/(4πd2

L), with the luminosity distance

dL = Ra(τ0)b(τ0)b
−1(τem) sinh[3

∫ τ0

τem

R−1
P (τ)dτ ]. (3.1)

RP (τ) := b(τ)h−1(τ ), and3 := c/R. The 3-space is negatively curved (see after
(2.2) and Section 1) with curvature radiusRa(τ), therefore the ‘sinh’ in (3.1).R
is the curvature radius of the 3-space at the present epoch, cf. (1.2). We do not
give a derivation of (3.1) here, asdL immediately follows from Equation (3.14) in
Tomaschitz (1998c), if we insert thereEn ∝ h(τ), Tn ∝ h−1(τ ), andErad ∝ ω ∝
R−1
P (τ), cf. (1.5) and (1.2). The metric distance between source and observer [with

respect to the line elementa(τ)dσ on the 3-space] reads

dM(τ) = ca(τ)
∫ τ0

τem

R−1
P (τ)dτ. (3.2)

The redshift is determined by the scale factorb(τ) of the permeability tensor as

1+ z = b(τ0)/b(τem), (3.3)

(Tomaschitz, 1998c). [In deriving (3.3), the photon energy has to be normalized by
the atomic energy levels,En ∝ h(τ), cf. (1.5), we assume that the emission takes
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place at a time at which the gravitational potential in atoms can still be neglected,
cf. the discussions following (2.14) and (4.12).]

If τem is close toτ0, we may substitute into (3.1)–(3.3) the series expansions of
h(τ) andb(τ) in powers ofτ0 − τ . To this end, we define

H(τ) := ḃ/b, p(τ) := −b̈b/ḃ2, q(τ) := p(τ)+ ḣ
h

b

ḃ
; (3.4)

H0, p0, andq0 denote the respective values at the present epochτ0. We find

H0(τ0− τem) = z− (1+ p0/2)z
2+O(z3), (3.5)

D(z) := H0

∫ τ0

τem

h(τ)b−1(τ )dτ

= h0

b0
H0(τ0− τem)

(
1+ 1

2

(
1− 1

H0

ḣ0

h0

)
H0(τ0− τem)+ . . .

)
, (3.6)

dL = R(1+ z) sinh(3H−1
0 D(z)) = cz

H0

(
1+ z

2
(1− q0)+ . . .

)
. (3.7)

In this wayH0 is identified as Hubble constant andq0 as deceleration parameter.
dL relates to the metric distance at absorption and emission time as

dL

dM(τ0)
= (1+ z)1H(z), 1H (z) := sinh(3H−1

0 D(z))

3H−1
0 D(z)

, (3.8)

dM(τem)

dM(τ0)
= a(τem)

a(τ0)
, dM(τ0) = cz

H0

(
1− z

2
(1+ q0)+ . . .

)
. (3.9)

R does not enter in the above expansions in the indicated order. The luminosity
distance for a flat 3-space is obtained by performing the limitR → ∞ in (3.7),
which means to put1H(z) ≡ 1. (In the case of a positively curved 3-space, we
have to replace sinhx by sinx in 1H .) If D(z) diverges in the high-z limit, i.e., if
no horizon appears in the look-back time, then the luminosity distance increases
exponentially in a hyperbolic 3-space. When this exponential increase sets in, or at
whichz 1H(z) starts to differ from 1 in a noticeable way, this evidently depends on
the present curvature radius. As the gravitational constant is varying, the Einstein
equations are not applicable. Accordingly,R cannot be obtained fromH0 andq0,
but has to be determined independently, see after (5.9).

Returning to (2.12), we find

Ḣ

H
= −H(τ)(1+ p(τ)), κ̇

κ
= Ḣ

H
− ḣ
h
= −H(τ)(1+ q(τ)). (3.10)
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At the present epoch, we may take the time derivatives in (3.10) with respect to
atomic time, becausedt ≈ dτ , cf. (2.16) and (1.2). In atomic units, we havek(t) ∝
κ(τ(t)), as pointed out after (2.12), and henced logk(t0)/dt = −H0(1 + q0),
as announced in Equation (1.8). This gives a very tight bound onq0; with H0 as
stated after (1.7), and a very conservative|k̇0/k0| < 10−11 yr−1, we safely obtain
q0 = −1+ ε, |ε| < 0.15. Current bounds on|k̇0/k0| lie in the range 10−11− 10−12

yr−1, inferred from radar tracking of planets (Shapiro, 1990), binary pulsars and
neutron stars (Kaspiet al., 1994; Thorsett, 1996), and lunar laser ranging (Dickey
et al., 1994; Williamset al., 1996). More phenomenological estimates (roughly in
the same range) are obtained from planetary palaeoradii (McElhinnyet al., 1978),
luminosity functions of white dwarfs (García-Berroet al., 1995), main-sequence
fitting of globular clusters (Degl’Innocentiet al., 1996), and from helioseismology
(Guentheret al., 1998). Bounds from primordial nucleosynthesis, quoted in García-
Berroet al.(1995) and Guentheret al.(1998), are on the lower end, 10−12 yr−1, but
rely on the Einstein equations or their generalizations. A time variation ofk in the
upper half of this range could also resolve the ‘early faint sun paradox’, without
invoking an enhanced greenhouse effect and/or a lower albedo to reconcile the
Earth’s high surface temperature with the weak early solar luminosity (Newman
and Rood, 1977; Kasting and Grinspoon, 1991; Sagan and Chyba, 1997).

This laboratory estimate onq0 is of course completely independent of the cos-
mological attempts to extractq0 from the luminosity distance, the angular diamet-
ers, and the surface brightness, cf. Section 4. Riesset al.(1998) findq0 = −1±0.4;
however, there is no consensus even on the sign of this parameter.

4. Angular Diameters and Surface Brightness: How Rigid are Galactic
Measuring Rods?

We denote byy(τem) the intrinsic diameter of a galaxy (measured in its locally
geodesic rest frame) and bydM(τem) the metric distance, between galaxy and
observer, cf. (3.2), both at emission time. The angular diameter, i.e., the angle
measured by the observer between the rays arriving from the opposite ends of the
diameter, readsθ = y(τem)/dM(τem), to be expressed as a function of the redshift
and the arrival timeτ0 of the photons. The galaxy diametery(τ) scales like the
planetary radius in (2.14) (Teller, 1948),

y(τem) = y0h
1/3(τem)κ

−1(τem). (4.1)

In our first example, we specify the scale factors in the line elementsds2 and
ds2
P of metric and permeability tensor as power laws,

a(τ) = (τ/τ0)
α, b(τ) = (τ/τ0)

β, h(τ) = (τ/τ0)
γ , (4.2)

so thatγ = 3(α−β) andH(τ) = β/τ , cf. (1.2) and (3.4). By means of (3.2)–(3.4),
(3.9) and (2.12), we readily calculate
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τem/τ0 = (1+ z)−1/β, q0 = (γ + 1)/β − 1,

dM(τem) = cH−1
0 (1+ z)−α/βD(z),

D(z) = (1+ z)−q0 − 1

−q0
, κ(τem) = (τem/τ0)

−(γ+1) = (1+ z)(γ+1)/β, (4.3)

(D(z) is defined in (3.6)), so that

y(τem) = y(τ0)(τem/τ0)
4(α−β)+1 = y0(1+ z)−(4(α−β)+1)/β. (4.4)

For comparison, we note the scaling of the diameter forκ(τ) ≡ 1, yκ̇=0 = y0(1+
z)1−α/β, cf. the Remarks following (2.14). The redshift dependence ofθ follows
from (4.3) and (4.4),

θ(z) = H0y0

c

(1+ z)−q0

D(z)
. (4.5)

Hence, forz→∞,

θ(q0 < 0) ∼ 1, θ(q0 = 0) ∼ 1/ logz, θ(q0 > 0) ∼ z−q0. (4.6)

For comparison, ifκ(τ) ≡ 1 [which is equivalent to standard RW cosmology with
expansion factoraRW(t) = t1/(1+q0), cf. (1.6)], we find the RW results

θκ̇=0(q0 < 0) ∼ z1+q0, θκ̇=0(q0 = 0) ∼ z/ logz, θκ̇=0(q0 > 0) ∼ z. (4.7)

In the following we putq0 = −1+ ε, cf. the end of Section 3. To obtain redshifts,
we evidently have to requireε > 0. The caseε = 0, i.e.,γ = −1, is also acceptable
in this respect, leading to a steady state cosmology. Otherwise, the choice ofα

andβ is physically undistinguishable, as long as it leads to the sameq0; it just
determines how much of the redshift is due to the expanding galaxy grid, also see
the discussion following (4.28). Convenient choices areα = 0, leading to a static
galaxy background, in which the redshift is entirely an effect of the contracting
measuring rods, orα = 1, which results in an expanding space-time isometric to
the forward light cone (Milne universe, cf. Robertson and Noonan, 1968). Ifα = β,
the measuring rods stay invariant, and the redshift is caused by the space expansion
only.

As long asκ(τ) ≡ 1, the permeable space-time is always equivalent to a RW
cosmology, cf. Section 1. If, however, the gravitational constant varies in a way that
the small ratio (1.7) stays constant instead ofe2/(km2), which requires (2.12), then
this has a substantial impact on the angular diameter. The RW angular diameters
(4.7) increase for large redshifts, with the exception of the steady state caseε =
0, and this increase is not observed (Sandage, 1988), whereas the diameter (4.6)
approaches a finite limit value in the relevantε-range,|ε| < 0.15. In our second
example, the varying gravitational constant will even lead to a power law decrease
of θ for high z.
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Unlike the luminosity distance, the surface brightness crucially depends on the
time variation of the gravitational constant. The angular diameter corresponds to
a solid angle ofπθ2/4, sinceθ is the opening angle of a cone with apex at the
observer and the galaxy diameter as base line. The surface brightness is defined as
the energy flux arriving at the observer per unit solid angle,

SB= 4Lapp
πθ2 = L

π2
1

(θdL)2
. (4.8)

The luminosity-distance (3.1) can readily be assembled from (4.3) and (3.8),

dL/dM(τem) = (1+ z)1+α/β1H(z). (4.9)

If we assume1H(z) ≈ 1, i.e., if we neglect the 3-space curvature, we find

SB(z) = const. y−2(z)(1+ z)−2(1+α/β), (4.10)

with y as given in (4.4). Clearly, if we insertyκ̇=0 (defined after (4.4)) into (4.10),
we obtain the model-independent RW result,SB∝ (1+ z)−4 (Sandage and Perel-
muter, 1991; Moleset al., 1998; Petrosian, 1998).

Atomic time relates to cosmic time as

tat.(τ0, τ ) =
∫ τ0

τ

h(τ)dτ = τ0

εβ
(1− (τ/τ0)

εβ), (4.11)

cf. (2.16), and gravitational time relates toτ as

tgr.(τ0, τ ) =
∫ τ0

τ

κ2(τ )h(τ)dτ = τ0

εβ
((τ/τ0)

−εβ − 1), (4.12)

with κ(τ) = (τ/τ0)
−εβ , cf. (2.15). The definition of atomic time (4.11) is of course

only valid as long as we can neglect the mass dependent ratio in (2.16). In the
following, we assumeh0 ≈ 0.7, cf. (1.7), so that 1/H0 ≈ 14 Gyr. We putα = β =
1/ε; the present epoch then reads asτ0 ≈ 14ε−1 Gyr, and atomic time coincides
with the cosmic time parameter in the approximation (4.11). (As mentioned,ε = 0
corresponds to the steady state case, with an infinite age and constantH0 andk. An
example in which the cosmic age is quite moderate, even ifε is very small, will be
discussed below.) The meteoritic age of the solar system is1tat. = τ0− τs ≈ 4.57
Gyr (Bahcallet al., 1995), so thatτs/τ0 ≈ 1− (4.57/14)ε. (At the beginning of
Section 6, it is pointed out that the radiometric dating methods are not affected by
the variation of the constants.) Asε < 0.15, κ(τs) is moderate, and this justifies
the neglect of the gravitational potential in the definition of atomic time. The same
holds, by the way, for the age of the Galaxy, which is unlikely to exceed 20 Gyr
(VandenBerget al., 1996; Cowanet al., 1997, 1999; Lineweaver, 1999). What
remains is to convert the atomic time of 4.57 Gyr into gravitational time; this is
readily done by means of (4.12),1tgr. ≈ 4.57(1 − (4.57/14)ε)−1 Gyr. Forε <
0.15, there is no substantial difference between the atomic and gravitational age
of the solar system. Also note that the gravitational age of the universe is infinite,
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as (4.12) diverges forτ → 0. In this limit the approximation (4.11) is not any
more valid, and one has to use the exact expression (2.16) as integrand in (4.11).
Accordingly, also the atomic age of the universe is infinite, as atomic clocks turn
gravitational for smallτ .

Our second example is defined by the scale factors

a(τ) =
sinhµ

(
α
λ
τ
τ0

)
sinhµ(α/λ)

, b(τ) =
sinhλ

(
α
λ
τ
τ0

)
sinhλ(α/λ)

, h(τ) =
sinh3(µ−λ)

(
α
λ
τ
τ0

)
sinh3(µ−λ)(α/λ)

, (4.13)

α, λ > 0. This means a power law scaling forτ → 0 as in the first example, so
that the universe has a finite ageτ0, and the exponential scaling forτ → ∞ is
suggested by the fact thatq0 is close to−1, see after (4.6). We find, cf. (3.4),

H(τ) = α

τ0
coth

(
α

λ

τ

τ0

)
, 1+ p(τ) = 1

λ
cosh−2

(
α

λ

τ

τ0

)
, (4.14)

which requiresp0 > −1.p0 is now related to the deceleration parameter byp0 =
3(λ− µ)/λ+ q0. We find

τ0 = α(p0, λ)

H0
√

1− (1+ p0)λ
, α(p0, λ) = 1

2
λ log

1+√1− (1+ p0)λ

1−√1− (1+ p0)λ
, (4.15)

which requires 0< λ < (1+ p0)
−1. We readily calculate

Ḣ0

H0
= − α

λτ0

1

sinh(α/λ) cosh(α/λ)
, (4.16)

sinh

(
α

λ

τem

τ0

)
= sinh(α/λ)

(1+ z)1/λ , sinh(α/λ) =
√

1− (1+ p0)λ

(1+ p0)λ
, (4.17)

τem(z→∞) ∼ 1

H0

√
λ

(1+ p0)
z−1/λ,

dM(τem)

dM(τ0)
= (1+ z)−µ/λ; (4.18)

the last relation follows from (3.9). To obtain the large-z asymptotics of the luminosity-
distance, we note, cf. (3.6),

D(z) = H0
λτ0

α
sinh−3µ+4λ(α/λ)

∫ α/λ

α
λ
τem
τ0

sinh3µ−4λ(τ )dτ =

λ

∫ 1

(1+z)−1/λ

y3µ−4λdy√
(1+ p0)λ+ [1− (1+ p0)λ]y2

. (4.19)

D(z) can readily be expressed in terms of hypergeometric functions, but for the
following asymptotic results this is not needed. If 1+ 3µ − 4λ > 0,D(z) admits
a finite limit value forz→∞. Otherwise, if 1+ 3µ− 4λ < 0, it diverges,
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D(z→∞) ∼ z(4λ−3µ−1)/λ. (4.20)

We so find the asymptotic behavior of the luminosity-distance as

dL ∼ z, dL ∼ z logz 1H(z), dL ∼ z(5λ−3µ−1)/λ1H (z), (4.21)

for 1+ 3µ− 4λ > (=,<)0, respectively. In the first asymptotic relation in (4.21)
we need not indicate1H , as it approaches a finite limit value due to the horizon.
Analogously, the asymptotics of the metric distance at emission time reads as

dM(τem) ∼ z−µ/λ, dM(τem) ∼ z−µ/λ logz, dM(τem) ∼ z−(4(µ−λ)+1)/λ. (4.22)

(In (4.20)–(4.22), there are of course constant factors in front of thez-terms, which
we did not indicate.)

As for the source diameter, we find from (4.1), (2.12), (4.14) and (4.17),

y(τem) = y0
(1+ z)−4(µ−λ)/λ√

1+ λ(1+ q0)((1+ z)2/λ − 1)
, (4.23)

so thaty(z→∞) ∼ z−(1+4(µ−λ))/λ, andy(z→ 0) = y0(1− (q0 + µ/λ)z + . . .).
For comparison with the standard theory, ifκ ≡ 1 in (4.1), we haveyκ̇=0(τem) =
y0(1 + z)−(µ−λ)/λ. The large-z asymptotics of the angular diameter can now be
readily compiled; we obtain, for 1+ 3µ− 4λ > (=,<)0,

θ ∼ z−(1+3µ−4λ)/λ, θ ∼ 1/ logz, θ ∼ 1, (4.24)

respectively. Ifκ ≡ 1, we find

θκ̇=0 ∼ z, θκ̇=0 ∼ z/ logz, θκ̇=0 ∼ z(3(µ−λ)+1)/λ, (4.25)

for the respective parameter ranges. In the limitz → 0, we have in any caseθ =
const. z−1(1+z(1−q0)/2+ . . .), to be compared to the standard RW resultθκ̇=0 =
const. z−1(1 + z(q0 + 3)/2+ . . .). The observational state of the art concerning
angular sizes of radio sources is discussed in Dabrowskiet al. (1995); it does not
seem possible as yet to extractq0 from the small redshift limit.

As for the surface brightness (4.8), we obtain, from (3.8) and (4.18),

SB(z) = const. y−2(z)(1+ z)−2(1+µ/λ), (4.26)

with (4.23) substituted. (We again assume1H(z) ≈ 1, neglecting the 3-space
curvature.) Hence,SB(z → ∞) ∼ z2(1+3µ−5λ)/λ, andSB(z → 0) = const. (1+
2(q0 − 1)z + . . .). The small redshift limit is evidently close to the standard RW
result (withyκ̇=0 in (4.26)), sinceq0 = −1+ ε, |ε| < 0.15.

We may write in (4.15)(1+ p0)λ = 3(λ− µ)+ ελ. The exponentsλ andµ in
(4.13) must be such, that

0< ελ+ 3(λ− µ) < 1, 0≤ 1+ 3µ− 4λ. (4.27)
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The first of these inequalities follows from the inequalities stated after (4.14) and
(4.15), and the second follows from (4.24), as the angular diameter should decay
for high z. Moreover,α in (4.15) should not be too small, otherwise we cannot
accommodate the age of the Galaxy. If we take all that into account, we conclude
λ ≈ µ, andλ andµ cannot be much larger than one, sinceε is small. If in addition
the surface brightness is not to diverge for highz, the range of these exponents
cannot be far outside the interval [1/2,1].

Firstly, if λ = µ = 1, we obtain a de Sitter cosmology with a varying gravit-
ational constant, where the angular diameter approaches zero logarithmically, cf.
(4.24). [In standard de Sitter cosmology,θκ̇=0 is increasing, cf. (4.25).] The high-z
asymptotics of the surface brightness reads asSB∼ z−2. This is more or less the
steepest descent that can be achieved with the scale factors (4.13), if the angular
diameter is not to diverge, and as long as1H(z) ≈ 1, see after (5.9).

Secondly, ifθ ∼ z−1, we have to require 1+ 3µ − 5λ = 0, cf. (4.24); we then
obtainSB∼ 1, and the conditionλ ≈ µ suggests at firstλ = µ = 1/2. We readily
calculate, forλ = µ, α = (µ/2) log(4/(εµ)) + O(ε), cf. (4.15). We findα ≈ 1,
based onµ = 1/2 and the boundε = 0.15, and thusτ0 ≈ 14 Gyr; a smallerε
would clearly increase this lower bound on the age of the universe. However, a tiny
ε need not lead to an excessive age, if we putµ = 1/2−|ε|η, λ = 1/2− (3/5)|ε|η,
with 0 < η < 1. Then we still haveθ ∼ z−1 andSB∼ 1, but forα we now obtain
α ≈ (1/4) log(10/(3|ε|η)). We can in fact prescribe a moderateτ0 commensurate
with the galactic age, and chooseη accordingly.

Finally, the asymptoticsθ ∼ z−1/2 andSB∼ z−1 follows from λ = µ = 2/3,
which results, forε = 0.15, inα ≈ 1.2 and thus in a lower bound ofτ0 ≈ 17 Gyr
for the age of the universe. As pointed out, a smallerε results in a larger age, which
can be reduced by choosingλ ≈ µ = 2/3+ O(|ε|η), 0 < η < 1; the indicated
exponents ofθ andSBcan only mildly be affected by theO(|ε|η) terms.

Observational attempts to infer the scaling exponents of angular diameter and
surface brightness are not yet conclusive (Dabrowskiet al., 1995; Moleset al.,
1998); we discuss two results concerning the linear sizes of radio sources. For
λ ≈ µ and highz, we obtain the diameter scalingy ≈ z−1/λ, as pointed out after
(4.23). Neeseret al. (1995) find, in the framework of the standard model, from a
sample mainly consisting of radio galaxies, a scaling exponent−1/λ = −1.2±0.5
for q0 = 0, and−1/λ = −1.7± 0.4 for q0 = 1/2. On the other hand, it follows
from the Remark after (4.6), thatq0 = 0 corresponds toλ = µ = 1, andq0 = 1/2
to λ = µ = 2/3 for τ → 0 in (4.13). Accordingly, there is agreement in both cases
well within the error bounds. As for quasars, Barthel and Miley (1988) find for the
redshift scaling of the linear size the bounds 3/2 < 1/λ < 2. These results would
suggestλ ≈ µ ≈ 2/3, or at least 1/2 < λ ≈ µ < 1 as restrained after (4.27).
However, there also exist several other, rather diverging estimates on the scaling
exponents of the linear and angular sizes of radio galaxies and quasars (Dabrowski
et al., 1995; Neeseret al., 1995, and references therein).
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The considerations concerning atomic and gravitational time are quite analog-
ous to those following (4.11) and (4.12), and will not be repeated here. For a cosmic
age exceeding 14 Gyr, there is no noticeable difference between the atomic and
gravitational age of the solar system.

As the gravitational constant varies, the Einstein equations are not applicable,
but there is the possibility to reconstruct the scale factors, if we know the angular
diameter or the surface brightness as a function of the redshift. In the following we
write τ for τem. We insert (3.3) into (3.1), regardτ as a function ofz, differentiate,
make use of (1.2), and obtain

ch(τ)

H(τ)
= δR(z) d

dz

dL(z)

1+ z , δR(z) :=
(

1+ d2
L(z)

R2(1+ z)2
)−1/2

,

−δR(z)
1+ z

d

dz

dL(z)

1+ z dz = ch(τ)dτ. (4.28)

If dL(z) is known, andh(τ) is arbitrarily prescribed, then we can solve the second
equation in (4.28) forz(τ), and so we findb(τ) = b(τ0)(1+ z(τ))−1, cf. (3.3),
and the expansion factora(τ) via (1.2).h(τ) determines the fraction of the redshift
caused by the space expansion; if we chooseh(τ) ≡ 1, then the redshift is entirely
due to the space expansion, and if we solve (4.28) withh(τ) = (1+ z)3, then it
is a consequence of the contracting measuring rods in a static space time,a(τ) ≡
b(τ0) = 1, cf. Section 1. The integration constant inz(τ) is fixed by the integration
ranges

∫ z
0 and

∫ τ
τ0

, cf. Weinberg (1972).
From (4.1), (3.8), (1.2), and (4.28), we readily derive

θ(z) = y0H0

c

δR(z)(1+ z)
R arcsinh

(
dL(z)

R(1+z)
) d
dz

dL(z)

1+ z ,

SB(z) = L

π2

c2

y2
0H

2
0

R2 arcsinh2
(
dL(z)

R(1+z)
)

δ2
R(z)(1+ z)2d2

L(z)
(
d
dz

dL(z)

1+z
)2 . (4.29)

(In the case of positive 3-space curvature, we replace inδR the plus by a minus sign,
and arcsinh by arcsin.) Both equations can easily be integrated, in particular for
R = ∞, if the left side is known. Returning to the second example discussed after
(4.27), we assumeθ = ãθ z−1+ b̃θ z−2+O(z−3), so that we obtaindL(z) = ãLz+
b̃L + O(z−1) from (4.29) (withR = ∞). If we chooseh(τ) ∼ h̃τ 2γ in (4.28), we
find z−3dz ∼ const. τ 2γ dτ , and thusb(τ → 0) ∼ b̃τ 1/2+γ anda(τ) ∼ ãτ 1/2+5γ /3.
With γ = −(3/5)|ε|η, we recover the exponentsλ = 1/2− (3/5)|ε|η andµ = 1/2
−|ε|η of the scale factors, as discussed above. Finally, we may eliminatedL andd ′L
in one of the equations (4.29), by means of

SB(z)θ2(z)d2
L(z) = L/π2, − d

′
L

dL
= 1

2

SB′

SB
+ θ

′

θ
. (4.30)
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If SBandθ are observationally determined, this allows a consistency check, as well
as a possibility to inferR, the curvature radius of the 3-space at the present epoch;
in the next section,R will be determined by a very different method.

5. Implications of the Constancy of�m on Source Counts and the Curvature
Radius

A moderate dimensionless ratio can be composed ofk, H0, and the present-day
mass density of the universeρm,

�m := 8π

3

kρm

H 2
0

≈ 0.3± 0.2, (5.1)

(Riesset al., 1998; Lineweaver, 1999; Perlmutteret al., 1999), whose constancy
requires for the mass and number densities the scaling laws

ρm ∝ H(τ)h−11/3(τ ), ρN ∝ H(τ)h−2(τ ), (5.2)

respectively. (The factor 8π/3 in (5.1) is just a convention in connection with the
Einstein equations, and irrelevant in this context.) In deriving (5.2), we used the
scaling laws (2.12), and (1.4).

In the following we study source counts based on the scaling law (5.2) for
the number density, which is assumed to hold universally, for optical and radio
sources alike. Conservation of the source number would require, contrary to (5.2),
ρN(τ) ∝ b−3(τ )h−1(τ ), as pointed out after (1.6). Densities leading to a non-
conserved source number were already discussed in Tomaschitz (1998c) in the
context of a flat 3-space. There is a peak in the quasar distribution atzmax ≈ 2.3
(Hartwick and Schade, 1990; Schmidtet al., 1995; Maloney and Petrosian, 1999),
and the scaling exponent of the densityρN was determined in a way that this peak
appears in the number densitydN/dz. This required a density slightly different
from the steady state case, mentioned after (1.6),ρN ∝ τ 2λ−3, λ ≈ 1.9, forR = ∞
and exponentsγ = −1, α = 1, andβ = 4/3 in (4.2). In this paper we use the
scaling law (5.2) for the quasar densityρN , and determine the present-day curvature
radiusR of the 3-space in a way that the observed peak in the densitydN/dz is
reproduced. We start with

dN = 32πa3(τ )ρN(τ)
r2dr

(1− r2/R2)3
= ρ̂N(τ) area(rH )drH ,

ρ̂N(τ) := a3(τ )ρN(τ), rH :=
∫ τ0

τem(z)

R−1
P (τ)dτ,

area(rH ) := 4πR2 sinh2(rH /R) = 4π
d2
L(z)

(1+ z)2 , (5.3)
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cf. Tomaschitz (1998). Using (4.28), we find

drH

dz
= −ch

b

dτ

dz
= δR(z) d

dz

dL(z)

1+ z , (5.4)

dN(z) = 4π

3
ρ̂(τem(z))δR(z)

d

dz

d3
L(z)

(1+ z)3dz. (5.5)

A conserved quasar number meansρN ∝ b−3h−1, as discussed after (1.6), and thus
ρ̂N(τ) = ρN(τ0), cf. (1.2). With this density we obtain, via (3.7),

dN(z)/dz = 4πR2cH−1
0 ρ(τ0) sinh2(3H−1

0 D(z))dD(z)/dz. (5.6)

This is just the standard RW result, but there is no peak in this distribution, with
D(z) as in (4.3) or in (4.19). However, this changes if we assume the quasar density
to scale according to (5.2),ρN(τ) = ρN(τ0)H

−1
0 H(τ)h−2(τ ). We find, with (4.28)

and (5.5),

ρ̂N(τem(z)) = ρN(τ0)
c

H0

1

δR(z)(1+ z)3
(
d

dz

dL(z)

1+ z
)−1

, (5.7)

dN/dz = 4πρN(τ0)
c

H0

d2
L(z)

(1+ z)5 = 4πR2ρN(τ0)
c

H0

sinh2(3H−1
0 D(z))

(1+ z)3 . (5.8)

A peak in (5.8) atzmax requiresN ′′(zmax) = 0, or

tanh(3H−1
0 D(zmax)) = (2/3)3H−1

0 (1+ zmax)dD(zmax)/dz. (5.9)

What remains is to solve (5.9) for3 (3 := c/R, cf. (3.1)), withzmax ≈ 2.3. If
ε → 0, we may approximateD(z) ≈ z in (4.3), and the same approximation also
holds in this limit forD(z) in (4.19), as long asz is not very large. (This follows
from q0 = −1+ ε andλ − µ = O(|ε|η), cf. the discussion after (4.27).) Hence,
the solution of (5.9) generating a maximum in the number density (5.8) atzmax

reads in either case3H−1
0 ≈ 0.16, which suggests a present-day curvature radius

of R ≈ 6.3c/H0, if ε � 0.15. On this basis we can estimate the effect of the space
curvature on the luminosity distance,1H(z) < 1.1, for z < 5, cf. the discussion
following (3.9).

With 3H−1
0 ≈ 0.16, we calculate the second solution of (5.9),zmin ≈ 5.9,

which corresponds to a minimum of (5.8), before the exponential increase. The
extrema of (5.8) read asN ′(zmax)/(4πR2ρNcH

−1
0 ) ≈ 4.1×10−3 andN ′(zmin)/(4π

R2ρNcH
−1
0 ) ≈ 3.6× 10−3. The decrease ofN ′(z) in the range[zmax, zmin] is thus

mild, and one may wonder if this is the reason why the fall-off in the quasar density
is not found in all surveys, and that rather large error bounds are still occasionally
cited forzmax, cf. the literature quoted above, and references therein.
Remark:The numerical values given here for3H−1

0 andzmin hold for ε → 0. If
ε ≈ 0.15, which is rather unlikely, cf. the end of Section 3, one has to use the exact
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expression forD(z) in (5.9) to obtain reasonably accurate results, but even then
there is no qualitative change. It is quite possible that the bound on the logarithmic
time derivative of the gravitational constant (and hence onε) cited after (3.10) can
be improved by several orders of magnitude, so that the time variation ofk has a
noticeable effect only at a very early epoch; binaries are promising candidates for
this endeavor (Kaspiet al., 1994; Thorsett, 1996). But however small the variation
of k may be today, the gravitational attraction overpowers all other interactions in
the limit τ → 0, cf. the discussion following (2.14).

6. Conclusion

Three independent dimensionless ratios can be composed from the six laboratory
constantsm, c, h̄, e, gF , gs . They can be chosen to be moderate numbers,

e2/(4πh̄c) ≈ 1/137, g2
s /(4πh̄c) := αs(mZ) ≈ 0.12, gFm

2
Wc/h̄

3 = 0.075,
(6.1)

cf. Casoet al. (1998). [The definition of the strong coupling constantgs is some-
what arbitrary here; if one defines it phenomenologically by means of a Yukawa
potential, and then infers its numerical value from the deuteron binding energy
(Davies, 1972), one arrives at the same conclusion, namely, thatg2

s /(h̄c) is a mod-
erate number.] As small dimensionless ratios should not scale in cosmic time, we
readily obtain with (1.4) the scaling laws for the strong interaction and the Fermi
constant,

gs ∝ h2/3(τ ), gF ∝ h2(τ ). (6.2)

By virtue of the scaling laws (1.4), the constancy of the Planck constant, and (6.2),
it is easy to see from the Gamow formula forα-decay and Fermi’s formula for
thef t-value, or simply on dimensional grounds, that the decay constants scale as
λ(τ) ∝ h(τ), for α andβ-decay alike, as long as electromagnetic, strong, and weak
interactions are not overpowered by the diverging gravitational constant, cf. the
discussion following (4.12). This meansλ(τ)dτ ≈ λ0dt , cf. (2.16), ifdt measures
atomic time, and there is overwhelming evidence for this relation to hold within the
last 4.5 Gyr, from radiometric age dating of rocks and meteorites (Dyson, 1972;
Lindner et al., 1986). As long askmemp/e2 � 1, atomic and nuclear measuring
rods are determined by the six mentioned laboratory constants, and they are equiv-
alent, admitting time-independent conversion factors. Atomic and nuclear clock
rates are then related to cosmic time viadt ≈ h(τ)dτ .

The gravitational constant is not included in the mentioned set of laboratory
constants, as no small ratio can be composed with it. However, it matches very
well with the Hubble constant, resulting in the small dimensionless ratio (1.7),
whose constancy requires the scaling law (2.12) for the gravitational constant.
Gravitational time is related to cosmic time via (2.15). Atomic and gravitational
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time just mean different sets of clocks, whose rates are connected by conversion
factors depending on the cosmic time parameter. It does not really matter which
clocks we use, because the measurements can be converted, as exemplified after
(4.12). All clocks turn gravitational forτ → 0.

Let us next consider the scaling laws for the cosmic background radiation. In the
Planck distribution, the time dependence of the frequency (outlined after (1.2)) is
absorbed in thekBT factor so thathν/(kBT ) ∝ 1, the temperature being redshifted
according to (3.3). This requires

kB ∝ h(τ), T ∝ b−1(τ ). (6.3)

[No confusion should arise here between the unreduced Planck constanth, and the
scale factorh(τ).] The total energy density and the number density of the photon
background scale as

ρE ∝ (kBT )4/(h̄c)3 ∝ b−4(τ ), ρN ∝ (kBT )−1ρE ∝ h−1(τ )b−3(τ ), (6.4)

respectively;ρN scales like the galaxy density discussed after (1.6), leading to
a conserved photon number. The Planckian shape of the microwave spectrum is
perfectly conserved, as the time variation of the fundamental constants (with the
exception of the gravitational constant, which does not enter here) can be absorbed
in the expansion factor, cf. (1.6). [Theories of varying fundamental constants as
well as ‘tired-light’ theories are frequently marred by a distorted Planck spec-
trum (Steigman, 1978).] The scaling laws for pressure and specific entropy/heat
capacities are likewise readily read off from the standard formulas for black-body
radiation,P ∝ b−4(τ ), and s ∝ cV,P ∝ b−3(τ ), respectively, and the spectral
energy and number densities scale as

ρE(ν) ∝ h−1(τ )b−3(τ ), ρN(ν) = ρN(ν)/(hν) ∝ h−2(τ )b−2(τ ). (6.5)

The cosmic time scaling of a possible cosmic tachyon background radiation, a
Bose gas composed of the quantized eigenmodes of a conformally coupled Proca
field with negative mass square, as well as the cosmic time scaling of the mass of
superluminal particles is discussed in Tomaschitz (1999a-c).

Locally, for a massive Fermi gas, we haveT ∝ 1 andmc2/(kBT ) ∝ 1, hence

ρE ∝ m4c5/h̄3 ∝ 1, ρM ∝ ρEc−2 ∝ h−8/3, ρN ∝ ρE/(mc2) ∝ h−1, (6.6)

for energy, mass and particle density, respectively. We findP ∝ s ∝ cV,P ∝
1, and for the spectral energy densityρE(ν) ∝ h−1; explicit formulas for the
thermodynamic variables are given in Chandrasekhar (1967). The densities (6.6)
dimensionally scale like the atomic measuring rods. Unlike the source density
ρN in (5.2), they lead to the usual conservation laws; there is no mass creation
in galaxies, no accretion of stellar matter from within.

The cosmology studied in this paper is based on two symmetric tensor fields,
a space-time metric and a symmetric permeability tensor representing the world
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ether. This tensor is assumed as homogeneous and isotropic; it is determined by
two scale factorsh(τ) andb(τ), both functions of cosmic time like the expansion
factora(τ) in the RW metric, cf. Section 1. Electromagnetic fields are coupled to
the permeability tensor like in a dielectric medium, cf. (1.1). Classical mechanics
in the ether is defined by replacing in the Hamilton-Jacobi equation the space-time
metric by the permeability tensor. The relation (1.2) among the scale factors is
necessary to make the ether dispersion free, a prerequisite for black-body radiation.
If we furthermore require the large ratioe2/(km2) to be constant in cosmic time
[instead of the moderate ratiōh2H0/(kcm

3), which we assumed constant in this
paper], then we recover traditional RW cosmology, as pointed out in Section 1. This
clearly raises questions on the reality of the space expansion, cf. Sandage (1988), as
it is undistinguishable from a static space-time in which the fundamental constants
vary in a way that all measuring rods contract at the same rate. The curvature sign
of the 3-space can be tested by source counts, or by the redshift dependence of
angular diameters and surface brightness, or by the qualitative dynamics of freely
moving objects (Tomaschitz, 1997), or by measuring the angle deficiency/excess
of triangles, or by the angular anisotropy of the microwave background, but not so
the space expansion.

Certain dimensionless ratios of moderate magnitude are kept constant like in
Dirac’s large number hypothesis (Dirac, 1937, 1974; Dyson, 1972); there are ex-
perimental bounds, cited after (1.4), which make a time variation of the ratios (6.1)
rather unlikely within the age of the Earth. However, we do not adopt the view that
all large dimensionless ratios, composed of the laboratory constants (includingk),
H0, the curvature radius of the 3-space, and the cosmological particle densities,
have been small in the past. There is nothing strange on large numbers in an open
universe, and a time variation does not really explain them; one would rather expect
a physical explanation ofe2/(kmpme) to be tantamount to a genuinely unified
theory of electricity and gravitation.

In this paper we presented a cosmology in which the moderate ratiosh̄2H0/

(kcm3) and�m stay constant in the cosmic evolution. Several observable con-
sequences rather different from standard RW cosmology were discussed in detail:
a very stringent laboratory estimate of the deceleration parameter,q0 = −1+ ε,
|ε| < 0.15, cf. the end of Section 3, the power law decay of angular diameters
for high redshifts, the possibility of a cosmic age consistent with even the highest
estimates of the galactic age, cf. Section 4, and the peak in the number density (5.8)
of the quasar distribution.
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