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Abstract

The spectral energy density of an ideal Bose gas of superluminal particles (tachyons) is
derived. To this end, we consider atoms in equilibrium with tachyon radiation, study sponta-
neous and induced transitions e0ected by tachyons, calculate the Einstein coe cients, all semi-
classically, and obtain, by detailed balancing, the equilibrium distribution of the tachyon gas.
Tachyons are described by a real Proca 1eld with negative mass square, coupled to a current of
subluminal matter. Atomic transitions induced by tachyons are compared to photonic ones, and
the tachyonic analog to the photoelectric e0ect is discussed. The cosmic tachyon background is
scrutinized in detail; high- and low-temperature expansions of the internal energy, the entropy,
the heat capacities, and the number density are compared with the corresponding quantities of
the photon background. The negative mass square in the wave equation changes the frequency
scaling in the Rayleigh–Jeans law, and there are also signi1cant changes in the low-temperature
regime, in particular in the caloric and thermal equations of state. Quantitative estimates on
the tachyon background and on Rydberg transitions induced by tachyon radiation are derived.
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1. Introduction

Modern theories of superluminal motion are based on the formalism of classical
relativistic mechanics. Faster-than-light particles (tachyons) are usually introduced as
an extension of the relativistic particle concept, as particles with negative mass square,
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or, if one prefers, imaginary mass. In the relativistic Hamilton–Jacobi equation, this
just means to assume m2¡0 without further alterations, and if tachyons are supposed
to carry electric charge, then their coupling to the electromagnetic potential is usu-
ally e0ected by minimal substitution. Des Coudres’s and Sommerfeld’s pre-relativistic
studies of superluminal motion [1,2] aimed at accelerating electrons beyond the speed
of light by means of electromagnetic 1elds, but otherwise their view of tachyons as
point particles coupled in the usual way to the electromagnetic 1eld was taken over
by modern authors, cf. Refs. [3–10] and [11–22] for related discussions on causality,
relativity, and synchronicity in few-body and statistical systems.
In this article, a di0erent approach to superluminal motion is investigated. Superlu-

minal wave propagation is modeled in analogy to classical electrodynamics, by a Proca
equation with negative mass square [23–25], very contrary to the prevailing view of
tachyons as electrically charged point particles with imaginary mass. The superluminal
wave modes of the tachyon 1eld are coupled to a current of subluminal massive par-
ticles. Like the electromagnetic 1eld, the tachyon 1eld is conformally coupled to the
background geometry [26,27] so that the frequencies of the spectral elementary waves
scale inversely proportional to the curvature radius of the cosmic 3-space. As for the
cosmic tachyon background radiation, this conformal scaling allows, despite the time
variation of the background geometry, to use the thermodynamic equilibrium formal-
ism, and to scale the time dependence of the eigenmodes into the temperature variable,
which becomes in this way a function of cosmic time. High- and low-temperature
expansions for the internal energy, entropy, pressure, heat capacities, and the tachyon
density are derived. In the high-temperature regime, one recovers in leading asymptotic
order the familiar results for the photon background, but the low-temperature behavior
of these quantities gets completely modi1ed by the tachyon mass.
In Section 2, we sketch the wave equation for tachyons, the spectral modes, the

tachyonic energy density and Iux, and we discuss the coupling of subluminal matter
(point particles and wave functions) to the tachyon 1eld. In Section 3, we study tachy-
onic radiation processes, spontaneous and induced emission and induced absorption. We
calculate the Einstein coe cients, give in this context a semiclassical derivation of the
tachyonic equilibrium distribution, and discuss the tachyonic analog to the photoelectric
e0ect.
In Section 4, we calculate the spectral energy density of a free tachyon gas and

discuss in some detail the high- and low-temperature expansions of the internal energy.
The low-temperature expansion is of course only asymptotic, but the high-temperature
limit is convergent, and simple enough to even determine its convergence radius. In
Section 5, we calculate the analogous series expansions of the other thermodynamic
variables, such as heat capacities and entropy=energy per tachyon. The equations of
state are rather di0erent from those of a photonic or subluminal massive Bose gas, due
to the negative mass square and the absence of a chemical potential, and so we give
a complete, self-contained derivation.
In Section 6, the Conclusion, bounds on absorption and emission rates for tachyon

radiation in hydrogenic systems, including Rydberg transitions, are derived. The
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estimates are based on a tachyon mass of mt ≈me=238≈ 2:15 keV=c2, and a tachy-
onic 1ne structure constant �≈ 1:0 × 10−13≈ 0:66�6, both obtained in Refs. [25,28].
(In these papers, we studied level shifts in hydrogen-like systems induced by the static
potential of this 1eld theory, and compared the shifts to the discrepancy between Lamb
shift measurements and QED calculations.) The spectral energy density of the cosmic
tachyon radiation deviates from the Rayleigh–Jeans low-frequency limit, and we will
demonstrate, by comparing tachyonic and photonic absorption rates, that the tachyon
background overpowers the photon radiation for frequencies below 7:3 MHz.

2. The wave equation for tachyons and its coupling to subluminal matter

We use locally geodesic coordinates, i.e., Minkowski space, �	
 = diag(−c2; 1; 1; 1).
The Proca equation with negative mass square,

F��
;� − 	2A� = c−1j� ; (2.1)

(	 = mtc=˝¿0 in our notation) can be derived from the action

S =
∫
(LA + Lint) dt dx; LA =− 1

4F��F�� + 1
2	
2A�A�; Lint =

1
c
j�A� ; (2.2)

and the energy–momentum tensor for the Proca 1eld reads as

T

	 =−F�	F�
 + 	2A	A
 + �


	(
1
4F��F�� − 1

2	
2A�A�) : (2.3)

Eq. (2.1) is easily seen to be equivalent to

( + 	2)A� =−c−1j�; A	
;	 = 0 ; (2.4)

with the d’Alembertian := �	
@	@
; the Lorentz condition is a consequence of current
conservation, j	;	 = 0. Tachyonic E and B-1elds are related to the vector potential by

Ei = c−1Fi0; Fij = �ijkBk ; F�� = A�;� − A�;� ;

Bk = (1=2)�kijFij = rotA : (2.5)

The 1eld equations (2.1) or (2.4) can be written as

divB= 0; rotE+ c−1@B=@t = 0 ;

divE= �− c−1	2A0; rotB− c−1@E=@t = c−1j+ 	2A ; (2.6)

where we identi1ed j	=(�; j). Evidently, the vector potential is completely determined
by the current and the E and B 1elds. We may substitute F��F��=−2(E2−B2) into the
Lagrangian (2.2), and the classical energy density and the Poynting vector are readily
found as

�E = T 00 = (1=2)(E
2 + B2)− (	2=2)(c−2A0A0 + A2) ; (2.7)

S= Tm
0 = cE× B+ 	2A0A : (2.8)
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The spectral elementary waves of the free wave equation (2.4) are

A�(t; x) = Â�(k) exp(i(kx− !t)) + c:c: ;

Â�(k) := �T1� âT1(k) + �T2� âT2(k) + �L� â
L(k) ;

�Ti� (k) := (0; e
i); �L� :=

(
−c|k|

	
;
!
	c

k
|k|
)

; |k|= c−1
√

!2 + 	2c2 : (2.9)

The 3-vectors ei, i=1; 2, are conveniently chosen Euclidean unit vectors transversal to
the direction of propagation, so that ei ·k=0 and e1 ·e2=0. The space component of the
longitudinal polarization vector �L� is of course proportional to k, the time component
is chosen in a way that the Lorentz condition, c−2Â0! + Â · k = 0, is satis1ed. The
normalization �L� �

L� = −1 is adopted, so that �L� stays well de1ned for ! = 0. The
Fourier amplitudes âTi;L(k) are arbitrary complex numbers. Transversal and longitudinal
components are denoted by superscripts T (or Ti for ei-polarization) and L. We may
write the transversal and longitudinal components of A� as

ATi� = �Ti� (a
Ti + aTi∗); AL� = �L� (a

L + aL∗) ;

aTi;L(k; t; x) := âTi;L(k) exp(i(kx− !t)) ; (2.10)

respectively, and the corresponding components of the E and B-1elds are given by

ETi = i(!=c)ei(aTi − aTi∗); BTi = i(k× ei)(aTi − aTi∗) ;

EL =
	
i
k
|k| (a

L − aL∗); BL = 0 : (2.11)

The energy density, de1ned by (2.7), reads for each of these modes

�TiE = (1=2) ((a
Ti − aTi∗)2(	2 − 2k2)− 	2(aTi + aTi∗)2) ; (2.12)

�LE = (1=2) ((a
L + aL∗)2(	2 − 2k2)− 	2(aL − aL∗)2) ; (2.13)

and the energy Iux vector (2.8), likewise de1ned for every single transversal and
longitudinal 1eld component, is readily calculated as

STi =−!k(aTi − aTi∗)2; SL =−!k(aL + aL∗)2 : (2.14)

When averaged over a period of 2�=!, energy density and Iux read

〈�TiE 〉=
2
c2
|âTi|2!2; 〈�LE〉=− 2

c2
|âL|2!2; 〈STi;L〉= c2

k
!
〈�Ti;LE 〉 : (2.15)

The energy density of the transversal modes �TiE (or its time average) is, as a function
of frequency, bounded from below. 〈�LE〉 is bounded from above, so that we de1ne the
energy density of the longitudinal modes as well as their Poynting vector with opposite
sign: �LE :=−T 00 and S

L:=−Tm
0 , with T	

0 as in (2.7) and (2.8), which amounts to replace
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(�LE;S
L) by (−�LE;−SL) in (2.13)–(2.15). The energy-momentum tensor of the lon-

gitudinal modes is −T

	 , cf. (2.3). Transversal modes in the galaxy frame (i.e., the

comoving Robertson–Walker frame in which the galaxies have constant space coordi-
nates) will usually appear in Minkowskian rest frames (of observers moving relative
to the galaxy grid) with a longitudinal component. To illustrate this, we consider a
transversal spectral mode, cf. (2.9), A0 = 0, A · k=0, in the galaxy frame (t; x), which
we assume here static and Minkowskian for technical convenience, and apply a Lorentz
boost along the x-axis, corresponding to the geodesic rest frame (t′; x′) of an observer
moving in the static galaxy grid,

A′
0 = �vA1; A′

1 = �A1; A′
2;3 = A2;3 ;

t = �(t′ + vc−2x′); x = �(x′ + vt′); � := (1− v2=c2)−1=2 : (2.16)

Frequencies and wave vectors relate as

!′ = �(!− vk1); k ′1 = �(k1 − vc−2!); k ′2;3 = k2;3; |k′|=
√

!′2=c2 + 	2 :

(2.17)

Accordingly, if a Lorentz boost is applied to a transversally polarized wave, there
is always a longitudinal component generated, unless the velocity in the boost is or-
thogonal to the polarization. Moreover, a Lorentz boost can always be found so that
!′=:E′=˝ is zero or an arbitrary negative number. In the galactic reference frame, ! is
by de1nition positive. As Lorentz boosts mix transversal and longitudinal components,
a universal reference frame is not only necessary for the causality interpretation of
superluminal signals [18,19,21,26], but also to unambiguously de1ne a positive energy
for transversal and longitudinal tachyons.
We specify the current in (2.1) by assuming that subluminal particles are coupled to

the tachyonic vector potential in the same way as electric charges to the electromagnetic
1eld, the electric charge being replaced by a tachyonic charge. The Lagrangian of a
subluminal particle (with rest mass m and tachyonic charge q) coupled to the tachyon
potential is

L(3) := − mc2
√
1− v2=c2 + qc−1A0 + qc−1Av ; (2.18)

the action can be written as

S =
∫

L(3) dt = c−1
∫

L ds; L := − mc2
√
−�	
ẋ	ẋ
 + qA	ẋ	 ; (2.19)

resulting in the Hamilton–Jacobi equation

�	
(S;	 − c−1qA	)(S;
 − c−1qA
) =−m2c2 ; (2.20)

and the Newton equations

d
dt

mv√
1− v2=c2

= qE+
q
c
v× B ; (2.21)
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with a tachyonic Lorentz force. To 1x the signs, the interaction terms in (2.19) are
incorporated into the action (2.2) by

Sint =
∫

Lint dt dx = c−1
∫
(qA0 + qAv) dt = c−1

∫
A�j� dt dx ;

j0 = �= q�(x− x(t)); j= qv�(x− x(t)) ; (2.22)

in this way the current in (2.2) is identi1ed. As for the coupling of the Dirac equation,

��∇A
�  + (mc=˝) = 0; ∇A

� := @� − iq=(˝c)A� ; (2.23)

S =
∫

L dt dx; L =
˝
i

(
1
2
O ��∇A

�  − 1
2
(∇A∗

�
O )�� +

mc
˝  O 

)
; (2.24)

with O :=  t∗�0. The current reads j	 =−q O �	 , and if we use the set of �-matrices

�0 =
1
ic

(
id 0

0 −id

)
; �k =

(
0 −i$k

i$k 0

)
; (2.25)

with Pauli matrices $k , we obtain the charge density �= j0 = q t∗ . The sign of L 

in (2.24) is chosen in a way that the current can be identi1ed with j	 in (2.2) when
L is substituted for Lint. The non-relativistic limit of (2.23), the Pauli equation, is
discussed in [28]. Finally, the non-relativistic limit of (2.20) is readily found as

S;0 − c−1qA0 + (2m)−1(S; i − c−1qAi)(S; i − c−1qAi) = 0 ; (2.26)

and the corresponding SchrPodinger equation,

1
i
@A
t  =

˝
2m

∇A∇A ; @A
t := @t − iq=(˝c)A0; ∇A :=∇− iq=(˝c)A ; (2.27)

can be derived from the Lagrangian

L=− ˝
2i
( ∗@A

t  −  @A∗
t  ∗)− ˝2

2m
∇A ∇A∗ ∗ ; (2.28)

which is to be substituted for Lint in (2.2), so that the tachyonic charge density is
identi1ed as j0 = �= q ∗ .

3. Emission and absorption of tachyons in atomic transitions

The inversion of the wave equation (2.4) can formally be e0ected by

A�(x) =
∫
R4

G(x − x′)j�(x′) dx′ ; (3.1)

( + 	2)G(t; x) =−c−1�(t)�(x) ; (3.2)

the Lorentz condition is evidently satis1ed by this ansatz. In the case of photons or
subluminal particles (	260), one would choose for G the retarded Green function,
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supported on the forward light cone. The classical Green function for tachyons is sup-
ported outside the light cone (at least as long as we do not consider curvature e0ects)
because tachyons cannot move below the speed of light, and hence they cannot connect
events in the interior of the cone. The complete solution of (3.2) is readily obtained by
analytic continuation, 	 → ±i	, of the subluminal Green functions (retarded, advanced,
Feynman and Dyson propagators, listed in Ref. [29]). The only linear combination of
these continuations vanishing inside the cone is

G(t; x) =
1
4��(r

2 − c2t2)− 	
8�((r

2 − c2t2)
J1
(
	
√
r2 − c2t2

)
√
r2 − c2t2

: (3.3)

A detailed discussion of Green functions of the Proca equation, in Robertson–Walker
cosmology, will be given elsewhere. This distribution admits a very handy Fourier
transform,∫ +∞

−∞
G(t; x)e−i!t dt =

1
4�c

1
r
cos(kr) ; (3.4)

with k =
√

!2=c2 + 	2.
We study a periodic time dependence of the current and the 1elds in (2.4) and (2.6),

writing, cf. (2.9),

�(x; t) :=�(x; !)e−i!t + c:c:; A(x; t) :=A(x; !)e−i!t + c:c: ; (3.5)

with complex �(x; !); A(x; !), and analogously for the other 1elds in (2.6). (In the
following, we will mostly drop the !-argument.) The Fourier components of the E
and B-1elds are found as

B(x) =∇× A(x); E(x) = ic!−1(∇(∇·A(x)) + (!2=c2)A(x)) : (3.6)

Continuity equation and Lorentz condition read

i!�(x) =∇· j(x); i!A0(x) =−c2∇·A(x) ; (3.7)

and the Maxwell equations in Fourier space are obtained by substituting @=@* → −i!
into (2.6).
By virtue of (3.1) and (3.4), we 1nd A(x; !) = A+ + A−, with

A±(x; !) :=
1
8�c

∫
dx′j(x′; !)

exp(±ik|x− x′|)
|x− x′| ; (3.8)

the time components A±
0 (x; !) follow from (3.8) via the substitution j(x′; !)→

− c2�(x′; !). Using |x− x′|= r − n ·x′ +O(1=r); n :=x=r, we obtain, asymptotically,

A±(x)∼ 1
8�c

e±ikr

r
J±; J± :=

∫
dx′j(x′) exp(∓ikn ·x′) : (3.9)

We will give in some detail the derivation of the transition rates e0ected by transversal
tachyons, and afterwards point out the minor modi1cations for longitudinal transitions.
The transversal component, AT±(x), is found in leading order by replacing J± by
JT± :=J± − n(n ·J±); moreover, via (3.7), AT±0 = O(1=r2). The advanced component
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of the wave 1eld can be converted into a retarded one, AT− →AT+, by a cosmic
absorber [13,14]. Apart from the causality interpretation, the de1nition of tachyonic
energy, and the cosmic time scaling of the tachyon mass, cf. the beginning of Section 4,
the cosmological reference frame is here once more required to turn advanced wave
1elds into retarded ones. Unlike in electrodynamics or subluminal 1eld theories, there
does not exist a proper retarded or advanced Green function for tachyons, as the outside
of the light cone is a connected domain; the time symmetry is broken by an absorber,
by the permeability of the cosmic ether [20,30–34], which is straightforward to de1ne
in an absolute space–time. An account on superluminal wave propagation in the ether
will be given elsewhere; at his point it is su cient to assume that the ether breaks the
time symmetry of the wave 1elds by converting advanced modes into retarded ones.
The retarded and advanced wave 1elds 2A+=−

	 as de1ned in (3.8) are exact solutions
of the 1eld equations (2.1) or (2.4), because (+ + k2)(r−1 sin (kr)) ≡ 0. The Fourier
components of the wave 1elds generated by the current are thus

Aret(x) := 2AT+∼ 1
4�c

eikr

r
JT+ ;

Eret(x)∼ i
4�c

!
c
eikr

r
JT+; Bret(x)∼ i

4�ck
eikr

r
(n× JT+) : (3.10)

Energy density and Iux of these modes, time-averaged over a period of 2�=!, read as

〈�E〉∼ 2
(4�c)2

1
r2

!2

c2
|JT+|2; 〈S〉∼ c2k!−1〈�E〉n : (3.11)

The following semiclassical analysis of spontaneous emission and induced absorption
of tachyons is kept close to the photonic counterpart, e.g., Refs. [35,36], it will be
concise, mainly focussing on technical modi1cations due to the tachyon mass. We
start by de1ning

J(T)d :=
∫
dx j(T)(x) =−i!d(T); jT(x′) := j(x′)− n(n · j(x′)) ;

d :=
∫
r�(x) dx; dT := d− n(n · d) ; (3.12)

where we again used (3.7). The dipole approximation of (3.10) and (3.11) is obtained
by dropping the exponential in J+, which means to substitute JT+ → JTd. (We then
write �dE and S

d, respectively.) We so obtain for the energy radiated per unit time∫
〈Sd · n〉r2 d,∼ 16�

3
k!3

(4�c)2 |d|
2; (3.13)

where we made use of∫
|JTd|2 d, = |Jd|2

∫
sin2 ( d, = (8�=3)|Jd|2 ; (3.14)

d, = sin ( d( d’, and (3.12). What remains is to relate the dipole to the quantum
current.
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In the SchrPodinger equation (2.27), we neglect A0, see after (3.9), and consider only
the interaction term linear in A, so that

i˝@t =
(
− ˝

2

2m
T− Ze2

4�
1
r
+
iq˝
mc

A ·∇
)

 : (3.15)

We have here included the Coulomb potential of a nucleus of electric charge −Ze; the
tachyonic vector potential is treated perturbatively. The quantum analog of the Fourier
components �(x) and j(x) is

�(x) = qu∗f ui; j(x) =
q˝
2im
(u∗f∇ui − (∇u∗f )ui) ; (3.16)

where ui; f are the time separated, normalized wave functions of the initial and 1nal
states, respectively. In dipole approximation, the probability per unit time for the spon-
taneous emission of a transversal tachyon (of frequency !=!i−!f¿0, via a transition
ui → uf ) is thus, cf. (3.13), (3.12) and (3.16),

wdsp:em: =
1
˝!

∫
〈Sd · n〉r2 d,∼ 4

3
k!2

c2˝
q2

4�

∣∣∣∣
∫

u∗f rui dx
∣∣∣∣
2

=: Adif ; (3.17)

with k :=
√

!2=c2 + 	2; Adif is the Einstein A-coe cient in dipole approximation. If
we refrain from the dipole approximation, we 1nd, instead of (3.13), for the energy
radiated into the solid angle per unit time,

〈S · n〉r2 d,∼ 2 d,
(4�c)2 k!|J

T+|2 : (3.18)

We substitute into JT+ the transversal component of the quantum current (3.16).
Dividing by ˝!, we 1nd the probability per unit time for the spontaneous emission
of a transversal tachyon with wave vector k= kn((; ’) into the solid angle,

dwunpol:sp:em: ∼ 2
˝k

m2c2
q2

4�

∣∣∣∣
∫

u∗f exp(−ikx′)∇Tui dx′
∣∣∣∣
2 d,
4� ; (3.19)

k is de1ned with the transition frequency like in the dipole approximation, and ∇T :=∇−
n(n ·∇) is the transversal component of the gradient, so that (3.19) is a polarization
average. If we focus on radiation of a given polarization e, we just have to replace in
(3.19) ∇T by e ·∇, to 1nd the probability for the emission of a tachyon (e; k) via a
spontaneous transition ui → uf ,

dwsp:em: ∼Aif d,; Aif (k; e) :=
1
2�

˝k
m2c2

q2

4�

∣∣∣∣
∫

u∗f exp(−ikx′)e ·∇ui dx
′
∣∣∣∣
2

:

(3.20)

Next, we will relate this to induced radiation processes. To this end, we start with
the SchrPodinger equation (3.15), and consider a transversal plane wave as in (2.9). (We
drop the polarization index i for convenience; e is an arbitrary unit vector orthogonal
to k.) The 1rst-order transition amplitude of this periodic perturbation reads, cf. [35],

T±
if (!)∼

1
˝
1− exp(i(!1 ∓ !)t)

!1 ∓ !
〈f|H±

int|i〉 ; (3.21)
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〈f|H±
int|i〉=

iq˝
mc

âT (∗)
∫

u∗f exp(±ikx)e ·∇ui dx ; (3.22)

where ui; f are the initial and 1nal states of the unperturbed Coulomb problem (3.15),
and !1 :=!f −!i is the transition frequency. The complex conjugation of â

T refers to
H−
int only. If !1¿0, then T

+
if (!) applies (absorption), otherwise T

−
if (!) (emission). In

either case, the absorbed or emitted tachyon has polarization e and wave vector k.
We may identify, cf. (2.15),

2
c2
|âT|2!2 = 1

2
�E(!) d! ; (3.23)

where �E(!) is the spectral energy density of the transversal modes, cf. (3.32) and
(4.3). The superscript T in (3.23) refers to one of the two independent transversal
polarizations Ti, therefore the factor of one-half. The !-integration of |T±if (!)|2 can
readily be carried out by steepest descent, and the probability per unit time for the
emission=absorption of a tachyon (e; k) through the solid angle centered at k, in an
induced transition ui → uf , is thus given by

dwind:em: ∼ 1t |T
−
if |2
d,
4� ∼Bif (k; e)�E(!) d, ; (3.24)

dwind:abs: ∼ 1t |T
+
if |2
d,
4� ∼Bif (−k; e)�E(!) d, ; (3.25)

Bif (k; e) :=
�
2
1

m2!2
q2

4�

∣∣∣∣
∫

u∗f exp(−ikx)e ·∇ui dx
∣∣∣∣
2

; (3.26)

with the transition frequency ! = |!i − !f |. (The |T±if |2 are !-integrated.) The Ein-
stein coe cients admit the symmetry Bif (−k; e)=B1(k; e), which can easily be shown
by partial integration, so that the induced absorption and emission probabilities are
identical.
In dipole approximation, we may drop the exponential in (3.26), and use∫

u∗f e ·∇ui dx =
m
˝ (!f − !i)

∫
u∗f e · rui dx : (3.27)

The averaging over the transversal polarizations is performed by substituting∣∣∣∣
∫

u∗f e · rui dx
∣∣∣∣
2

→
∫ ∣∣∣∣
∫

u∗f n · r′ui dx′
∣∣∣∣
2 d,
4� =

2
3

∣∣∣∣
∫

u∗f r
′ui dx′

∣∣∣∣
2

; (3.28)

cf. (3.14), and we so arrive at the (e; k=|k|)-averaged, transition probability in dipole
approximation,

wdind:em: = wdind:ab: ∼Bdif�E(!); Bdif :=
4�2
3
1
˝2

q2

4�

∣∣∣∣
∫

u∗i ruf dx
∣∣∣∣
2

: (3.29)

Evidently, Bdif = Bd1. The Einstein coe cients (3.17), (3.20), (3.26) and (3.29) relate
to each other via

A(d)if =
˝k!2
�2c2 B

(d)
if ; (3.30)
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k =
√

!2=c2 + 	2; 	 = mtc=˝; and they connect to the spectral energy density and the
Boltzmann factor via the equilibrium condition

B(d)if �E(!) + A(d)if = B(d)if �E(!)exp(�˝!) : (3.31)

This is consistent with the transversal spectral energy density

�E(!) =
˝
�2c2

!2
√

!2=c2 + 	2

exp(�˝!)− 1 ; (3.32)

which was derived by box quantization in Refs. [25], also see the beginning of
Section 4. This density warrants scrutiny from various angles; a third derivation along
the lines of Feinberg’s quantization procedure [3] will be given elsewhere. His non-
invariant vacuum can be easily de1ned in the comoving reference frame. This is an-
other reason, apart from causality, advanced wave1elds and the positivity of energy, to
consider tachyons in an absolute cosmic space–time, propagating in a permeable ether.
The photonic transition rates and the Planck distribution are of course recovered by

putting 	 = 0 in k =
√

!2=c2 + 	2. The emission and absorption rates for photon and
tachyon radiation can be easily compared in the dipole approximation,

wd(tach)sp:em:

wd(ph)sp:em:
∼ wd(tach)ind:

wd(ph)ind:

∼ q2

e2

√
!2 + 	2c2

!
; (3.33)

otherwise the matrix elements enter,

w(tach)sp:em:

w(ph)sp:em:
∼ w(tach)ind:

w(ph)ind:

∼ q2

e2
ck
!

| ∫ u∗i exp(−iknx′)e ·∇uf dx
′|2

| ∫ u∗i exp(−i!c−1nx′)e ·∇uf dx
′|2 : (3.34)

A quantitative discussion of (3.33) will be given in Section 6. For the dipole
approximation to be valid, a large wavelength is required to justify the expansion
of the exponentials. In Section 6 we will demonstrate, that the maximal wavelength
a tachyon can attain is about 1 UA (reduced Compton). This is not large compared to
the support of the eigenfunctions, unless one considers heavy ions, but it is not small
either, unless one considers Rydberg states, and so the averaging caused by the ex-
ponentials will be moderate in most cases. Hence, one may assume that (3.33) is a
reasonable upper bound for (3.34), but a quali1ed comparison of (3.33) and (3.34)
requires to specify the eigenfunctions in the integrals.
Finally we mention the changes needed for longitudinal transitions. In (3.20), the

longitudinal A-coe cient is obtained by replacing e by n. The spectral energy density
for longitudinal tachyons is �E=2, with the transversal �E as in (3.32). The longitudinal
B-coe cient is thus 2Bif (k; n), cf. (3.26). If we use the total spectral density 3�E=2
in the transition rates (3.24) and (3.25), the B-coe cient is of course 2Bif =3 with the
respective polarization.
As an example, we calculate the cross section in Born approximation for the tachy-

onic analog to the photoelectric e0ect. The transition probability per unit time from a bo-
und state ui in a hydrogen-like ion to a scattering state uf is given by the semiclassical
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formula [35] (box-normalization is assumed, with box size L)

w∼ mkeL3

4�2˝3 |〈f|H
+
int|i〉|2 d, ; (3.35)

with 〈f|H+
int|i〉 as in (3.22). (In (3.34), both states ui; f are bound.) Electronic and

tachyonic wave vectors and frequencies are denoted by ke; t and !e; t , respectively.
(m is the electron mass, reduced mass corrections are neglected; the tachyon mass is
denoted by mt .) The solid angle element d, is centered at ke((; ’). The 1nal state in
the continuous spectrum is approximated by a plane wave, uf ∼L−3=2 exp(ikex). Hence,

〈f|H+
int|i〉∼ − q˝kee

mcL3=2
âT
∫
exp(iKx)ui dx ; (3.36)

with K :=kt − ke, and e is the polarization unit vector of the transversal tachyon. The
di0erential cross section, d$ = $((; ’) d,, is obtained by dividing w in (3.35) by the
tachyonic Iux, cf. (2.15),

|〈ST〉|
˝!t

= 2
kt
˝ |â

T|2 ; (3.37)

$((; ’) =
1
2�

1
mc2

q2

4�
ke|kee|2

kt

∣∣∣∣
∫
exp(iKx)ui dx

∣∣∣∣
2

: (3.38)

The ground state wave function of the unperturbed Coulomb problem (3.15) reads
u(n=1; l=0)i := (�a3)−1=2e−r=a. Its range is determined by a :=˝=(mc�), � :=Ze2=(4�˝c)≈
Z=137, and we 1nd

$((; ’) = 32
1

mc2
q2

4�
ke
kt
|kee|2 a3

(a2K2 + 1)4
: (3.39)

The Born approximation, i.e., the plane wave approximation of the scattering state, is
safely valid for kea�1, which means a small wavelength compared to the range of
u(n=1; l=0)i . This is equivalent to v=c�� or E1�mv2=2, with the ground state energy
E1 = mc2�2=2. (v is the speed of the free electron.) On the other hand, v=c�1 must
hold, and energy conservation yields ˝2k2e =(2m) = ˝!t − E1. Hence, mv2=2≈˝!t , so
that

k2t
k2e

≈ 1
2
˝!t
mc2

(
1 +

	2c2

!2t

)
≈ 1
4

v2

c2
+

m2t
m2

c2

v2
; (3.40)

with the tachyon mass 	= mtc=˝. We choose the polar axis in the direction kt of the
incident tachyon, thus K ≈ ke(1 − (kt=ke)cos (), provided kt=ke�1, cf. Section 6. (In
dipole approximation, K ≈ ke.) Hence, aK�1 in (3.39), and we 1nd

$((; ’)≈ 32 q
2

4�
1

mc2
1

ktk5e a5
sin2 ( cos2 ’

(1− 2(kt=ke) cos ()4 ; (3.41)

so that the total cross section and the maximum of $((; ’) read, up to terms of
O(k2t =k

2
e ),

$≈ 2
7�
3

q2

4�
1

mc2
1

kt(kea)5
; (max≈ �

2
− 4 kt

ke
: (3.42)
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The dipole approximation does not change $ in the indicated order, but the k-term in
(max would be missing. The cross sections for the photoelectric e0ect are obtained by
replacing kt in the preceding formulas by kph = !ph=c. The ratio of the tachyonic and
photonic total cross sections and the relative shift of the maxima in the di0erential
cross sections are given by

$tach

$ph
≈ q2

e2
˝!√

(˝!)2 + m2t c4
; (phmax − (tachmax≈ 2

(√
v2

c2
+ 4

m2t
m2

c2

v2
− v

c

)
;

(3.43)

with !=!ph =!t . The forward shift of the maximum due to the retardation term kt=ke
is evidently more pronounced for tachyons. The terms under the roots can be of com-
parable magnitude in both formulas; quantitative estimates will be given in Section 6,
cf. the discussion preceding (6:5).
The spherically symmetric, normalized bound states of hydrogen-like systems read as

u(n; l=0)i =
1√
�a3=2n

1
n
L(1)n−1(2r=an)e−r=an ;

1
n
L(1)n−1(x) :=

1
x
e x

n!
dn−1

dxn−1
(xne−x) ;

(3.44)

an := an; and the corresponding energy levels are En = E1=n2. (The restriction to l= 0
is not essential, but makes the integral in (3.38) handier.) The estimates following
(3.39), including (3.40), stay valid with these replacements, that is, with the substi-
tution � → �=n. In particular, kean�1 is now the constraint for the applicability of
the Born approximation. The di0erential cross section for the nth bound state reads,
analogously to (3.39),

$n((; ’) = 8
1

mc2
q2

4�
ke
kt
|kee|2 an

K2
1

(K2a2n + 1)2(n+1)
Im2((1 + ianK)2n) (3.45)

∼ 8
n3

1
mc2

q2

4�
ke
kt
|kee|2 1

a3K6
sin2

(
2
aK

)
; (3.46)

the asymptotics refers to large n, so that anK�1. In Section 6 we will show, based
on kean�1 and a tachyon mass of 2:1 keV=c2, that kt=ke�1 holds for the ground
state. However, for highly excited states, n≈ 102−3, the opposite limit can be realized,
kt=ke�1.
The asymptotic limit of (3.45) for aK�1 (and arbitrary n) is likewise (3.46), with

the sin replaced by its leading order. In this case, if kt=ke�1, we recover (3.41) apart
from a scale factor 1=n3, and (3.43) remains unchanged. If kt=ke�1, we 1nd instead

$n((; ’)≈ 32n3
q2

4�
1

mc2
k3e

k9t a5
sin2 ( cos2 ’

(1− 2(ke=kt)cos ()4 ; (3.47)

$tachn

$phn
≈ q2

e2

(
ke
kt

)8 kph
kt

; (phmax − (tachmax≈ 4
m
mt

v
c
: (3.48)

Here we have used, cf. (3.40), kt=ke≈mtc=(mv)�1, kph=ke≈ v=(2c)�1, as well as
mt=m�1, cf. Section 6. Clearly, the dipole approximation fails for kt=ke�1. Finally,
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if aK is moderate, the leading asymptotic order (3.46) can vanish due to zeros of the
sin, and the opposite limit anK → 0 is also admissible in (3.45), always with kean�1,
but we will not pursue this further here. By the way, rainbow scattering in the static
potential of this 1eld theory is discussed in Ref. [25].

4. The tachyon background: high- and low-temperature expansions of its internal
energy

The partition function of a tachyonic Bose gas [25] can be calculated via box quan-
tization; we 1nd for the transversal modes,

log Z = 2log
∞∑

(np)=0

exp

(
−�
∑
p

h
(p)np

)
=−2

∑
p

log[1− exp(−�h
(p))] ;

(4.1)

�−1 := kT (*) = kT (*0)=a(*). Here, a(*) denotes the cosmic expansion factor in the
Robertson–Walker geometry, and *0 is the present epoch, a(*0) = 1. The chemical
potential is zero, which follows from an equilibrium condition on the free energy,
see the remark following Eq. (5.4). The index p runs over a discrete set of val-
ues, p = hL−1(k1; k2; k3); ki ∈ Z , L the box size, and (np) is a multi-index labeled
by p. Euclidean box quantization with periodic boundary conditions also applies
here, if the box size is much smaller than the curvature radius of the universe, see
Refs. [27,37,38] for details and estimates with regard to the thermodynamic limit. The
factor of two in (4.1) accounts for the two independent transversal states. This factor
is absent in the partition function for the longitudinal modes, which is otherwise identi-
cal. Tachyon mass and frequencies conformally scale with the inverse of the expansion
factor, and therefore this time dependence can be absorbed in the temperature variable
as indicated. In the thermodynamic limit, the summation over the lattice points p is
replaced by an integral, and we arrive at

log Z =−2V
h3

∫
|p|¿mtc

d3p log[1− exp(−�h
(p))]; h
(p) = c
√

|p|2 − (mtc)2 :

(4.2)

The thermodynamic limit does not depend on the curvature sign of the 3-space. If we
put mt =0, Eq. (4.2) coincides with the partition function of the photon gas, of course.
The transversal spectral energy density thus reads

�(
) d
=
8�V
h3

h
(p)|p|2d|p|
exp[�h
(p)]− 1 ; (4.3)

which is equivalent to (3.32) derived by means of detailed balancing and Einstein
coe cients; also see the beginning of Section 6 for further discussion. The longitudinal
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and total spectral densities are (1=2)�(
) and (3=2)�(
), respectively, and the same
factors apply to the internal and free energies and thus to all other thermodynamic
variables calculated for the transversal modes in Section 5. The internal energy is
obtained as

U =
∫ ∞

0
�(
) d
= 8�m4t c5h−3VÛ (�) ;

Û (�) :=
∫ ∞

0

x2
√
1 + x2 dx

exp(�x)− 1 ; � :=
mtc2

kT (*)
; x :=

h

mtc2

: (4.4)

Next, we derive the high- and low-temperature expansions for the internal energy.
The low-temperature expansion is easy to settle, given by the asymptotic series

Û (�)∼
∞∑
n=0

(
1=2
n

)∫ ∞

0

x2n+2dx
exp(�x)− 1=

1
�3

∞∑
n=0

(
1=2
n

)
<(2n+ 3)=(2n+ 3)

1
�2n

:

(4.5)

The justi1cation of (4.5) follows from a mild modi1cation of Watson’s Lemma [39] on
Laplace asymptotics. The 1rst orders of the low-temperature expansion of the internal
energy hence read

U = 16�=(3) m
4
t c
5V

h3
1
�3

[
1 +

6=(5)
=(3)

1
�2

− 45=(7)
=(3)

1
�4
+ O(�−6)

]
: (4.6)

To obtain the high-temperature expansion, we split the integral Û (�) into Û (�) =
Û 0(�; �) + Û∞(�; �), with

Û 0(�; �) :=
1
�4

∫ �

0

x2
√
x2 + �2 dx
e x − 1 ; Û∞(�; �) :=

1
�4

∫ ∞

�

x3
√
1 + �2=x2 dx
e x − 1 ;

(4.7)

and choose � in the range �¡�¡2�. Expanding the root in Û∞, we arrive so at the
absolutely convergent series

Û∞(�; �) =
1
�4

∞∑
n=0

(
1=2
n

)
�2n
∫ ∞

�

x3−2n dx
e x − 1 : (4.8)

In Û 0(�; �), we substitute the generating series of the Bernoulli numbers,

x
e x − 1 =

∞∑
n=0

Bn

<(n+ 1)
xn ; (4.9)

which absolutely converges in [0; �], and interchange summation and integration. We

obtain in this way Û 0(�; �) = Û
(1)
0 (�̃) + Û

(2)
0 (�̃; �); �̃ := �=�¡1,

Û
(1)
0 (�̃) := − 1

2�̃4

∫ 1

0
x2
√

x2 + �̃2 dx

= −1
8
1

�̃4
√
1 + �̃2

(
1 + �̃2=2

)
+
1
16
log
(
1
�̃

(
1 +

√
1 + �̃2

))
;
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log
(
1 +

√
1 + �̃2

)
= log 2−

∞∑
n=1

(−)n<(2n)
22n<2(n+ 1)

�̃2n ;

Û
(2)
0 (�̃; �) :=

1

��̃4

∞∑
k=0

B2k�2k

<(2k + 1)

∫ 1

0
x2k+1

√
x2 + �̃2 dx : (4.10)

A standard integral representation of the hypergeometric function, followed by a linear
transformation of 2F1, gives∫ 1

0
x2k+1

√
x2 + �̃2 dx=

1
2

�̃
k + 12

F1(−1=2; k + 1; k + 2;−�̃−2)

=
1

2k + 32
F1(−1=2;−k − 3=2;−k − 1=2;−�̃2)

−
√
�
4

<(k + 1)(−)k
<(k + 5=2)

�̃2k+3 : (4.11)

Since �̃¡1, we may use the absolutely convergent series representation

1
2k + 32

F1(−1=2;−k − 3=2;−k − 1=2;−�̃2)

=− 1
2
√
�

∞∑
n=0

<(n− 1=2)(−)n�̃2n
<(n+ 1)(2(k − n) + 3)

: (4.12)

Inserting this into Û
(2)
0 , and interchanging the summations, we arrive at

Û
(2)
0 (�̃; �) = Û

(2)(even)
0 (�̃; �) + Û

(2)(odd)
0 (�) ;

Û
(2)(even)
0 (�̃; �) := − 1

2
√
�
1

�̃4

∞∑
n=0

<(n− 1=2)
<(n+ 1)

cn(�)(−)n�̃2n ;

cn(�) :=
1
�

∞∑
k=0

B2k�2k

<(2k + 1)(2(k − n) + 3)
; �¡2� ;

Û
(2)(odd)
0 (�) := −

√
�
4
1
�

∞∑
n=0

B2n
<(2n+ 1)

<(n+ 1)(−)n
<(n+ 5=2)

�2n : (4.13)

We may write, using (4.9),

c0(�) =
1
�4

∫ �

0

x3 dx
e x − 1 +

1
8
; c1(�) =

1
�2

∫ �

0

x dx
e x − 1 +

1
4
: (4.14)

Collecting terms, we 1nd

Û (�) = Û∞ + Û
(1)
0 + Û

(2)(even)
0 + Û

(2)(odd)
0 =: Û sing(�) + Û reg(�) ;

Û sing :=
�4
15
1
�4
+
�2
12
1
�2

− 1
3
1
�
− 1
16
log �; Û reg :=

∞∑
n=0

an�n : (4.15)
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The series Û reg converges for �¡1, and the result (4.15) can easily be extended to
cover �¡2� [convergence radius of the series (4.9)], if we refrain from expanding
certain elementary functions that appear in the above calculations. The coe cients of

the odd powers in Û reg can be read o0 from Û
(2)(odd)
0 in (4.13), and a2k from Û∞ +

Û
(1)
0 + Û

(2)(even)
0 , cf. (4.8), (4.10) and (4.13). For example, we obtain

a0 =
1
8

(
−1
8
+
1
2
log (2�)− c2(�)−

∫ ∞

�

1
e x − 1

dx
x

)
: (4.16)

Since Û (�) is independent of �, the same holds for the coe cients an. Hence, we may
consider the limit � → 0 in (4.16). Applying two times integration by parts, we 1nd∫ ∞

�

x
e x − 1

1
x2
dx =

1
�
+
1
2
log �− 1

2
+ �0 + O(�);

�0 := −
∫ ∞

0

d2

dx2

(
x

e x − 1
)
log x dx ; (4.17)

and therefore

a0 =
1
8

(
3
8
+
1
2
log 2− �0

)
: (4.18)

� can be eliminated from a2k ; k¿1, in the same way. We apply 2(1+ k) times partial
integration to

∫∞
� x(ex −1)−1x−2(1+k) dx in the series (4.8), and then perform the limit

� → 0, arriving so at a representation of the a2k similar to (4.18).
The singular and the constant terms of the high-temperature expansion of U give

U = 8�m
4
t c
5V

h3

[
�4
15
1
�4
+
�2
12
1
�2

− 1
3
1
�
− 1
16
log

�
2
+
3
64

− 1
8
�0 + O(�)

]
: (4.19)

The internal energy will be discussed in Section 5, in a more complete thermodynamic
setting.

5. Equilibrium thermodynamics of a free tachyon gas

In this section, we evaluate the partition function of the tachyon gas, and all that
goes with it. We already derived, cf. Eq. (4.2),

log Z =−8�V
h3

∫ ∞

mtc
|p|2d|p| log

[
1− exp(−�

√
|p|2=(mtc)2 − 1 )

]
; (5.1)

with �= mtc2=(kT ). The free energy of transversal tachyons thus reads

F =−mtc2

�
log Z =−8�

3
m4t c

5

h3
V F̂(�) ;

F̂(�) := − 3
�

∫ ∞

0
x
√

x2 + 1 log(1− e−�x) dx =
∫ ∞

0

(x2 + 1)3=2 − 1
e�x − 1 dx ; (5.2)
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where we used partial integration and the elementary antiderivative of (e�x − 1)−1.
Internal energy and entropy are related to F̂(�) via

U =
@(�F)
@�

= 8�m
4
t c
5

h3
VÛ (�); Û (�) =−1

3
@(�F̂(�))

@�
; (5.3)

S =−@F
@T
=−8�

3
km3t c

3

h3
V�2

@F̂(�)
@�

: (5.4)

In fact, F can almost be obtained using term by term integration of the series expansions
derived for Û (�) in Section 4, apart from the �−1-term, determined by the integration
constant. [The relevant quantities are of course u=U=V and s= S=V , but we write in
the following the volume factor and capital letters to avoid notational confusion.]

Remark. We have U =F + TS, and, since @F(T; V; N )=@N = 	=0, the pressure reads
P =−F=V . The condition @F=@N = 0 is necessary to impose. Tachyons, like photons,
are not interacting with each other. Thus, for equilibrium to be reached, we must as-
sume interaction with subluminal matter, absorption and emission processes. Therefore
N cannot be kept constant, and @F=@N =0 is a necessary extremal condition for equi-
librium. Accordingly, we have to put 	 = 0 in the partition function. (The chemical
potential should not be confused with the abbreviation for mtc=˝, used in Sections 2 and
3.) The tachyon number density N=V is calculated below as a function of temperature,
cf. Eq. (5.23).

As the chemical potential vanishes, the enthalpy just reads H = TS. We 1nd for the
heat capacities

cV = T
@S
@T
=

@U
@T
=− k

mtc2
�2

@U
@�
=−�

@S
@�

; (5.5)

cP =
@H
@T
= cV + S =−�2

@(�−1S)
@�

; �=
cP
cV
= 1−

(
�
S
@S
@�

)−1
: (5.6)

The low- and high-temperature expansions of F and N can be derived quite similarly
to those of U , and so we will indicate just the main steps without further comments.
The low-temperature expansion of F̂ reads as

F̂(�)∼
∞∑
n=1

(
3=2
n

)∫ ∞

0

x2n dx
e�x − 1 =

∞∑
n=0

(
3=2
n+ 1

)
<(2n+ 3)=(2n+ 3)

1
�2n+3

;

(5.7)

from which we readily obtain

S = 24�=(3)km
3
t c
3V

h3
1
�2

[
1 +

5=(5)
=(3)

1
�2

− 35=(7)
=(3)

1
�4
+ O(�−6)

]
; (5.8)

P =−F
V
= 8�=(3)m

4
t c
5

h3
1
�3

[
1 +

3=(5)
=(3)

1
�2

− 15=(7)
=(3)

1
�4
+ O(�−6)

]
; (5.9)
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cV = 48�=(3)
km3t c

3V
h3

1
�2

[
1 +

10=(5)
=(3)

1
�2

− 105=(7)
=(3)

1
�4
+ O(�−6)

]
; (5.10)

cP = 72�=(3)
km3t c

3V
h3

1
�2

[
1 +

25=(5)
3=(3)

1
�2

− 245=(7)
3=(3)

1
�4
+ O(�−6)

]
; (5.11)

�=
3
2

[
1− 5=(5)

3=(3)
1
�2
+
(
70=(7)
3=(3)

+
50=2(5)
3=2(3)

)
1
�4
+ O(�−6)

]
: (5.12)

In the high-temperature limit, � → 0; F̂ is calculated as follows: F̂ = F̂0 + F̂∞,

F̂0 :=
1
�4

∫ �

0

(x2 + �2)3=2 − �3

e x − 1 dx; F̂∞ :=
1
�4

∫ ∞

�

x3(1 + �2=x2)3=2 − �3

e x − 1 dx ;

F̂∞ =
1
�
(−�+ log(e� − 1)) + 1

�4

∞∑
n=0

(
3=2
n

)
�2n
∫ ∞

�

x3−2n dx
e x − 1 ;

F̂0 = F̂
(1)
0 + F̂

(2)
0 ; F̂

(1)
0 := − 1

2�̃4

∫ 1

0

[
(x2 + �̃2)3=2 − �̃3

]
dx

=−1
8
1

�̃4
√
1 + �̃2 − 5

16
1

�̃2
√
1 + �̃2 +

1
2
1
�̃
− 3
16
log
(
1
�̃

(
1 +

√
1 + �̃2

))
;

F̂
(2)
0 :=

1

��̃4

∞∑
k=0

B2k�2k

<(2k + 1)

∫ 1

0
x2k−1

[
(x2 + �̃2)3=2 − �̃3

]
dx ; (5.13)

with �̃ := �=�¡1. We split the series F̂
(2)
0 further, using for k¿1 the series expansion∫ 1

0
x2k−1(x2 + �̃2)3=2 dx=

�̃3

2k 2
F1(−3=2; k; k + 1;−�̃−2)

=
3
4
√
�

∞∑
n=0

<(n− 3=2)(−)n�̃2n
<(n+ 1)(2(k − n) + 3)

+
3
8
√
�
<(k)<(−k − 3=2)�̃2k+3 : (5.14)

By interchanging summations, we arrive at

F̂
(2)
0 = F̂

(2)(a)
0 + F̂

(2)(b)
0 + F̂

(2)(even)
0 + F̂

(2)(odd)
0 ;

F̂
(2)(a)
0 :=

1

��̃4

∫ 1

0

[
(x2 + �̃2)3=2 − �̃3

]
dx
x
=
1
�

[
1
3
1

�̃4
(1 + �̃2)3=2

+
1

�̃2
√
1 + �̃2 +

1
�̃

(
−4
3
+ log (2�̃)− log

(
�̃+

√
1 + �̃2

))]
;
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log
(
�̃+

√
1 + �̃2

)
=

∞∑
n=0

(−)n<(2n+ 1)
22n<2(n+ 1)(2n+ 1)

�̃2n+1 ;

F̂
(2)(b)
0 := − 1

�

∞∑
n=1

B2n�2n

<(2n+ 1)2n
=
1
�

(
1
2
�− log (e� − 1) + log �

)
;

F̂
(2)(even)
0 :=

3
4
√
�
1

�̃4

∞∑
n=0

c̃n(�)
<(n− 3=2)
<(n+ 1)

(−)n�̃2n; c̃n(�) := cn(�) +
1

2n− 3
1
�
;

F̂
(2)(odd)
0 :=

3
8
√
�
1
�

∞∑
n=1

B2n
<(2n+ 1)

<(n)<(−n− 3=2)�2n : (5.15)

The coe cients c̃0(�) and c̃1(�) can be immediately read o0 from (4.14), and by
combining (4.16) and (4.18) we obtain

c̃2(�) =
1
�
− 1
2
+ �0 +

1
2
log �−

∫ ∞

�

1
e x − 1

dx
x

: (5.16)

Collecting terms, we 1nd

F̂ = F̂∞ + F̂
(1)
0 + F̂

(2)(a)
0 + F̂

(2)(b)
0 + F̂

(2)(even)
0 + F̂

(2)(odd)
0 = F̂ sing(�) + F̂ reg(�) ;

F̂ sing :=
�4
15
1
�4
+
�2
4
1
�2
+
1
�

(
−4
3
+ log (2�)

)
+
3
16
log � ;

F̂ reg :=
∞∑
n=0

bn�n; b0 =−21
64

− 3
16
log 2 +

3
8
�0 : (5.17)

The series F̂ reg converges for �¡1, see after (4.15). The high-temperature expansions
of entropy, pressure, and speci1c heat hence read

S = 8� m3t c
3kV

h3

[
4�4
45

1
�3
+
�2
6
1
�
+
1
3
log (2�)− 7

9
− �
16
+ O(�2)

]
; (5.18)

P = 8� m4t c
5

h3

[
�4
45
1
�4
+
�2
12
1
�2
+
1
�

(
−4
9
+
1
3
log (2�)

)

+
1
16
log

�
2
− 7
64
+
1
8
�0 + O(�)

]
; (5.19)

cV = 8�
m3t c

3kV
h3

[
4�4
15

1
�3
+
�2
6
1
�
− 1
3
+

�
16
+ O(�2)

]
; (5.20)

cP = 8�
m3t c

3kV
h3

[
16�4
45

1
�3
+
�2
3
1
�
+
1
3
log (2�)− 10

9
+ O(�2)

]
; (5.21)
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�=
4
3

[
1 +

5
16�2 �

2 − 15
8�4 �

3
(
1− 1

2
log (2�)

)
− 55
128�4 �

4 + O(�5)
]

:

(5.22)

The particle number, which is, as pointed out in the Remark following (5.4), not an
independent variable, is obtained as, cf. Eqs. (4.3) and (4.4),

N =
8�V
h3

∫ ∞

mtc

|p|2d|p|
exp

[
�
√|p|2=(mtc)2 − 1

]
− 1

=
∫ ∞

0
n(
) d
= 8� m3t c

3

h3
VN̂ (�) ;

N̂ (�) :=
∫ ∞

0

√
x2 + 1
e�x − 1 x dx; x =

h

mtc2

: (5.23)

For � → ∞, we immediately 1nd

N̂ ∼
∞∑
n=0

(
1=2
n

)∫ ∞

0

x2n+1 dx
e�x − 1 =

�2
�2

∞∑
n=0

(
1=2
n

)
(2�)2nB2(n+1)

n+ 1
(−)n
�2n

; (5.24)

N =
4
3
�3 m

3
t c
3V

h3
1
�2

[
1 +

�2
5
1
�2

− 2�
4

21
1
�4
+ O(�−6)

]
: (5.25)

Combining this with (4.6), we obtain the energy per tachyon as a function of temper-
ature,

U
N
=
12=(3)mtc2

�2
1
�

[
1 +

(
6=(5)
=(3)

− �2
5

)
1
�2

+
(
71�4
525

− 45=(7)
=(3)

− 6�
2=(5)
5=(3)

)
1
�4
+ O(�−6)

]
; (5.26)

and the entropy per tachyon reads, cf. (5.8) and (5.25),

S
N
=
18=(3)k
�2

[
1 +

(
5=(5)
=(3)

− �2
5

)
1
�2

+
(
71�4
525

− 35=(7)
=(3)

− �2=(5)
=(3)

)
1
�4
+ O(�−6)

]
: (5.27)

In the high-temperature regime, � → 0, we write N̂ (�) in (4:23) as N̂ (�) = N̂ 0 + N̂∞,

N̂ 0 :=
1
�3

∫ �

0

x
√
x2 + �2 dx
e x − 1 ; N̂∞ :=

1
�3

∫ ∞

�

x2
√
1 + �2=x2 dx
e x − 1 ;

N̂∞ =
1
�3

∞∑
n=0

(
1=2
n

)
�2n
∫ ∞

�

x2−2n dx
e x − 1 ; N̂ 0 = N̂

(1)
0 + N̂

(2)
0 ;

N̂
(1)
0 := − 1

2�̃3

∫ 1

0
x
√

x2 + �̃2 dx =−1
6
1

�̃3
(1 + �̃2)3=2 +

1
6
;

N̂
(2)
0 :=

1

��̃3

∞∑
k=0

B2k�2k

<(2k + 1)

∫ 1

0
x2k
√

x2 + �̃2 dx : (5.28)
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To obtain power series for the integrals in N̂
(2)
0 , we note∫ 1

0
x2(k+�)

√
x2 + �̃2 dx=

�̃
2(k + �) + 1 2

F1

(
−1
2
; k + �+

1
2
; k + �+

3
2
;−�̃−2

)

=
1

2(k + �+ 1) 2
F1

(
−1
2
;−k − �− 1;−k − �;−�̃2

)

+
√
�
4

<(k + �+ 1=2)
<(k + �+ 2) sin (�(k + �+ 1))

�̃2(k+�)+2 :

(5.29)

By expanding the right-hand side of (5.29) in powers of �, and then performing the
limit � → 0, we arrive at∫ 1

0
x2k
√

x2 + �̃2 dx =− 1
4
√
�

∞∑
n=0

n�=k+1

<(n− 1=2)(−)n�̃2n
<(n+ 1)(k − n+ 1)

+
(−)k
4
√
�

<(k + 1=2)�̃2(k+1)

<(k + 2)
( (k + 2)−  (k + 1=2)− 2 log �̃) : (5.30)

[ , the logarithmic derivative of <, is elementary for positive (half-)integers.] Inserting

this into N̂
(2)
0 , and interchanging summations, we obtain N̂

(2)
0 = N̂

(2)(a)
0 + N̂

(2)(b)
0 ;

N̂
(2)(a)
0 :=− 1

2
√
�
1

�̃3

∞∑
n=0

<(n− 1=2)
<(n+ 1)

ĉn(�)(−)n�̃2n ;

ĉn(�):=
1
2�

∞∑
k=0

k �=n−1

B2k�2k

<(2k + 1)(k − n+ 1)
;

N̂
(2)(b)
0 :=

1
4
√
�
1
�

∞∑
n=0

B2n
<(2n+ 1)

<(n+ 1=2)
<(n+ 2)

× ( (n+ 2)−  (n+ 1=2)− 2 log �̃)(−)n�2n : (5.31)

Since

ĉ0(�) =
1
�3

∫ �

0

x2 dx
e x − 1 +

1
6
; ĉ1(�) =

1
�
log (e� − 1)− 1

�
log �− 1

2
; (5.32)

we 1nd, via (5.23) and N̂ = N̂∞ + N̂
(1)
0 + N̂

(2)(a)
0 + N̂

(2)(b)
0 , the particle density as

N
V
= 8�m

3
t c
3

h3

[
2=(3)
�3

+
1
�

(
1
4
− 1
2
log

�
2

)
+
1
6
+ O(� log �)

]
: (5.33)
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The high-temperature expansion of the energy per particle is obtained from (4.19) and
(5.33),

U
N
=
�4mtc2
30=(3)

1
�

[
1 +

(
5
4�2 −

1
8=(3)

+
1

4=(3)
log

�
2

)
�2

−
(
5
�4 +

1
12=(3)

)
�3 + O(�4 log2 �)

]
; (5.34)

and the entropy per particle reads in this limit, cf. Eq. (5.18),

S
N
=
2�4k
45=(3)

[
1 +

(
15
8�2 −

1
8=(3)

+
1

4=(3)
log

�
2

)
�2

−
(
35
4�4 +

1
12=(3)

− 15
4�4 log (2�)

)
�3 + O(�4 log2 �)

]
: (5.35)

The mass drops out in the leading order of the expansions (4.19), (5.18)–(5.22), and
(5.33)–(5.35), and hence the high-temperature limit coincides with electromagnetic
black-body radiation. It is only in the low-temperature regime, that the tachyon mass
changes the temperature scaling in leading order, cf. (4.6), (5.8)–(5.12), and (5.25)–
(5.27),

U ∼ 16�=(3)mtk
3

ch3
VT 3; N ∼ 4

3
�3mtk

2

ch3
VT 2 ;

PV ∼ 1
2
U ∼ 6=(3)�2 NkT; S ∼ 1

2
cV ∼ 3

2
U
T

∼ 18=(3)�2 Nk; �∼ 3
2
; (5.36)

with =(3)≈ 1:202. The entropy and the thermal equation of state are also in this limit
independent of the tachyon mass, but not so the caloric equation. These relations bear
little resemblance to those of a relativistic gas of subluminal massive particles, re-
gardless of the statistics used and the limits considered [38], as mt is not a rest mass
and the chemical potential is zero. In the next section, we will turn to quantitative
estimates, and discuss the prospects to observe the cosmic tachyon background.

6. Conclusion

The spectral energy density of the transversal tachyon radiation reads, cf. Eqs. (3.32)
and (4.3),

�tach(
) d
=
8�h
c3
d

2

√

2 + m2t c4=h2

exp(�h
)− 1 : (6.1)

A tachyon mass of mt ≈ 2:15 keV=c2 was found in Refs. [25,28], by comparing level
shifts induced by the static potential of this 1eld theory to high-precision Lamb shift
measurements and QED calculations in hydrogen. The tachyon mass corresponds to a
Compton wavelength of OA

C
t = 1=	≈ 0:9 UA. This is the maximal wavelength, attained

in the limit of in1nite speed and zero energy, since At = ACt (1 + (A
C
t 
=c)

2)−1=2. As
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the tachyon radiation is in equilibrium with the photon background at 2:73 K, we 1nd
mtc2=(kT0)≈ 9:1× 106 and �h=1:76× 10−11 s. The tachyon mass turns the frequency
scaling in the Rayleigh–Jeans limit from quadratic to linear,

�tach(
 → 0)∼ 8�
ch

mt
kT ; (6.2)

De1ning x :=�h
 and � :=mtc2=(kT ), we 1nd the peak of �tach(
) by solving

x
1− e−x = 2 +

x2

x2 + �2
: (6.3)

For the photon background, this means x(�=0)≈ 2:822, and for the tachyon background
x(� → ∞)≈ 1:594 applies, since, at the present epoch, �≈ 9:1 × 106, so that the
tachyon mass does not really enter. Hence, the tachyonic energy density is peaked
in the microwave range, at 
peakt ≈ 90:6 GHz, rather close to the peak of the photon
density at 
peakph ≈ 160 GHz.
The ratio of tachyon and photon transition rates is the same for spontaneous emission

as well as for induced radiation, cf. (3.33), and (3.34). In dipole approximation,

wd(tach)

wd(ph)
∼ q2

e2

√
(h
)2 + m2t c4

h

; (6.4)

so that wd(tach)=wd(ph)≈ 3:0× 10−9 for the Ly-� lines of hydrogen (10:2 eV), based on
mt ≈ 2:15 keV=c2 and q2=e2≈ 1:4 × 10−11, cf. Refs. [25,28]. In heavy ions, it is even
more unlikely that atomic transitions are e0ected by tachyon radiation; wd(tach)=wd(ph)≈
1:4× 10−11 for the Ly-�1 transition (0:23 MeV) in hydrogenic uranium. In transitions
between Rydberg states [40], the frequency dependent factor in (6.4) can get large, but
then the dipole approximation is not valid any more. (In this case, the exponentials in
(3.20) and (3.26) give rise to extensive averaging, because the tachyonic wavelength
cannot supercede OA

C
t , which is very small compared to Rydberg orbits with principal

quantum number in the presently accessible range, n≈ 102−3.) Rydberg transitions
lead to speedy tachyons, as the transition frequency relates to the velocity of the
emitted tachyon via h
=mtc2(v2t =c

2 − 1)−1=2, and future high-precision measurements
of Rydberg levels in hydrogenic systems could also result in a much more accurate
determination of the tachyon mass and the tachyonic 1ne structure constant, since
highly excited states are virtually una0ected by nuclear 1nite size e0ects, unlike ground
state and 2S–2P Lamb shifts and hyper1ne transitions. The transition frequency of
neighboring shells is TEn;n±1∼ 13:6 eV · 2Z2n−3, so that we 1nd the tachyonic velocity
as vt=c∼ 0:079Z−2n3, for low Z and n in the mentioned range and beyond.
The estimate (6.4) also applies to induced absorption rates for photonic and tachyonic

cosmic background radiations, so that wd(tach)=wd(ph)(
peakph )≈ 4:6×10−5 at the maximum
of the photon energy density at 2:73 K. The chances to detect the cosmic tachyon
radiation, i.e., to observe the limit (6.2) instead of the Rayleigh–Jeans law, improve
with increasing wavelength, e.g., wd(tach)=wd(ph)(7:3 MHz)≈ 1. The Planckian shape of
the cosmic black-body radiation has not been tested below 0:5 GHz, cf. [41].
Next, we turn to the cross sections for the photoelectric e0ect and its tachyonic

counterpart, cf. (3.43). As pointed out after (3.39), the validity of (3.43) is restricted
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to frequencies E1�h
�mec2, due to the Born approximation and the non-relativistic
treatment of the electron. For a hydrogenic ion, we have E1≈ 13:6 eV ·Z2, and the
mentioned restraints can be readily satis1ed for light- and medium-sized ions, so that
kt=ke�1 is likewise satis1ed, cf. (3.40). An upper bound for the ratio of tachyonic
and photonic cross sections is evidently $tach=$ph¡1:4× 10−11, attained for h
�mtc2.
In the opposite limit, this bound is reduced by a factor h
=mtc2, which must be
in turn much larger than E1=mtc2≈ 6:5 × 10−3Z2. As for tachyonic Born scatter-
ing in hydrogenic Rydberg systems, studied at the end of Section 3, we have the
mild restriction v=c��=n; � = Z=137, on the speed of the free electron. This im-
plies kt=ke�(n=�)mt=me≈ 0:6n=Z , which still admits kt=ke�1 for large n. This limit
is unattainable for photons in the non-relativistic Born approximation, where kph=ke�1
always applies.
Finally, we compare the ratio of photon and tachyon density as well as the ratio of the

corresponding energy densities in the low-temperature regime, cf. (5.36). We 1nd, with
a background temperature of 2:73 K; Ntach=Nph ≈ 6:2 × 106 and Utach=Uph ≈ 3:4 × 106,
but as we have demonstrated above, the high tachyon density cannot compensate the
very small ratio q2=e2 of tachyonic and electric 1ne structure constants, at least not in
the microwave regime. If we include longitudinal tachyons, these ratios are multiplied
by a factor of 3=2.
In this paper, we studied tachyonic emission and absorption processes semiclassically.

The most promising approach to second quantization outside the light cone is still that
of Feinberg [3], based on an incomplete set of eigenmodes (of a scalar 1eld); the trun-
cation of the momentum integration in the partition function (4.2) is in fact borrowed
from Ref. [3], and it was semiclassically rederived in Section 3, using Einstein’s argu-
ment of detailed balancing of emission and absorption rates. Feinberg’s non-invariant
vacuum is not an obstacle in an absolute cosmic space-time, if one de1nes it with
respect to the comoving galaxy frame anchored in the cosmic ether [20,31–34], the
local manifestation of the cosmic space–time. However, before one starts to endeavor
on the quantization of the Proca 1eld with negative mass square, one needs a good
command of the classical theory, of wave propagation outside the light cone, and of
interactions with subluminal currents. And above all, if one contemplates on tachyons,
one has to decide where to search for them. In this paper and in Refs. [25,28] we
scrutinized high-precision measurements in hydrogenic systems, Lamb shifts, hyper1ne
splittings, Rydberg transitions, tachyonic ionization cross sections, and the Rayleigh–
Jeans limit of the cosmic tachyon background. Tachyonic cyclotron and synchrotron
radiation, from storage rings to supernova remnants, will be discussed elsewhere.
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