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Zusammenfassung

Forschungsgegenstand der experimentellen Hochenergie-Schwerionenphysik ist das

Verhalten hadronischer Materie bei sehr hohen Energiedichten. Gesucht wird eine

neue Materieform, das sogenannte Quark-Gluon-Plasma (QGP). In diesem Zustand

liegen die Quarks nicht mehr in Hadronen gebunden, sondern in einem gr�o�eren

Raum-Zeit-Volumen quasi-frei vor. Allerdings ist dieser Zustand nur bei hoher Ener-

giedichte zu erwarten.

Auf dieser Motivation beruht das NA49-Experiment am CERN-SPS-Beschleuniger,

mit dem St�o�e zwischen Pb-Kernen bei 158 GeV pro Nukleon untersucht werden.

Die dabei erreichte Energiedichte liegt in einem Bereich, indem der Phasen�ubergang

vermutet wird. Den Ablauf der Reaktion versucht man mit Hilfe der bei der Kollision

emittierten Teilchen zu rekonstruieren. Diese werden in NA49 mit einem Hadronen-

spektrometer gro�er Akzeptanz nachgewiesen.

Betrachtet man dabei die Verteilung der Impulsdi�erenzen detektierter Teilchen,

dann ist im Falle von Bosonen eine �Uberh�ohung der H�au�gkeit bei kleinen Werten

beobachtbar, die von der Bose-Einstein-Korrelation verursacht wird (sog. HBT-

E�ekt). Nach der Heisenberg'schen Unsch�arferelation h�angt die Breite dieser gau�-

f�ormigen �Uberh�ohung mit der raumzeitlichen Ausdehnung der Reaktionszone zusam-

men.

Das Hauptziel dieser Arbeit ist die Untersuchung und der Vergleich der raumzeitli-

chen Kon�guration der Quelle f�ur Kaonen und Pionen in zentralen Pb+Pb Kolli-

sionen bei 158 GeV/u. Wegen unterschiedlicher Wechselwirkungsquerschnitte und

unterschiedlicher Beitr�age kurzlebiger Resonanzen ist der Vergleich zwischen Kaonen

und Pionen interessant. Da sich die Bildung eines QGP auf die Expansion der

Reaktionszone auswirkt, damit auch auf die Kon�guration, bei der die Teilchen-
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Entkopplung statt�ndet, erh�alt man indirekt eine Information �uber den Phasen-

�ubergang.

Im Experiment werden etwa zehnmal weniger Kaonen als Pionen produziert. Damit

diese seltenen Kaonen bei mittlerer Rapidit�at mit m�oglichst wenig Kontamination

identi�ziert werden k�onnen, wird der NA49-Flugzeitdetektor benutzt. Die zum Ver-

gleich ben�otigten Pionen mittlerer Rapidit�at haben wesentlich geringere Impulse.

Sie sind nur durch die dE=dx-Methode selektierbar.

Mit den so gewonnenen Daten wird die HBT-Analyse sowohl eindimensional, als

auch dreidimensional durchgef�uhrt. Hierbei ist die Coulomb-Absto�ung zwischen

gleich geladenen Teilchen durch die analytische Coulombfunktion korrigiert, deren

Parameter aus der Coulomb-Korrelation zwischen ungleich geladenen Teilchen ex-

trahiert wurden.

Aus den resultierenden Radien von Kaonen und Pionen, die nach der Yano-Koonin-

Podgoretskii-Parameterisierung die transversale und longitudinale Ausdehnung der

Quelle und die Emissionsdauer der Teilchen charakterisieren, folgt :

� F�ur die r�aumliche und zeitliche Ausdehnung der Reaktionszone am Ausfrierzeit-

punkt werden mit Kaonen und Pionen etwa die gleichen Werte bestimmt. Dies

deutet an, da� sich unterschiedliche Wirkungsquerschnitte und Bildungsmecha-

nismen nicht auf das Me�ergebnis auswirken.

� Im Rahmen des hydrodynamischen Modells kann die Lebensdauer des Sys-

tems zu ca. 10 fm/c f�ur beide Teilchen mit mittlerer Rapidit�at abgesch�atzt

werden. Tritt ein Phasen�ubergang erster Ordnung auf, wird latente W�arme

erzeugt, w�ahrenddessen das QGP und das Hadronengas koexistieren, was zu

einer l�angeren Lebensdauer f�uhrt als bei einem Szenario ohne Phasen�ubergang.

Das gemessene relativ lang verz�ogerte Ausfrieren beider Teilchen (�f � 10�1.5
fm/c) stimmt mit der theoretischen Vorhersage �uberein.

� Vergleicht man die Radien von positiven und negativen Teilchen, sieht man

den zentralen Coulombe�ekt, der von der positiv geladenen Quellen verursacht

wird.

� Die longitudinalen Radien nehmen in Abh�angigkeit von den transversalen

Massen st�arker ab als die transversalen Radien. Dies ist konsistent damit, da�

die Expansion in Strahlrichtung viel st�arker ist als in transversaler Richtung.



Abstract

NA49 is a large-acceptance spectrometer for the investigation of hadron production

in 158 AGeV Pb+Pb collisions at the CERN-SPS. It is generally expected that

the conventional hadronic degrees of freedom governing normal nuclear matter are

melted away as a consequence of the high energy densities reached in these collisions,

thus forming a new state of matter, the quark-gluon plasma (QGP). In order to verify

experimentally whether a phase transition to such a state occurs, it is important to

characterize the relevant properties of the source that is formed in the collisions.

This thesis explores the geometrical and dynamical properties of the reaction zone

produced in the central Pb+Pb collisions by means of Hanbury-Brown and Twiss

(HBT) intensity interferometry.

The freeze-out con�gurations of kaons and of pions, both from the central rapidity

region, are extracted by 1-dimensional and 3-dimensional HBT analyses.

It is found, that the freeze-out con�guration of kaons is very similar to that of pions.

Particularly the relatively long and similar freeze-out proper time, which is extracted

from them?-dependence of the longitudinal radii, is consistent with hydrodynamical

reaction models that include a phase transition.

keywords : NA49, quark-gluon-plasma (QGP), HBT intensity interferometry, freeze-

out con�guration, freeze-out proper time, expansion of source
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Chapter 1

Introduction

1.1 Hadronic Matter under Extreme Conditions

In the early 1960s the quark model was suggested by Gell-Mann [Gel64] and Zweig

[Zwe64] for the hadronic substructure. In this model, mesons are to be described as

quark-antiquark bound states (q�q), and baryons as three-quark bound states(qqq).

Experimentally, however, no single quark, described by a color triplet state, has ever

been isolated ; only the colorless hadrons are observed. This \con�nement" of the

quarks inside the hadrons suggests that the interaction between them must be very

strong on large distance scales.

For mesons, an intuitive way to visualize the con�nement is the picture of a �eld

tube between a quark and an antiquark containing a constant strong interaction

�eld. As the separation between the quark and antiquark becomes large, the energy

of the �eld increases linearly and, at some point, it becomes energetically more fa-

vorable to produce another quark-antiquark pair at a point along the tube such that

the produced quark is connected to the antiquark while the produced antiquark is

connected to the quark. To isolate a quark from its antiquark partner would then

be impossible.

With quarks being con�ned inside a hadron, a useful phenomenological description

of quarks in hadrons is provided by the (MIT) Bag Model [Cho74]. In the model,

quarks are treated as massless particles inside a bag, and are in�nitely massive

outside the bag. In the model, con�nement is the result of the balance of the bag
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Fig. 1.1: Phase diagram in the plane of the temperature and the net baryon den-

sity. At a high enough temperature (energy density) or net baryon density

(matter density), hadronic matter may undergo a phase transition where

properties could be quite di�erent. [Sch92]

pressure B, which is directed inward, and the stress arising from the kinetic energy

of the quarks. If the quarks are con�ned in the bag, this should also hold for the

gluons. In this picture, the total color charge of the matter inside the bag must

vanish. Since there are three di�erent types of color, the bag model would imply

that the allowable hadronic bags should include colorless qqq or q�q states.

In order to discuss matter under extreme conditions, it is useful to use this model

as a starting point. If the pressure of the quark matter within the bag is suÆciently

increased, there should be a point where the outward pressure will exceed the in-

ward pressure. At that point, the bag pressure cannot balance the outward quark

matter pressure and the bag cannot con�ne the quark matter contained inside. A

new phase of matter containing the quarks and gluons in an uncon�ned state, the

Quark-Gluon-Plasma (QGP) will then be possible. The situation now leads to

the possible existence of di�erent phases of the quark matter. The main condition

for a new phase of quark matter is the occurrence of a large pressure exceeding the

bag pressure B.

A large pressure arises :
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1) when the temperature of the matter is high and/or

2) when the baryon number density is large.

New phases of quark matter are then expected [Won94] [Mue85]. This relation is

more noticeable in the phase diagram of strong-interacting matter (Fig. 1.1).

The early Universe presumably underwent this phase transition 10�5 s after the Big

Bang. Contrarily, the dynamics of supernova explosions and the stability of neutron

stars depend on the compressibility and it is even speculated that the core of neutron

stars may consist of cold QGP as shown in Fig. 1.1. In the laboratory condition, such

hot and dense hadronic matter may be arti�cially reached in ultrarelativistic heavy-

ion collisions. In this respect, the CERN-SPS is presently one of the most powerful

facilities, where a 208Pb-beam with 158 AGeV is o�ered giving the center-of-mass

energy 17.3 GeV in the NN-system.

1.2 High-Energy Heavy-Ion Collisions

As the simplest case, we consider the head-on collision of two equal nuclei in the

center-of-mass frame. Due to the substantial Lorentz contraction in the longitudinal

direction, we can represent the two colliding nuclei by two thin disks. The con�gura-

tion of the two nuclei before collision in the center-of-mass frame is illustrated in Fig.

1.2 (a). Considering the extreme high-energy case, the projectile nucleus B coming

from z = �1meets the target nucleus A which comes from z = +1 at a speed close

to the speed of light. They meet at z = 0 and t = 0. From the experimental data,

it is known that each inelastic nucleon-nucleon collision is accompanied by a large

energy loss of the colliding baryons [Won94]. At very high energies, the slowed-down

baryons after the collision can still have enough momentum to proceed forward, and

move away from the region of collision (Fig. 1.2 (b)), where the projectile baryon

matter after the collision is denoted by B0 and the target baryon matter by A0. The

energy-loss by the baryons is deposited in a small region of space around z = 0 in a

short duration of time.

The dynamics can be viewed from a di�erent perspective in the space-time diagram

(Fig. 1.3). At the point of (z; t) = (0; 0), collisions between the nucleons of the

projectile nucleus and the nucleons of the target nucleus take place. The energy de-

posited in the collision region around z � 0 can be quantized in the form of quarks,
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γ = s/2

1fm 1fm(a)

Region of matter formation

(b)

z=0
A

A’

B

B’

Formed matter

Fig. 1.2: (a) The con�guration of two colliding nuclei A and B be-

fore collision. (b) The con�guration after collision with

energy deposited in the region around z � 0. (according

to [Bjo83])

gluons, or hadrons. As illustrated in Fig. 1.3, there may be two di�erent scenarios

with and without the QGP formation, in accordance with the deposited energy den-

sity around z � 0. Soon after the collision of the two nuclei at (z; t) = (0; 0), the

energy density may be high enough to form the quark-gluon plasma in the central

rapidity region. The plasma initially may not be in thermal equilibrium, but will be

subsequently equilibrated at the proper time �0, and the plasma may then evolve

according to the laws of hydrodynamics thereafter. As the plasma expands, its tem-

perature drops down and the hadronization of the plasma will take place at a later

proper time. When the temperature falls below the \freeze-out" temperature at the

time �f , the interactions between the produced hadrons will �nally end (freeze-out),

and the hadrons will stream out of the collision region. The spatial and temporal

con�guration at this moment is called freeze-out con�guration of hadrons.
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Fig. 1.3: The space-time scenario for a high-energy nucleus-nucleus collision

is shown with QGP formation (right) and without (left), respec-

tively. The two scenarios may coexist in the same event.[Son94]

1.3 Searching for the Quark-Gluon Plasma

Phase Transition

Subsequent cooling allows the matter to return to the hadron phase and to ap-

pear as hadrons, which can be detected in the experiment. These particles from the

interaction between the constituents of the plasma will then provide information

concerning the state of the plasma, if there was a priori the quark-gluon plasma.

The detection of the products of their interactions is, therefore, a plasma diagnostic

tool. There have been many suggestions from theory, and several possible signatures

for the phase transition are described below.

As suggested by Rafelski [Raf82], the strangeness enhancement is one of the possible

signatures. In the heavy-ion collision, the lightest and dominant hadron is the pion,

which is composed of the two lightest quarks, u and d. If hadronic densities become
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large enough, the chemical potential of the u (mu ' 5 MeV) and d (md ' 10 MeV)

quarks can become the order of the strange quark mass (ms ' 150 MeV), since the

chemical potential is proportional to the hadronic density [Raf92]. In addition, the

chemical equilibrium to produce the strange quarks is reached in QGP 10-30 times

sooner than in the hadronic gas. As a combined result, it becomes energetically

favorable to thermally produce strange (s) quarks rather than the lighter avors,

resulting an increase of strange hadrons. The strangeness enhancement is then quan-

ti�able in a ratio of strange to non-strange hadrons (i.e. K
�
, �
p
, etc.). Such has been

studied in many previous experiments and is an important component in the NA49

research program [Afa00].

The opposite of strangeness enhancement is the J= suppression, as suggested by

Satz and Matsui [Mat86]. In a quark-gluon plasma, a color charge of a quark is sub-

ject to be screened by the presence of quarks, antiquarks, and gluons in the plasma.

This phenomenon is called Debye screening. In case of the J= meson, which is

composed of a charm quark c and an antiquark �c with mJ= ' 3.1 GeV, the Debye

screening in the plasma will weaken the interaction between c and �c. Therefore, a

J= particle in the quark-gluon plasma at high temperatures will become dissoci-

ated. This will increase the rate of production of open charm mesons (i.e. D mesons)

and decrease the J= yield. Experimentally the J= production is being investigated

with relation to open charm mesons in CERN Pb+Pb collisions [Gaz99].

With the above signatures, the spatial and temporal characterizations of the parti-

cle production source is an important component in understanding the evolution of

heavy-ion collisions. In relativistic heavy-ion collisions the momenta of the escaping

hadrons are determined at the point of \freeze out". They should carry information

about the �nal state of the �reball which can be use to reconstruct this state and

thus obtain boundary conditions for back-extrapolation into earlier stages of its evo-

lution. In this way one can examine the question whether a quark-gluon plasma was

created or not. For instance, an anomalously long lifetime of the source could signal

the presence of a system that has a latent heat associated with it. If the source were

expanding, it would have a large spatial extention. In particular, a comparison of

such con�gurations of pions to those of kaons can give us remarkable informations

concerning model dependent scenarios (see section 2.3). The following chapters will

detail the characterization of the spatial-temporal extensions of the average source

created in central Pb+Pb collisions at 158 AGeV using particle interferometry.



Chapter 2

Particle Interferometry and the

HBT E�ect

Interference is a well-known wave phenomenon associated with the superposition of

two or more waves. For example, the appearance of Young's di�raction pattern in

a two-slit experiment is the result of the interference of the amplitudes of two light

waves from two slit openings which travel in di�erent paths to arrive at the same

detection point.

There is another wave interference phenomenon, which is associated with the inter-

ference of the intensities when identical particles are detected at di�erent space-time

points or energy-momentum points.

This new kind of interferometry was formulated in the mid-1950s by Hanburry-

Brown and Twiss (HBT) [Han54]. This so-called HBT interferometry was �rst ap-

plied in astronomy in order to deduce the spatial extension of stars. Shortly after its

development, it was shown that the e�ect is universal and could be observed for any

emitting source [Han56]. The �rst application to particle physics has been proposed

and successfully carried out by G. Goldhaber, S. Goldhaber, Lee and Pais (GGLP)

in order to measure the space-time dimensions in p�p annihilation [Gol60].

The HBT-E�ect is caused by the principles of quantum statistics for indistinguish-

able particles. In the case of bosons, there is an attraction (or a correlation) between

identical particles in phase space, whereas fermions exhibit the opposite behavior,

producing a repulsion (or an anti-correlation) between particles. Both e�ects have

16
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Fig. 2.1: A measurement cannot distinguish which particle is

from the space-time point r1 and which is from r2.

been seen experimentally and have allowed estimates of the space-time structure of

subatomic collisions.

2.1 Two-Particle Correlation Function

According to Heisenberg's uncertainty relation (�p�r ' ~), momentum and posi-

tion cannot be precisely measured at the same time. Therefore, for a given momen-

tum di�erence of two particles we cannot determine where in the emitting source

they exactly come from.

Now we consider the two-particle momentum distribution P (p1; p2), de�ned as the

probability distribution for two particles of momenta p1 and p2, to be produced from

the extended source and to arrive at their respective detection points r01 and r02 (Fig.

2.1).1

Assuming that the probability amplitude for the production of the particle with mo-

mentum pi at ri is given by A(pi; ri)e
i�(ri), the probability amplitude of two particles

to be produced and propagate from the source point to the detection point is (solid

lines in Fig. 2.1):

A(p1; r1)e
i�(r1) (p1 : r1 ! r01)A(p2; r2)e

i�(r2) (p2 : r2 ! r02) (2.1)

1where pi and ri denote the four-momentum and the space-time four-vector of particle i, re-

spectively.
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which can be expressed as

A(p1; r1)e
i�(r1)eip1�(r1�r

0
1)A(p2; r2)e

i�(r2)eip2�(r2�r
0
2): (2.2)

However, this is not the only probability amplitude contribution for two identical

particles produced from r1 and r2 to arrive at r
0
1 and r02. The particle of momentum

p1 detected at r01 can also be produced at r2 and propagate from r2 to r
0
1. The other

identical particle of momentum p2 detected at r02 can be produced at r1 and prop-

agate from r1 to r02 as indicated by the dashed lines in Figure 2.1. The probability

amplitude for this occurrence is

A(p1; r2)e
i�(r2) (p1 : r2 ! r01)A(p2; r1)e

i�(r1) (p2 : r1 ! r02) (2.3)

which can be expressed as

A(p1; r2)e
i�(r2)eip1�(r2�r

0
1)A(p2; r1)e

i�(r1)eip2�(r1�r
0
2): (2.4)

Because of the indistinguishability and the Bose-Einstein statistics of bosons, the

probability amplitude must be symmetrical with respect to the interchange of the

labels 2 r1 and r2. In contrast, for identical fermions the probability amplitude

must be anti-symmetrical. Accordingly, the probability amplitude which satis�es

this (anti)symmetry is the sum(di�erence) of Eq. 2.2 and Eq. 2.4 divided by
p
2 :

1p
2

n
A(p1; r1)e

i�(r1)eip1�(r1�r
0
1)A(p2; r2)e

i�(r2)eip2�(r2�r
0
2) (2.5)

�A(p1; r2)ei�(r2)eip1�(r2�r
0
1)A(p2; r1)e

i�(r1)eip2�(r1�r
0
2)
o

� ei�(r1)ei�(r2)�(p1p2 : r1r2 ! r01r
0
2) (2.6)

where � is the �-independent part of the probability amplitude.

We will consider only the case of bosons, because we are only interested in the case

of kaons and pions.3

Integrating Eq. 2.5 over all the source points with the source density function �(ri),

we get the two-particle distribution for a chaotic source as :

P (p1; p2) =

Z
dr1dr2�(r1)�(r2)j�(p1p2 : r1r2 ! r01r

0
2)j2: (2.7)

2In this case, the only labels which distinguish the two identical bosons are the source points

r1 and r2, because one boson of momentum p1 has been determined to have been detected at r01

and the other identical boson of momentum p2 at r02.
3In case of fermions we can simply replace the plus sign with the minus sign for interchanging

the labels.
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Substituting Eq. 2.5 into Eq. 2.7 leads to :

P (p1; p2) = P (p1)P (p2) +
�� Z drei(p1�p2)�r�(r)A(p1; r)A(p2; r)

��2 (2.8)

where P (pi) �
R
dri�(ri)A

2(pi; ri). Introducing the e�ective density function de�ned

as

�eff(r; p1p2) � �(r)A(p1; r)A(p2; r)p
P (p1)P (p2)

(2.9)

and its Fourier transform ~�eff(q; p1p2) de�ned as

~�eff (q; p1p2) =

Z
dreiq�r�eff (r; p1p2); (2.10)

where q � p1 � p2. The two-particle momentum distribution function is, then, a

function of ~�eff (q; p1p2) as

P (p1; p2) = P (p1)P (p2)
�
1 + j~�eff(q; p1p2)j2

�
: (2.11)

Finally, the correlation function C2(p1; p2) is de�ned as the ratio of the probability

for the coincidence of p1 and p2 relative to the probability of observing p1 and p2

separately,4

C2(p1; p2) =
P (p1; p2)

P (p1)P (p2)
= 1 + j~�eff(q; p1p2)j2: (2.12)

Replacing �(r)A2(p; r) in Eqs. 2.9, 2.10 and 2.12 with the source emission function

S(p; r), which means the phase space distribution function and the classical analogue

of the quantum mechanical Wigner function, we can approximately get :

C2(p1; p2) � C2(q;K) �= 1 +
j R drS(r;K)eiq�rj2
j R drS(r;K)j2 ; (2.13)

where we use q = p1 � p2 and K = 1
2
(p1 + p2) instead of the variables p1 and p2 for

convenience.

Thus, for an extended chaotic source, the two-particle correlation function C2(p1; p2)

is directly related to the Fourier transform of the e�ective density of the source

[Won94].

4This is often called also the Bose-Einstein correlation, because this function is based on the

indistinguishability of bosons, which satisfy the Bose-Einstein statistics
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2.2 The Bose-Einstein Correlation Function

in Heavy-Ion Collisions

The Bose-Einstein correlation function is a useful information to probe the phase-

space con�guration of the source at the time of the boson emission. For example,

if we could describe the e�ective density function �eff(r; p1p2) of the source by a

Gaussian distribution with spatial extent R and temporal extent �t such that

�eff (r; p1p2) � 1

R3�t
e
�

j~rj2

2R2
� t2

2�2t ; (2.14)

its Fourier transform ~�eff (q; p1p2) is

~�eff (q; p1p2) � e�R
2j~qj2=2��2t q

2

0
=2; (2.15)

where ~q = ~p1 � ~p2 and q0 = E1 � E2. From Eqs. 2.12 and 2.15, the Bose-Einstein

correlation function becomes

C2(p1; p2) = C2(q;K) = 1 + e�R
2j~qj2��2t q

2

0 : (2.16)

This result for the Gaussian parameterization (Eq. 2.14) of the source can be used

to analyze experimental momentum correlation data. In general, the parameters ~r

and t are functions of p1 and p2. Only in special cases they can be independent

of p1 and p2. For example, when the distribution function S(p; r) is factorizable as

the product of a function of p and a function of r, then the e�ective density and

its parameters are independent of p1 and p2, and the e�ective density is identical

to the space-time density distribution of the source points. This occurs when the

momentum distribution of the produced bosons is independent of the location of the

source points. Therefore, a Gaussian parameterization with momentum-independent

parameters may be a good description for a static source.

However, it is clearly inadequate for a source, where the momentum distribution

changes from position to position, in the inside-outside cascade description of par-

ticle production or in case of collective expansion. In the general cases, when the

momentum spectrum of the produced particles depends on source coordinates, the

parameters which characterize the density function �eff (r; p1p2) will depend on the

region of p1 and p2 covered in the measurement.

As a consequence, the spatial region for two particles with a small momentum dif-

ference can be bounded and selected as where the gradient of expansion velocity is
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small enough. For an expanding emitting source the HBT analysis cannot provide a

total space-time con�guration, but only a di�erential con�guration for the selected

expanding region, which can be chosen by the rapidity and the transverse momen-

tum. Thus the spatial and temporal deviations or radii and emissions duration can

only be interpreted over limited \regions of homogeneity" where the source appears

stationary and position-momentum correlations are negligible [Mak88].

For the real particles, whose energy and momentum correlate according to E2 =

m2+p2, the so-called on mass shell constraint should be satis�ed [Yua96] as q�K = 0,

where q = (~q; iq0) and K = ( ~K; iK0). Therefore, we get :

q0K0 = ~q � ~K (2.17)

q0 =
~K

K0
� ~q � ~� � ~q; (2.18)

where ~� is de�ned as a pair-velocity.

The Fourier transform in Eq. 2.13 does not have a unique inverse since the four

components of q are not independent5 in respect to Eq. 2.17. In practice, the analysis

of HBT correlation data must, therefore, be based on a comparison with speci�c

models for the emission function S(r;K).

2.2.1 Space-Time Parameterizations

of the Correlation Function

1-Dimensional Parameterization

The spatial-temporal information is contained in the width of the correlation func-

tion, and this must be quanti�ed in some manner. The simplest parameterization

for the correlation function is that of the single Lorentz-invariant Qinv :

C2(Qinv) = 1 + �e�Q
2

invR
2

inv (2.20)

5With this on-shell constraint and a factorizable source function as S(r;K) = f(K)�(r), the Eq.

2.13 becomes an explicite function of ~q and ~�(or ~K) as

C2(q;K) �= 1 +
j
R
dr�(r)ei~q�(~r�

~�t)j2

j
R
dr�(r)j2

: (2.19)
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where Qinv =
p
q � q =

p
(~p1 � ~p2)2 � (E1 � E2)2, and Rinv is the spatial-temporal

extent. The coeÆcient � introduced in Eq. 2.20 is the so-called chaoticity parameter.

Experimentally, the need for this parameter is illustrated by the fact that the corre-

lation function is often less6 than the maximum theoretical value of 1 at Qinv = 0.

This correlation function interpolates between the case of a coherent source with

� = 0 and the case of a completely chaotic source with � = 1 [Won94]. Although

the chaoticity parameter was originally introduced to characterize the chaoticity of

the source, in practice it is known that the parameter � is not only sensitive to the

e�ect of source coherence but also to impurity in particle species, resonance e�ects,

momentum resolution, etc.[App97][Las97].

This parameterization has been applied to high-energy e+e�, pp, and p�p collisions,

where a value of Rinv � 1fm was found [Act91] [Bre85] [Bre87]. However, Rinv is not

straightforward to interpret, since Qinv convolutes spatial and temporal information

in a non-trivial way. Nevertheless, this parameterization is useful to analyze rarely

produced particle species, such as kaons and anti-protons because of its availability

with small datasets. In [Aki93] a transformation from Rinv to the spatial extension

R is suggested in order to compare the radii of kaons to those of pions. In this thesis

the same procedure is successfully carried out.

Model-independent Parameterization

As an important tool for searching \reasonable" model sources, model-independent

expressions for the HBT parameters are suggested in [Cha95a] [Cha95b] and [Her95],

which allow to calculate the characteristic parameters of the two-particle correlation

function C2 from an arbitrary emission function S by simple quadrature. Experi-

mentally, these HBT parameters are obtained via a multidimensional Gaussian �t

to C2(q;K) in momentum space. To compute the Gaussian parameters of the (mo-

mentum) correlation function C2, it is suÆcient to use the Gaussian approximation
7

of the (space-time) emission function [Wie96] [Yua96],

S(r;K) � S(�r(K);K)exp
�� 1

2
~r�(K)B��(K)~r

�(K)
�
: (2.21)

Here, ~r� denote the space-time coordinates relative to the e�ective \source center"

6see Fig.5.4
7saddle point approximation
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�r(K) for a particle pair with momentum K,

~r�(K) = r� � �r�(K); �r�(K) = hr�i; (2.22)

while

(B�1)��(K) = h~r�~r�i = hr�r�i � hr�ihr�i (2.23)

is the inverse of the Gaussian curvature tensor in Eq. 2.21, adjusted such that the

�rst term in Eq. 2.21 reproduces the RMS of the full source S(r;K). The K-dependent

expectation values in these de�nitions are de�ned as space-time averages over the

emission function :

hf(r)i =
R
drf(r)S(r;K)R
drS(r;K)

: (2.24)

Then the two-particle correlation function C2(q;K) can be calculated analytically

from Eq. 2.13 :

C2(q;K) = 1 + �exp[�q�q�h~r�~r�i(K)]: (2.25)

It is fully determined by the K-dependent second space-time moments (B�1)�� of

the source (the \e�ective widths" h~r�~r�i(K) or \length of homogeneity").

The Pratt-Bertsch Parameterization

In general, a Gaussian parameterization of C2(q;K) is speci�ed by selecting a par-

ticular choice of three independent components of the relative momentum q and

implementing the on-shell constraint q � K = 0 to Eq. 2.25. This is usually done

in a Cartesian coordinate system with z along the beam axis and ~K lying in the

x� z-plane (Fig. 2.2). One labels the z-component of the spatial 3-vector by l (for

longitudinal), the x-component by o (for outward) and the y-component by s (for

sideward). From Eq. 2.17 we then get

q0 = �?qo + �lql; (2.26)

where �? = j ~K?j=K0 denotes the velocity of the particle pair transverse to the beam

direction and �l its longitudinal components.
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Fig. 2.2: The Pratt-Bertsch coordinate system

Using Eq. 2.26 in order to eliminate q0 in Eq. 2.25, the standard Cartesian parame-

terization [Cha95a] [Cha95b] of the correlation function is obtained as :

C2(q;K) = 1 + �exp

�
�
X

i;j=s;o;l

R2
ij(K)qiqj

�
;

R2
ij(K) = h(~ri � �i~t)(~rj � �j~t)i; i; j = s; o; l (2.27)

For an azimuthally symmetrical collision region [Cha95a] [Cha95b] [Yua96], C2(q;K)

is symmetrical with respect to qs ! �qs. Then R2
os = R2

sl = 0 and

C2(q;K) = 1 + �exp[�R2
sq

2
s � R2

oq
2
o �R2

l q
2
l � 2R2

olqoql]; (2.28)

with

R2
s(K) = h~y2i (2.29a)

R2
o(K) = h(~x� �?~t)

2i (2.29b)

R2
l (K) = h(~z � �l~t)

2i (2.29c)

R2
ol(K) = h(~x� �?~t)(~z � �l~t)i: (2.29d)

Since all components (qs,qo and ql) in Eq. 2.28 are independent, this parameterization

has the practical advantage which allows to analyze a small particle dataset, even
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though the interpretation of these Pratt-Bertsch(BP) parameters is not simple due

to the spatial-temporal mixed terms.

The Yano- Koonin-Podgoretskii Parameterization

Eliminating the redundant component of q in Eq. 2.25 as

qo =
1

�?
q0 � �l

�?
qk (2.30)

q2? = q2o + q2s ; (2.31)

in the above de�ned coordinate system, we alternatively get the Yano-Koonin-

Podgoretskii parameterization [Yan78] [Pod83] [Yua96] of C2(q;K) :

C2(q;K) = 1 + �exp

�
�R2

?q
2
? � R2

k(q
2
k � q20)� (R2

0 +R2
k)(q � U)2

�
; (2.32)

where U(K) is a (K-dependent) four-velocity having only a longitudinal spatial com-

ponent :

U(K) = YK(K)(1; 0; 0; vYK(K)); with YK =
1p

1� v2YK
(2.33)

and8

R2
? = h~y2i; (2.34a)

R2
k =

�
(~z � �l

�?
~x)2
�
� �2l
�2?
h~y2i � h~z2i; (2.34b)

R2
0 =

�
(~t� 1

�?
~x)2
�
� 1

�2?
h~y2i � h~t2i: (2.34c)

This Yano-Koonin-Podgoretskii(YKP)-parameterization9 allows us to get direct in-

formation about the spatial and temporal con�gurations at the freeze-out time of

particles, whereas the Pratt-Bertsch(BP)-parameterization in Eq. 2.29 contains in

general the higher order terms with spatial and temporal informations. However, in

8The approximations in Eqs. 2.34 are discussed in [Wu98].
9The most frequently used equivalent form of Eq. 2.32 is

C2(q;K) = 1 + �exp

�
�R2

?q
2
? � 2YK(qk � vY Kq0)

2R2
k � 2Y K(q0 � vYKqk)

2R2
0

�
; (2.35)
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practice applying it to small particle datasets may be inadequate since q0 cannot be

larger than q? or qk due to the on-shell constraint

q0 = ~� � ~q
= ~�? � ~q? + �lqk: (2.36)

Additionally this parameterization has the advantage that the YKP parameters

R2
?(K), R

2
0(K), and R

2
k(K) are independent of the longitudinal velocity of the observer

system in which the correlation is measured; they are invariant under longitudinal

boosts [Cha95a].

2.2.2 The Expanding Source System

In nucleus-nucleus collision, there exists a very hot and dense zone of nuclear mat-

ter (the �reball), which is expanding in longitudinal direction. Here, every source

element has its own velocity, which is dependent on its location and time of the

expansion :

vl = z=t: (2.37)

In the Bjorken scenario [Bjo83] the correlation between the position of emission and

the momentum of the particles is maximum, so that it becomes governed only by

the temperature distribution. A consequence of relation Eq. 2.37 is the fact that the

source behaves spatially and temporally in the same way in every comoving Lorentz

system (boost invariance). This situation is comparable with Hubble expansion of

the universe, where the velocity gradient dv=dz = 1=t is equivalent to the Hubble

constant.

An interesting question now is which result a HBT analysis delivers for the length

of homogeneity Rz in the case of a boost-invariant and longitudinally expanding

source.

The velocity gradient at the freeze-out time �f of the particle is given by Eq. 2.37

as

dvl
dz

=
1

�f
(2.38)

The measured homogeneity length should be equivalent to dz if the velocity di�er-

ence can be compensated by the thermal velocity �vtherm. The mean thermal velocity
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in one dimension can be written as :

�vtherm =

r
T

m
; (2.39)

where T is the freeze-out temperature. For high temperature the relativistic mass

can be replaced with the transversal mass as m? �
p
m2

0 + p2therm. From Eq. 2.38

one gets :

dz � Rz = �f

r
T

m?
: (2.40)

This equation is suggested by A. Makhlin and Y. Sinyukov in [Mak88] [Sin89]. The

measured homogeneity length does not represent the geometrical extension of total

source, but it contains an information about the freeze-out time �f of the source

and depends on the transversal mass m? of the particle pair. The dependency of

the homogeneity length on the transversal mass can be, therefore, an indication for

an expansion of the source.

2.2.3 Reference Frames

Concerning the moving source, several reference frames, with their own advantages

and disadvantages, can be considered for data analysis :

� CMS (center-of-mass system) : The center-of-mass frame of the �reball,

which moves relative to the laboratory frame with the midrapidity of the

system (YCM = 2:9) in the beam direction. It is the same for all particle pairs.

� LCMS (longitudinally co-moving system) : A particle-pair dependent

frame, speci�ed by �l = y = 0, which moves relative to laboratory frame

with the pair rapidity in the beam direction. In this frame, only the transverse

velocity component of the particle pair is non-vanishing. It is di�erently de�ned

for each particle pair.

� FLCMS (�xed local center-of-mass system) : A local center-of-mass

frame, speci�ed by the mean rapidity, in which the particles are distributed.

The mean rapidity is calculated within the source rapidity range. It is a unique
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frame for all particle pairs and it combines the advantages of CMS and LCMS

frame; on one hand it is the same for all pairs like the CMS frame, simplifying

the interpretation of measured quantities, and on the other hand the mean

longitudinal pair momentum vanishes in the selected rapidity range, which

can be chosen narrow enough to be approximated as homogeneous10.

In this thesis, as usual in HBT analysis the FLCMS frame is used for the central

rapidity region of pions and kaons.

2.3 Motivation of Kaon versus Pion

Interferometry

Since the development of particle interferometry in mid-1950s, the technique of Bose-

Einstein correlation analysis has been extensively used to study the source size for

particles emitted from various reactions. It used to be most frequently applied to

pions, which are dominantly emitted in the nuclear collisions.

One of the striking signatures of the formation of a quark-gluon plasma in nuclear

collisions is an unusually long decoupling time of pions [Pra86] [Ber88]. This pre-

diction follows simply from the second law of thermodynamics together with the

expected large ratio of entropy densities in the plasma and hadronic states.

Experimentally, the pion interferometry data of NA35 [Hum88] can be explained by

the hydrodynamic calculations [Ber88] for O+Au with the unusually long decou-

pling proper time � � 9 fm/c and R? � 3.3 fm with an assumption of the presence

of quark-gluon plasma (Fig. 2.3(b)). At the same time, however, the freeze-out ge-

ometry of the Lund resonance gas model [And87], with � � 4 fm/c and R? � 4 fm,

was also consistent with the data within experimental uncertainties (Fig. 2.3(a)).

The accidental coincidence of the two di�erent model predictions can be interpreted

by the e�ect of long-lived resonances. Even though the resonances freeze out at a

signi�cantly earlier time in the Lund gas model, they need an additional time to

propagate before they decay into the �nal pions. Since the Bose-Einstein interference

pattern is only sensitive to the �nal pion interaction coordinates [Gyu89], the e�ec-

tive pion freeze-out geometry is signi�cantly larger than the resonance one, assuming

10see page 21
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that a large fraction of the �nal pion multiplicity comes from the decay of long lived

resonances. In fact, the Lund model [And87] predicts that a signi�cant fraction of

the negative pion multiplicity comes from the decay of long lived ! (f! � 0:16) and

K� (fK� � 0:09). This fraction just happens to lead to approximately the same pion

correlation function as the plasma model does.

In contrast, the kaon interferometry is quite di�erently predicted by the both models

due to an entirely di�erent set of hadronic resonance decays to kaons than to pions.

In particular, long lived !, �, and �0 do not contribute to the kaon multiplicity. The

Lund hadronic gas model predicts that roughly one half of the kaons are produced

directly from string decay and the other half from the decay of K�. Therefore, the

freeze-out geometry of kaons is expected to be quite di�erent from that of pions

in the Lund gas model, i.e. the kaon proper freeze-out time should be signi�cantly

shorter than that of the pion if resonance dynamics is taken into account in the

Lund gas model, while in the plasma model of [Ber88] the freeze-out geometry of all

hadrons is expected to be about the same and controlled mainly by the slowness of

the plasma deagration process.

In Fig. 2.3 (c) and (d) the two di�erent theoretical predictions of kaon interferome-

try in the central rapidity region (jY � YCM j < 1
2
) for the reaction of O+Au at 200

AGeV are illustrated, which are calculated with the same parameters (� and R?)

in each model as the used parameters in (a) and (b), respectively. Figures 2.3(a)

and 2.3(c) compare the pion and the kaon interferometry according to the Lund res-

onance gas model, showing considerably di�erent freeze-out con�gurations for the

pion and kaon. Figures 2.3(b) and 2.3(d) shows, however, quite similar con�gura-

tions for both particles in the considered kinematic cuts, assuming the quark-gluon

plasma hydrodynamic model.

Therefore, the kaon interferometry can serve as a valuable complementary probe

of the space-time geometry of nuclear collisions. Being less sensitive to the e�ects

of long lived resonances than pions, a clearer distinction between the formation of

long lived quark-gluon plasma droplets and more conventional resonance dynamics

is possible to achieve, even though the disadvantage of kaon interferometry is, of

course, the need for vastly higher statistics [(�=K)2 � 100].
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Fig. 2.3: (a),(b) Pion and (c),(d) kaon projected correlation func-

tions vs transverse momentum di�erence qT in the cen-

tral rapidity region with qL � 0:1GeV . Solid(dashed)

lines indicate correlations with(without) Coulomb dis-

tortions. (a),(c) and (b),(d) correspond to predictions

based on the Lund model [And87] and the plasma hy-

drodynamical model [Ber88], respectively. The pion data

are from [Hum88].(From [Gyu90])
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The NA49 Experiment

The NA49 experiment is located in the North Area of the CERN (European Labora-

tory for Particle Physics) in Geneva. It uses a SPS (SuperProtonSynchrotron) beam

line which is capable of delivering both protons and ions to the experimental area at

various energies (up to 158 AGeV for Pb ions and 450 GeV for protons). NA49 was

designed according to the suggestion of calculations that central Pb+Pb collisions

would create conditions at or near the threshold of QGP formation [Afa99].

Since the �rst data taking in 1994 about 100 physicists from 10 countries are

presently participating in the NA49 collaboration (see Table 3.1).

3.1 Layout of the NA49 Experiment

As illustrated in Fig. 3.1, the NA49 experimental apparatus mainly consists of two

superconducting Vertex magnets, two Vertex TPCs (Time Projection Chambers) in

the magnets, two \main" TPCs behind the magnets and four TOF (Time-Of-Flight)

walls on both sides of the beam.

Particle identi�cation (PID) requires the complete determination of a particle's four-

momentum. The TPCs (VTPC1/2 and MTPC-R/L) enable one to determine the

spatial components of the momentum by measuring the curvature of a charged par-

ticle's trajectory in a given magnetic �eld. To complete the PID, a further measure-

ment of the mass, energy, or velocity, is required. Since tracking chambers work by

31
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collecting the ionization of a charged particle, this can be performed by measuring

the speci�c energy loss dE=dx of a particle. However, in �xed target experiments,

most of the produced particles are highly relativistic (i.e. � � 1). In such a case,

the speci�c energy loss is a weak function of velocity (Fig. 3.2) and thus the contam-

ination by undesired particle species is rather high, because the energy loss curves

are not clearly separable. For example, the kaon identi�cation with low contamina-

tion, which are particularly much less abundant than pions and hardly separable

from protons by the dE=dx-method, requires a time-of-ight (TOF) detector sys-

tem, which delivers information about particle masses m by measuring the particle

velocity (Eq. 4.1). Combining dE=dx from TPCs and m2 from TOF yields excellent

PID for kaons with negligible contamination (Fig. 4.2 and 4.3).

The main components of the NA49 experiment are briey summarized below :
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� The superconducting dipole magnets o�er a total bending power of up to 9

Tm over 7 m length (about 1.5 T). The magnets determine to a large extent

the phase space available for tracking.

� The VTPC1 is located inside the Vertex magnets focusing on the midrapidity

MTPC- L

MTPC- R

TOF-R1

TOF-R2

VTPC2

RCAL COLL VCAL

VTPC1

BEAM

      MAGNETS
 SUPER CONDUCTING

TOF-L1

TOF-L2

 0  5  10 m

T

BEAM
TARGET

Vertex TPCs

Main TPCs

Forward Calorimeter

TOF walls

Superconducting

Vertex Magnets

PesTOF

Fig. 3.1: A schematic overview of NA49 experimental apparatus showing the target T,

the VTPCs within the superconducting vertex magnets, the MTPCs and the

TOF walls. The ground surface is about 6x13 m2 without the calorimeters.
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pions (ymid ' 2:9) in the Pb+Pb collisions at 158 AGeV. Besides VTPC1, in

order to facilitate the reconstruction of neutral strange hadrons (i.e. �, K0,

etc.), which have a c� of the order of centimeters to a few meters, VTPC2 is

settled also inside the second Vertex magnet. Each VTPC covers the volume

of 2000x2500x980 mm3. For a large acceptance of produced particles two larger

\Main" TPCs (MTPC-L/R) are installed on both sides of the beam behind

the magnets, covering the volume of 3900x3900x1800 mm3 for each MTPC.

� Two walls of \main" time-of-ight (TOF-R1/L1) pixel scintillator detectors

stand behind the MTPCs. In particular their locations are adjusted to the

midrapidity of kaons in the Pb+Pb collision at 158 AGeV. In order to ex-

tend TOF determination into low momentum range and into the backward

hemisphere, a grid scintillator system (TOF-R2/L2) and arrays of PesTOF

counters are appended as shown in Fig. 3.1.

� A ring calorimeter (RCAL) enables to measure transverse energy and a ve-

tocalorimeter (VCAL) serves as a central trigger by measuring the forward

energy in heavy-ion running.

In this thesis pions and kaons at midrapidity in central Pb+Pb collisions at 158

AGeV are investigated. For kaon identi�cation the TOF information will be used to

obtain a clean kaon sample (in Section 4.1.1). On the other hand, midrapidity pions

have to be taken from VTPC1 using the dE=dx identi�cation method (in Section

4.2.2).

3.1.1 The TPC Tracking System

The track reconstruction is performed with the measured spatial points on a track

in the TPCs. TPCs have an sensitive volume containing a gas-mixture of Ar, CH4

and CO2. A charged particle transversing this sensitive volume produces electrons

and ions through ionization processes in the medium. These electrons drift towards

a readout plane under the inuence of a homogeneous electric �eld set by the �eld

cage. On the readout plane, a system of anode and �eld wires strung above a seg-

mented cathode plane multiply the delivered electric signal in the avalanche process.

The localization of this signal on the readout pad-plane (26886 channels on the plane
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of 3.1 m2 for each VTPC) provides two of three spatial coordinates of a charge of

cluster (a point on a track). The third coordinate can be deduced from the drift

time of the electrons by the given drift velocity.

Using the track �nding algorithm, the particle tracks are reconstructed by the coor-

dinates of these charged clusters. For matched global tracks a minimum of 8 clusters

is required, a possible maximum being 234 clusters (see Fig. 4.12). It is determined

by the production kinematics of tracks at the vertex, combined with the momentum

dependence of magnet deection. The detailed descriptions of VTPCs and the track

reconstruction are given in [Las97]. The typical reconstructed tracks in TPCs are

illustrated in Fig. 3.3.

Besides the track reconstructions, another important task of TPCs is the measure-

ment of the speci�c energy loss dE=dx. The measured electrical signal is proportional

to the speci�c energy loss of the transversing particle. The speci�c energy loss of a

particle is obtained by integrating these signals over the full track of the particle in

the sensitive volume and averaging with \truncated mean"-method [Moc97].

Since the speci�c energy loss of a particle in the gas depend only on the velocity of

the particle, this enables to distinguish the particle species with di�erent mass and

the same momentum. The particle can be, then, identi�ed by the measurement of
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Fig. 3.2: Speci�c energy loss function of momentum for di�erent

particle species [Fri99]
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Fig. 3.3: Topview of a central Pb+Pb event as detected by the four TPCs. Only a 7mm

high slice around the beam plane is depicted in order to allow for a resolution

of tracks in the projection.
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its dE=dx and momentum, as illustrated in Fig. 3.2.

3.1.2 Time-of-Flight System

Since particle identi�cation by energy loss measurement alone fails at minimum ion-

ization, and since - even with the good dE=dx resolution achieved - kaon selection

on a track-by-track basis is not feasible, independent particle identi�ers based on

time-of-ight methods were required in the NA49 detector concept.

For the ideal complement, two TOF walls (TOF-L1 and TOF-R1 in Fig 3.1) are

installed at the speci�c position focusing on the midrapidity region of kaon in the

Pb+Pb collision at 158 AGeV. They were constructed by the Dubna group and

Marburg group in the NA49, respectively, and possess 891 individual scintillation

detectors on a total surface of 2.2 m2, which were designed as rectangular scintil-

lators glued directly to one photomultiplier per detector. The scintillators have a

thickness of 23 mm matched to the photocathode diameter, a height of 34 mm and

horizontal widths between 60 and 80 mm. The photomultiplier outputs are split and

fed into constant-fraction discriminators followed by time-to-digital converters, and

to charge-to-digital converters. This electronics system is housed in FAST-BUS and

VME crates.
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Fig. 3.4: Track hits on the TOF-walls in magnet STD+ (RUNS in 1996) and their

positions with respect to the beam position at (0,0).
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of-ight and time-of-ight calculated for pion (TOF-R)

[Eck96]

In Fig 3.4 the responses of scintillators of TOF-R1/L1 walls are illustrated in their

position plane, which is coordinated regarding the neutral beam position as the ori-

gin(0,0), upward direction as the y-axis, and leftward direction with respect to the

beam direction (z-axis) as the x-axis. The overall time resolution of the TOF-R1

(Marburg) system is demonstrated in Fig. 3.5, which shows, for about 2 million

tracks in 40000 central Pb+Pb events the distribution of di�erences between the

measured time-of-ight and that predicted time-of-ight from the measured mo-

mentum assuming the pion mass. The distribution can be described by a Gaussian

with a standard deviation of 60 ps. Double hits due to the �nite granularity, edge

e�ects and background from 's are the main sources of eÆciency reduction. The

sum of all losses, as experimentally determined by comparison with the TPC track

data, amounts to 29% on average, with a maximum of 34% in the central region

closest to the Pb-beam.

For particles in the acceptance of the TOF detectors the dE=dx information from the

TPCs is available simultaneously with the time-of-ight. The combination of both

methods improves the particle identi�cation considerably. This is demonstrated in

Fig. 4.2, where particles in the momentum range 4-6 GeV/c are sorted correspond-

ing to their dE=dx signal and the squared mass obtained from the time-of-ight

and momentum measurement. Particularly the TOF measurement is needed for the

distinction between kaons, protons and deuterons, whereas at momenta above ap-

proximately 4 GeV/c the separation of the lighter particles (e, �) from the group of
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heavier ones (K,p,d) is performed essentially by dE=dx methods (see also Fig. 3.2).

3.2 Survey of Datasets

The main program of the NA49 Experiment is the investigation of the lead-on-lead

nuclear collisions at the highest energy, 158 AGeV in SPS. In this thesis the most

central collisions, which represent 5% of the total inelastic reaction cross-section

(impact parameter of maximum 3.5 fm [Alb95]), were taken to gather the highest

statistics of kaons.

In the beam time 1995b (November and December in 1995) about 385,000 such

events were taken in the magnetic �eld con�gurations STD+ as well as STD�. The
reconstruction of these events was performed in July of 1996 with a software version

named 96C/E.

In order to increase the kaon statistics the TOF data of 1996 (version : 00B) were

additionally taken for kaon HBT analysis, which are about 419,000 events in the

con�guration STD+. In the 1996 data, the same centrality selection as in 1995 was

obtained by an o�ine cut in the energy measured by the vetocalorimeter. The list

of runs is displayed together with the number of events in Tab. 3.3.

For pions the VTPC1-data of 1995 (version : 96F) were used to gather pions with

midrapidity. As listed in Tab. 3.2, the �ve runs were enough to obtain pions because

of their enormous abundance.

Run-No. Events

95-808 5,324

95-809 10,500

95-810 10,258

95-814 6,655

95-820 10,796

Total 43,533

Table 3.2: The used run list with number of events for

VTPC1
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95 STD+ TOF 95 STD- TOF 96 STD+ TOF

Run-No. Events Run-No. Events Run-No. Events Run-No. Events

95-808 11,165 95-868 10,879 96-1389 11,740 96-1424 3,955

95-809 10,820 95-869 10,935 96-1391 11,671 96-1425 5,121

95-810 10,901 95-870 4,959 96-1392 5,914 96-1426 1,602

95-814 6,765 95-876 5,365 96-1393 6,617 96-1427 11,347

95-815 1,418 95-877 10,700 96-1394 12,463 96-1432 6,344

95-817 2,874 95-878 10,779 96-1395 9,682 96-1433 12,497

95-820 11,013 95-879 1,694 96-1396 1,908 96-1434 2,737

95-821 7,594 95-881 4,887 96-1397 2,200 96-1435 9,921

95-822 1,652 95-896 2,504 96-1398 11,040 96-1436 12,752

95-823 1,734 95-897 8,811 96-1399 4,353 96-1437 13,090

95-824 926 95-898 11,034 96-1400 8,894 96-1439 7,289

95-827 9,558 95-899 11,086 96-1408 4,386 96-1441 3,130

95-828 2,041 95-900 2,787 96-1409 2,332 96-1442 13,346

95-829 8,615 95-901 3,114 96-1410 2,811 96-1443 13,057

95-830 2,211 95-902 5,025 96-1412 11,895 96-1444 12,888

95-831 8,935 95-903 10,945 96-1413 12,272 96-1445 12,960

95-832 3,458 95-904 10,931 96-1416 11,532 96-1446 8,383

95-833 7,331 95-905 11,193 96-1417 12,796 96-1448 4,443

95-834 2,225 95-906 11,210 96-1418 12,636 96-1449 11,163

95-835 8,268 95-908 387 96-1419 12,593 96-1451 12,988

95-836 11,134 95-914 10,793 96-1420 12,504 96-1452 7,636

95-837 10,696 95-915 10,552 96-1421 12,243 96-1456 3,849

95-838 578 95-992 10,628 96-1422 12,174 96-1457 12,780

95-839 10,200 95-993 2,580 96-1423 3,763 96-1458 5,605

95-844 9,153 95-994 8,144

95-845 10,911 95-995 9,766

95-846 10,699

Total 182,875 Total 201,688 Total 419,302

Table 3.3: list of the runs used for kaon HBT analysis
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Data Selection

Before starting the HBT analysis, kaons and pions must be selected from the datasets

shown in Tab. 3.2 and 3.3. The data selection includes the following processes :

1. Particle identi�cation

The kaons are identi�ed by the combined informations of the mass

from TOF and the dE=dx from MTPC (section 4.1.1), while the

pions are identi�ed only by the dE=dx from VTPC1 (section 4.2.2).

2. Phase space (rapidity and pT ) selection

Acceptance cuts : As kaon PID is based on the TOF information and

TOF is restricted to midrapidity kaons, the same rapidity region (3

� Y � 3.5) was used for the pion analysis. This means employing

the VTPC1 data (section 4.2.1).

3. Track selection

� TOF hits : for the signal quality the signal charge (QDC signal) and the

hit position in the scintillator are restricted, and the simultaneous double

hits on the same scintillator are ignored (section 4.1.3).

� VTPC1 tracks : to remove ghost tracks1 the track resolution in VTPC1

is studied and the combination of track points-cut and the distance-cut

1see page 55

41
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is applied (section 4.2.3).

4. Pair cuts in the mixed-event background to account for detector constraints -

TOF single hits (section 4.1.4) and VTPC1 minimal distance (section 4.2.3).

5. Event cuts : since the HBT analysis always requires at least two candidates

for the Bose-Einstein signals, the events with 2 particles minimum should be

selected in the mixed-event background. This event constraint e�ect is studied

(section 4.1.5 and 4.2.4).
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+ +− K K /K K K K + + +− − −
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95 TOF data 96 TOF data 95 VTPC1 data

Fig. 4.1: The ow chart for HBT analyses and comparison between kaons

and pion. The dashed lines indicate considerations and check points,

while the dotted lines denote inuence and comparison.
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In order to avoid confusion and to carry out the assignment of this thesis e�ectively,

the ow chart of all processes to be executed is illustrated in Fig. 4.1.

In the left column of Fig. 4.1, the processes for kaon HBT analysis are listed and in

the right column those for pion HBT analysis. As a milestone the matching chapters

are additionally listed.

Subsequently in Chapter 5 the HBT analyses for pions and kaons will be started. As

it is explained in Section 5.1, the raw correlation between like-sign particles should

be corrected by the Coulomb e�ect, which is extracted from the unlike-sign particle

correlation.

Particularly due to the poor statistics of kaons, the weighted means of the results

of the 95 data and those of the 96 data are taken for analysis. In this thesis the

1-dimensional2 and 3-dimensional3 HBT analyses are done only with the Yano-

Koonin-Podgoretskii parameterization4 for pions and kaons, respectively.

Finally, the interpretation and comparison of HBT radii of kaons to those of pions

will be done in Section 5.2.3 for the 1-dimensional analysis and in Chapter 6 for

3-dimensional analysis, respectively.

4.1 Kaon Selection from TOF Data

As explained in the previous chapter, the dE=dx information is not suÆcient for

the identi�cation of kaons, because the speci�c energy losses of kaons and protons

are too close to provide a clear separation. The proton contamination in the kaon

sample would destroy the Bose-Einstein correlation between kaon pairs due to its

Fermi-Dirac anti-correlation. The TOF information is therefore requested for a good

identi�cation of kaons in spite of the shortcoming of its limited acceptance range.

4.1.1 Particle Identi�cation

For the identi�cation of kaons the dE=dx from MTPC and the m2 from TOF can

be utilized (see Fig. 4.2). The information of the time-of-ight t of a particle from

2see page 21
3see page 25
4see page 25
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the start detector (S1 near the target in Fig. 3.1) to the stop detector (TOF-R/L)

and the track length s determined by the tracking system allow us to calculate the

velocity � = s=t. Furthermore, with the momentum information from TPCs the

squared mass can be calculated by the relation :

m2 =
p2

�22
=
p2(1� �2)

�2
(4.1)

with the error [Eck96] of

�m2 =

s
�2p2(

1� �2

�2
)2 + �2�(

2p2

�3
)2; (4.2)

which yields that the error is independent of the particle mass, i.e. it should be same

for all species of particles, and mainly depends on the particle momentum.

The distribution of particles in the dE=dx-m2 plane depends not only on the mass

and the speci�c energy loss, but also on the particle momentum, since the speci�c

energy loss and the m2 resolution are functions of the momentum (compare Fig. 4.2

to Fig. 4.3). The parameterization of this distribution as a function of the mass,

the speci�c energy loss and the momentum for each particle type, i.e. �, K and p,

must be carried out to de�ne a particle selection cut and calculate its eÆciency and

contamination.
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momentum entry K+(%) �+(%) p(%) entry K�(%) ��(%) �p(%)

3 � p < 4 12,816 97.64 2.36 0. 5,365 98.33 1.67 0.

4 � p < 5 47,972 95.59 4.41 0. 21,777 94.32 5.68 0.

5 � p < 6 95,754 93.48 6.52 0. 45,609 92.50 7.50 0.

6 � p < 7 110,572 90.72 8.95 0.33 51,293 90.33 9.64 0.03

7 � p < 8 91,054 86.92 11.38 1.70 43,047 86.83 12.56 0.61

8 � p < 9 67,737 82.44 12.68 4.88 31,006 85.32 13.02 1.66

9 � p � 10 45,181 78.44 13.86 7.70 20,016 84.14 13.01 2.84

total 471,086 218,113

weighted mean 88.86 9.29 1.85 89.41 9.97 0.62

Table 4.1: Contributions to the kaon cut for the 95 TOF kaon sample

Because the mass and speci�c energy loss of the particle are independent measure-

ments, the distribution function can be factorized as [Fri99] :

f i(m;E; j~pj) = gi(m; j~pj) � hi(E; j~pj) (4.3)

where m denotes the mass of particle, E the speci�c energy loss, ~p the momentum

of the particle and i = �;K; p. 5

The parameterization of the dataset 95 TOF is performed in [Fri99] and [Hen97],

and used to calculate the contamination of the kaon sample, which is de�ned by a

graphical cut in the dE=dx-m2 plane of the momentum range of 3 - 10 GeV with a

step size of 1 GeV. The selected kaons are shown in Fig. 4.4 and the contributions

of the particle species to the cut are given in Tab. 4.1.

For the dataset 96 TOF the parameterization of gi(m; j~pj) and hi(E; j~pj) in Eq.

4.3 is performed in the same way. It di�ers from the 1995 parameterization mainly

because of the improvements in the dE=dx resolution achieved in between. Finally,

the parameterized function f i(m;E; j~pj) and the experimental data are compared

and illustrated as an example for the momentum range of 5-6 GeV in Fig. 4.5. For

the parameterization of gi(m; j~pj) a Gaussian plus an exponential tail was employed

; for hi(E; j~pj) only a Gaussian distribution is used.

For each momentum bin (3-10 GeV with a step size of 1 GeV) the kaon selection is

performed choosing an area within 2.5 standard deviation from the kaon peak. An

5The electrons are excluded from the parameterization, since they are, for the most part, gen-

erated by secondary interactions in the detector and do not inuence the kaon identi�cation.
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Fig. 4.5: The comparison of the experimental distribution of particle in the

dE=dx-m2 plane and the parameterized distribution function. (a) The

experimental distribution from dataset 96 TOF STD+ in the momen-

tum range of 5-6 GeV. (b) The parameterized distribution function

with same variables. (c) The subtracted distribution : (c)=(a)-(b).

additional requirement is that the di�erential kaon contribution at each point of the

selected region be at least 50 %. Fig. 4.6 shows the area de�ned in such a way, while

Tab. 4.2 gives the contribution of the particle species.

As one can see from Tabs. 4.1 and 4.2, for low momenta the separation of kaons

from pions and protons is almost perfectly done, while for higher momenta (as in

Fig. 4.3) the separation power decreases. By means of the graphical cut of kaons

in 95 TOF data, the weighted mean of particle eÆciency is 88.86 (�5:38) %

for K+ and 89.41 (�3:71) % for K�, respectively. Owing to the improvement of

track-reconstruction software which also improves the dE=dx resolution in 96 TOF

data, the 2.5 standard deviation cut for kaons has the mean particle eÆciencies of

93.32 (�6:06) % for K+ and 95.21 (�7:17) % for K�.

The comparison of the mean kaon purity of the selection (Tabs. 4.1 and 4.2) reects
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momentum entry K+(%) �+(%) p(%) entry K�(%) ��(%) �p(%)

3 � p < 4 6,678 99.79 0.21 0. 4,382 99.83 0.17 0.

4 � p < 5 25,505 98.92 1.08 0. 19,024 98.99 1.01 0.

5 � p < 6 50,901 97.00 3.00 0. 39,016 97.22 2.78 0.

6 � p < 7 64,186 95.60 4.36 0.04 48,488 95.79 4.20 0.01

7 � p < 8 62,296 93.55 5.12 1.33 44,175 94,43 5.00 0.57

8 � p < 9 54,234 89.14 5.53 5.33 32,866 92.41 4.70 2.89

9 � p � 10 44,046 86.35 5.56 8.09 20,804 92.73 3.82 4.45

total 307,846 208,755

weighted mean 93.32 4.30 2.38 95.21 3.77 1.02

Table 4.2: Contributions to the 1996 TOF kaon selection

the improvements in the dE=dx resolution from 1995 to 1996.
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Fig. 4.7: TOF acceptance region in rapidity Y and transversal momentum

pT for kaons : (a) and (b) for 95 TOF kaons ; (c) and (d) for 96 TOF

kaons. Lines of constant momenta are shown by the dotted curves

according to the relation pT =

p
p2�m2sinh2(Y )

cosh(Y )
, and the dashed line

indicates the center-of-momentum rapidity YCM . In all cases the

wrong side tracks (the left 'branch') are included (see text).
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4.1.2 Acceptance Region for Selected Kaons

In 158 AGeV collisions, the rapidity of the produced particles is distributed6 between

0 and 6. As discussed in chapter 3, the TOF walls cover a small range around kaon

midrapidity (Fig. 4.7). The two branches in the acceptance region belong to the

so-called \right side" and \wrong side" tracks, being emitted in the same/opposite

hemisphere as the detecting TOF wall, respectively.

For a direct comparison of the HBT results of pions and kaons, the same rapidity

region (3 � Y � 3.5) must be chosen for the pion sample. This means to make use

of the VTPC1 data (section 4.2.1).

4.1.3 Track Selection

For the signal quality the normalized signal charge, which is measured by QDC

(Charge-Digital-Converter) for the track is restricted (0.8 � q � 1.6), and the tracks

with hit position on each scintillator overlapped edge (x � 1 cm) are ignored.

Additionally, since each scintillator cannot resolve the simultaneous double hits from

an event, only the tracks with a single hit per an event onto the same scintillator

are selected.

4.1.4 Pair Selection

As two tracks within the same scintillator in a single event are not used in the

construction of the original Qinv distribution, the same condition has to be applied

when calculating the mixed-events background.

The single hit constraint has a direct e�ect on the Qinv distribution because two

tracks with small momentum di�erence tend to hit the same TOF scintillator. This

e�ect can be studied when constructing Qinv distributions from the event-mix with

and without the single hit constraint. Fig. 4.8(a) shows the condition that the two

tracks must not be detected in the same scintillator reduces the eÆciency below

Qinv � 40 MeV. Above Qinv � 20 MeV the losses are smaller than 5%, so only this

Qinv region is considered to derive the invariant radius.

6Beam rapidity is 5.8, midrapidity is 2.9
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Fig. 4.8: (a) Single hit eÆciency of TOF-R wall. The dashed line indicates

the limit of the single particle constraint with 95% eÆciency. (b)

The ratio of the no constraint event mixing and the two particle

constraint event mixing for positive kaons. The dashed line is the

same as in (a).

4.1.5 Event Selection

By de�nition of two-particle correlation, only events with at least two kaons con-

tribute to the original Qinv distribution. Therefore, only such events can be used for

the calculation of the mixed-events background.

This event selection can inuence the HBT enhancement at a small value of Qinv,

because it is found that di�erent-event mixing never fully removes the correlations

induced by Bose statistics [Zaj84]. This is most easily appreciated by considering a

hypothetical experiment that measures only a very small region of the total p1 � p2

phase space. As the size of this region decreases to zero, every real particle pair will

be within the \range" of the correlation, so that p1 � p2 for all events, and thus any

mixing process on this data set will also create events with p1 � p2.

The ratio B2(Qinv) of the no-constraint event mix and two-particle constraint event

mix is calculated for positive kaons as shown in Fig. 4.8(b). One observes a non-

physical uctuation at small Qinv. This region, however, will not be used for HBT

radius extraction as explained in the previous section.
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4.2 Pion Selection from VTPC1 Data

4.2.1 Acceptance Range of VTPC1

As shown in Fig. 4.9, the acceptance region of VTPC1 covers a large rapidity range,

surely including the region of interest (3 � Y � 3.5), which is indicated by the

solid lines in Fig. 4.9. Only pions within this rapidity window are used for the HBT

analysis.

4.2.2 Particle Identi�cation by dE=dx

In analogy to Fig. 3.2, particle identi�cation in VTPC1 is only possible using the

dE=dx-information in each momentum bin. The corresponding diagram to the the-
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Fig. 4.9: Acceptance region of VTPC1 in rapidity Y and transversal mo-

mentum pT . For demonstration purposes, only one RUN(95-808) is

taken. The dashed line indicates the midrapidity YCM . In compar-

ison with Fig. 4.7 only the rapidity range 3 � Y � 3.5, indicated

by the solid lines, is chosen for the analysis.
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Fig. 4.10: Speci�c energy loss of particles detected by VTPC1 as a function

of (logarithmic) momentum.

oretical calculation in Fig 3.2 is shown for VTPC1 data in Fig. 4.10. The separation

capability is strongly limited compared to the use of combined TOF and dE=dx

measurement ; however, since the pion contribution is dominant, a rough selection

can be done by a cut around the mean speci�c energy loss for pions and as a function

of momentum.

As illustrated for instance in Fig. 4.11 (a) and (b), the speci�c energy loss distribu-

tion is composed of the Gaussian contributions of the di�erent particle species. For

positive particles, this distribution is decomposed to p+K+, �+ and e+. In the case

of negative particles, however, only the separation of electrons is possible, so that

the < dE=dx > values for negatively charged pions are systematically lower than

positive ones (Fig. 4.11 (c) and (d)). Nevertheless, for the pion selection the region

above < dE=dx > is almost not contaminated by antiprotons and negative kaons.

In order to �nd out the proper �t to the distribution of the mean speci�c energy loss

depending on the momentum, the well-known speci�c energy loss theory of Bethe

[Bet32] and Bloch [Blo33] is used, which implies that the mean dE=dx of all kinds

of particles is a universal function of velocity. With the relation of � = p=m, and

accordingly �2 = p2=m2

1+p2=m2 , the empirical Bethe-Bloch function [Fri99] can be applied
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Fig. 4.11: (a) and (b) : The dE=dx distribution at a given momentum

(here e.g. 5-6 GeV) and its decomposition into each particle

contribution. The lines indicate the selection cut for pions.

(c) and (d) : The mean dE=dx for pions as a function of

momentum. The solid lines represent the �t result (see text).

(e) and (f) : The pion cut (dark region) and the original dE=dx

distribution, which is equivalent to Fig. 4.10.
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to �t the momentum-dependent mean dE=dx (Fig. 4.11 (c) and (d)) as follows :

<
dE

dx
> (�) =

E0

�2
(K + ln2 � �2 � Æ(�;XA; a)) (4.4)

where  = (1� �2)�
1

2 and E0, K are free parameters with XA and a in the Fermi-

density correction term Æ, which is in accordance with [Ste71] and can be expressed

as :

Æ(�;XA; a) =

8>><
>>:

0 (X < X0)

4;605(X �XA) + a(X1 �X)3 (X0 < X < X1)

4;605(X �XA) (X > X1)

(4.5)

where X = log(�). Using this parameterization, the pion cut is de�ned as <

dE=dx > plus one standard deviation (solid lines in Fig. 4.11 (a) and (b)). Finally

the particle identi�cation of charged pions can be illustrated as the dark regions in

Fig. 4.11 (e) and (f), which correspond to Fig. 4.10.

Unfortunately, the complete parameterization of dE=dx including all particle species

could not be done, because the dE=dx resolution is not suÆcient to decompose all

particle sorts. In particular, the electron contamination7 (approximately 10% for the

complete momentum range) in the selected region has a certain inuence upon the

pion HBT analysis. This will be discussed in Section 6.

4.2.3 Track Selection

Since VTPC1 is located very close to the target, the track density is extremely high

compared to the other tracking units. So, individual track points may be used sev-

eral times by the track �nding algorithm, leading to non-real tracks (so-called ghost

tracks). They will on average have less points assigned to them as real tracks, but

a straightforward cut in the number of track points cannot be easily found. Fig.

4.12 shows the distribution of the number of points assigned to a track for di�erent

combinations of tracking units, each including VTPC1. If the track point cut was

chosen too large, one would loose many VTPC1-only (low-momentum) tracks, which

would inuence the HBT results. For determining an optimal cut in the number of

track points, we study the two-track resolution of VTPC1.

7see Fig. 4.11 (a) and (b)
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Fig. 4.14: The eÆciency of Qinv caused by cutting o� of the very close

tracks, whose distances are below 2 cm. The dashed line indi-

cates the Qinv-limit with 90% eÆciency.

Let us consider two tracks (� and �) with spatial coordinates of the �rst (A)

and the last (B) points in VTPC1 (xij; yij; zij)
8, where i indicates point A or B,

and j track � or �. Three reference planes are de�ned by zinit := max(zA�; zA�),

zfinal := min(zB�; zB�) and zmid := (zinit + zfinal)=2. Assuming a straight track, the

intersection with the middle plane can be calculated. As VTPC1 is located inside

the magnetic �eld, the tracks are in reality curved, so this is an approximation only.

The separation of two tracks is then de�ned as the mean of the intersection distances

at the three reference planes.

Due to the �nite two-track resolution of VTPC1, two spatially very close tracks in

the same events will not be resolved, while this constraint does not hold for two

tracks in di�erent events, that is for event mixing. Thus, we de�ne the separation

eÆciency as the ratio of the counts from the original events and from the mixed-

events as shown in Fig. 4.13 for various track point cuts. Theoretically, the eÆciency

cannot be larger than unity and should decrease below the resolution of VTPC1.

Contradictorily, the eÆciency at small distances increases above unity (Fig. 4.13).

8The NA49 standard coordinate system is de�ned with respect to the center of the Vertex

magnet 2 position (0,0,0) and beam direction (z-direction).
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This increase is understood to be caused by ghost tracks.

With the track point cut of 13 points the decreasing pattern is remarkably observ-

able below the distance of 2 cm, while the resolution limit of 2 cm begins to be

destructed with more than 17 point cuts. Consequently, the data with the separa-

tion eÆciency of more than 95% are available for HBT analysis of pions, with the

track point cut of 13 points and the separation distance cut of 2 cm.

The e�ect of the 2 cm distance cut on the Qinv distribution is shown in Fig. 4.14.

In analogy to sections 4.1.4 and 4.1.5 this e�ect can be investigated by constructing

the ratio of the event mix with 2 cm cut and without the cut. Below Qinv=25 MeV

the eÆciency drops below 90%, thus only the Qinv-region above 25 MeV will be used

for the extraction of HBT radius parameters.

4.2.4 Event Selection

As the multiplicity of selected pions is about 26, the event constraint described for

the event mix of the TOF kaons is not important for the pion sample.



Chapter 5

HBT Analysis

5.1 Construction of the Correlation Functions

In chapter 2, a theoretical expression for a two-particle correlation function was

de�ned in terms of probability distributions of two-particle spectra. Experimentally,

one does not measure probabilities directly, but rather yields or cross-sections. Since

these quantities are proportional to the probabilities, one is able to substitute them

into equation 2.12 obtaining :

Cexp
2 (q;K) = N Y (p1; p2)

Y (p1)Y (p2)
(5.1)

where Y (p1; p2) denotes the yield of a pair of the particle species from the same

event with the momenta p1 and p2, or with the relative momentum q and average

momentum K. The uncorrelated background for the denominator in Eq. 5.1 is gener-

ated by the event-mixing method [Kop74] that uses the yields of two particles from

di�erent events, and the normalization N denotes a factor so that the correlation

function is de�ned to be unity at large relative momentum di�erence. Because the

correlation is de�ned in terms of the ratio of the number of particle pairs, it is also

referred to as intensity interferometry.

59
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5.1.1 Gamov Coulomb Correction

Since the correlation functions that will be presented involve charged particles, they

have to be corrected for the correlation introduced by the Coulomb repulsion, in

order to get insight into the Bose-Einstein e�ect.

Until recently, most correlation functions were corrected by weighing each pair with

a factor derived from the inverse Gamov factor, which is the square of the relative

Coulomb wave-function of a particle pair at zero separation in the con�guration

space. It has the form [Mes91] :

G(�) =
2��

e2�� � 1
(5.2)

with the Sommerfeld parameter :

� =
2zz0��

Qinv
(5.3)

where zz0 is the product of electric charges, which is 1 for like-sign particles and -1

for unlike-sign ones, � is the �ne-structure constant (1=137), � is the reduced mass

of the two-particle system, which is � = mi=2 for two identical particles of species

i, and Qinv is the invariant 4-momentum di�erence of pairs. While the assumptions

of a non-relativistic and point-like source made in the formulation of this factor are

possibly appropriate for the sources investigated in e+e� or pp collisions, they are

certainly not valid for the sources created in the current relativistic heavy-ion exper-

iments at CERN. In fact, it has been shown that the use of the Gamov correction

results in an underestimation of the source size [App97].

Therfore, there have been suggested so many Coulomb correction methods in [Alb97],

[Bay96], [Bow91], [Pra86a] and [Sin98] etc. in order to solve the fundamental dilemma

of Coulomb correction, that a Model, which is aimed by HBT analysis, should be

introduced to calculate the Coulomb e�ect, which would have inuence upon the

HBT analysis.

Experimentally, the Coulomb correction can be obtained by measuring the correla-

tion between unlike-sign particle pairs, which have only Coulomb correlations, but

no Bose-Einstein e�ect. However, they might be inuenced by di�erent hadronic

interactions (e.g. K+K� $ �). Since the inverse Coulomb correlation gained from

unlike-sign pairs cannot be directly applied to correct the Coulomb attraction be-

tween like-sign pairs i.e. G++(�) = G��(�) 6= 1=G+�(��), only some parameters,
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which are used in the numerical function (section 5.1.2) and in the modi�ed Gamov

correction (section 5.1.3), can be extracted from the unlike-sign pair distribution.

5.1.2 Numerical Coulomb Correction

The standard Gamov factor is nothing but the squared amplitude of the Coulomb

wave function  C(0), which is the solution of the Schr�odinger equation of relative

motion when both particles are in vanishing distance.

G(�) = j C(0)j2 (5.4)

In general, the solution with non-vanishing relative distance r is obtained by intro-

ducing the conuent hypergeometric function1 given as :

 C(~r) = AeiQzF (�i� j 1 j iQ � (r � z)); (5.7)

where A = �(1 + i�)e�
��
2 : normalization factor,

� =
2zz0��

Q
: Sommerfeld parameter,

Q : relative momentum,

which can be numerically calculated [Nar92]. With simple hypothesis of isotropic

Gaussian source distribution S(r) = exp(�r2=2r20) with a standard deviation of r0

and the function given in Eq. 5.7, the theoretical the Coulomb correction term can

be numerically calculated as [Bay96] :

Cexp
2

C0
2

=

Z
d3rj C(~r)j2S(r); (5.8)

where C0
2 denotes the correlation function in absence of Coulomb �eld.

In Fig. 5.3 for unlike-sign kaon pairs and Fig. 5.6 for unlike-sign pion pairs, this

calculation and the experimental data are compared with the Gamov correction,

and the appropriate parameter r0 is to be extracted.

1A di�erential equation of the form

xy00 + (b� x)y0 � ay = 0 (5.5)

has a regular solution named conuent hypergeometric function de�ned as [Mes91] :

F (a j b j x) �

1X
n=0

(a)nx
n

(b)nn!
= 1 +

ax

b1!
+

a(a+ 1)x2

b(b+ 1)2!
+ � � � ; b 6= 0;�1;�2; : : : (5.6)
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5.1.3 Modi�ed Gamov Correction

On the other hand, in order to account for the discrepancy of the Gamov correction

the modi�ed Gamov correction is suggested in [Bri95] as :

F (�) = (G(�)� 1) � exp(�Qinv=Qinv;eff ) + 1: (5.9)

Phenomenologically, this modi�cation is in the spirit of the Yukawa potential which

is essentially an exponentially damped Coulomb potential [Las97]. Likewise, the

phenomenological Coulomb correction is taken as an exponentially damped Gamov

correction. For Qinv;eff ! 1 this term approaches the Gamov correction G(�) - a

point source, while in the opposite limit as it goes to 0, the function converges to

unity - an in�nite source.

This modi�ed Gamov correction does not need any hypothesis of source distribution,

and in general for anisotropic source distribution the relative momentum Qinv and

free parameter Qeff can be decomposed, e.g. q?; qk; q0 in YKP-parameterization and

free parameters qi;eff for each component as :

Cexp
2

C0
2

= (G(�)� 1) � exp
0
@�s X

i=?;k;0

(
qi

qi;eff
)2

1
A+ 1 (5.10)

with � = 2zz0��q
q2?+q

2

k
+q2

0

.

The exponential damping factors qi;eff are free parameters which are obtained by a

3-dimensional �t to the data. Fig. 5.10 for kaons and Fig. 5.13 for pions show the

results for the correlation between unlike-sign particle pairs with comparison to the

Gamov correction.

5.1.4 Estimation of Error Ranges

The errors of the parameters to be extracted are caused mainly by the following :

� statistical error : each yield in the distribution has the statistical error of the

square-root of yield. Since the correlation function is the ratio of yield YS from

the same event to yield YB from the mixed-events, the error ranges in the

correlation distribution are to be bin-wise calculated by :

�C2
= N � YS

YB

r
1

YS
+

1

YB
(5.11)
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where N is the normalization factor.

� Coulomb correction uncertainty : the uncertainty of the �t to the Coulomb

correlation between unlike-sign particle pairs should inuence the �nal pa-

rameters to be extracted from the corrected correlation function, and it is

not analytically calculable. Examining these inuences in case by case within

the �t-error range, the mean of the maximum and minimum values of each

parameter is taken with the error range of maximal deviation.

� Fit error : A 1-dimensional (or 3-dimensional) �t to the corrected C2-distributions

with a given error range is performed by the �2 minimizing method (or a max-

imum log-likelihood method), which delivers one standard deviation during

the �t iterations as the �t-error. The �t results are given with the number of

degree of freedom (NDF ) and �
2=NDF .

5.2 1-Dimensional Correlation Function

5.2.1 HBT Radius of Kaons

Raw Correlation Function

With 577k K+K+ pairs and 163k K�K� pairs from the dataset of 95 TOF-R,

and with 458k K+K+ pairs and 214k K�K� pairs from 96 TOF-R/L, the Craw
2 -

distributions for like-sign pairs are obtained separately, dividing theQinv-distribution

from the same events by that from mixed-events2. Accordingly, their means weighted

by signal entries are shown in Fig. 5.1, since the datasets of 95 and 96 have so di�erent

acceptance conditions respectively, that one cannot directly add the two datasets.

In both cases the enhancement caused by the Bose-Einstein correlation is obviously

observable at Qinv smaller than about 100 MeV in Craw
2 for K+K+ as well as for

K�K�. A uctuation or rapid decrease at Qinv . 20 MeV should not be regarded

because of the constraint e�ect as explained in the previous chapter. Nevertheless,

the Coulomb e�ect is visible at Qinv � 40MeV in the decrease of the raw correlation

2as explained on page 59
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Fig. 5.1: The raw correlation function (a) between K+K+ pairs and (b)

between K�K� pairs.

function.

Correlation between unlike-sign Kaons

For the sake of the Coulomb correction the correlation between unlike-sign kaons

is investigated. Analogously, to the like-sign kaon analysis, the Qinv distribution of

K+ and K� pairs is respectively analyzed with 347.7 k pairs (STD-) and 249.3 k

pairs (STD+) from the dataset of 95 TOF-R/L, and with 614.7 k pairs (STD+)

from 96 TOF-R/L and in succession their weighted means are obtained in Fig. 5.3.

In this case, as K+ and K� are detected in opposite TOF hemispheres, the detector

constraint is not required.

However, a new aspect in the Qinv distribution of K+K� is the �-resonance, whose

dominant decay channel is K+K�. The resonance region must be excluded for the

normalization of the correlation function. Thanks to the support of Dr. V. Friese,

who has studied � production in the same dataset [Fri99], the Qinv distribution from

�-decay is simulated within the TOF acceptance. The � simulation parameters are

shown in Tab. 5.1. From the randomly generated � mesons, about 49 % of them

decay to K+ and K�, which are detected in the TOF-R and TOF-L walls, respec-
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Fig. 5.2: The simulated Qinv distribution of K+ and K� from the �

resonance.

tively. The distribution of their 4-momentum di�erences Qinv is shown in Fig. 5.2.

It is no surprise, that the resonance shows up around Qinv � 250 MeV, since this

is the momentum di�erence of the decay products in the rest frame of the �-meson

[PDG98]. This �-resonance peak is experimentally also observable in Fig. 5.3. It

must be excluded for the normalization of the correlation function. Accordingly, the

normalization range from 300 MeV to 2000 MeV is taken.

The Coulomb correlation between unlike-sign kaons enables one to extract the pa-

rameter r0 to about 27 fm indicated as the solid line in Fig. 5.3, while the Gamov

correction (i.e. r0= 0 fm) indicated as the dotted line in the �gure does not describe

# of generated �s 10,000,000

mass mean of � [GeV] 1.0191

mass width of � [MeV] 4.4300

mass resolution [MeV] 1.2000

std. deviation of rapidity distribution of � 1.2500

temperature of � [MeV] 295.0000

Table 5.1: The parameters of simulation of �-decay to K+ and K� [Fri99a]
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Fig. 5.3: Qinv distribution of K+ and K� pairs from the data of TOF-

R/L. The solid and dotted lines denote the calculated function

and the Gamov correction, respectively. The dashed line cal-

culated with r0 � 7 fm does not describe the data (see text).

the data. However, such a Gaussian source distribution with the extracted standard

deviation r0 = 27 fm is physically impossible, considering the scale of the classical

turning radius rt, which is de�ned by :

Q2

2�
=
e2

rt
; (5.12)

and rt � 7 fm for the kaon. This discrepancy can be caused by anisotropic or non-

Gaussian source distribution. The numerical calculation with r0 � 7 fm is shown as

the dashed line in Fig. 5.3.

On the other hand, using the modi�ed Gamov correction function (Eq. 5.9) one

obtains Qinv;eff = 15 MeV, which describes the experimental data very well just

like the solid line in Fig. 5.3. Because of its consistency this modi�ed Gamov func-

tion with Qinv;eff = 15 MeV is used for the Coulomb correction. In addition, since

the physically reliable calculation (the dashed line in the �gure r0 � 7 fm) under-

estimates the �nal result of Rinv by about 10%, this correction uncertainty is also

included in the error range of the �nal result (Fig. 5.4).
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Fig. 5.4: The Coulomb corrected 1-dimensional correlation function be-

tween like-sign kaons. The solid lines indicate the proper �t to

the data by Eq. 2.20 with parameters given in the results. The

dashed line gives the Qinv-limit due to the detector constraint.

The Coulomb-corrected Correlation Function between like-sign Kaons

Dividing the raw correlation functions between like-sign kaon pairs (Fig. 5.1) by the

Coulomb correction function, explained in the previous subsection with an exchang-

ing of the sign of �, the �nal 1-dimensional correlation function is obtained (Fig.

5.4).

A �t of this function in Eq. 2.20 to these �nal correlation functions leads to the

chaoticity parameter � and the Lorentz-invariant HBT radius Rinv. They are ob-

tained as � = 0:41 � 0:07 � 0:03, Rinv = 3:7 � 0:3 � 0:1 for K+K+ and � =

0:44 � 0:03 � 0:03, Rinv = 4:1 � 0:3 � 0:2 for K�K�. The errors include the un-

certainties in the Coulomb corrections. These parameters will be interpreted and

compared with those of pion in Section 5.2.3.
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Fig. 5.5: The raw correlation function (a) between positively charged

pions and (b) between negatively charged pions.

5.2.2 HBT Radius of Pions

Raw Correlation Function

Analogously to the case of the kaon analysis the Qinv distribution between like-sign

pions is calculated from 17.7M positive pion pairs and 18.5M negative pion pairs

selected from VTPC1 data as explained in section 4.2.

In Fig. 5.5 one observes the clear Bose-Einstein enhancement at low Qinv and the

rapid decreasing at Qinv � 0 due to the Coulomb repulsion, which should be cor-

rected by the correlation between unlike-sign pions.

Correlation between unlike-sign Pions

The Qinv distribution of unlike-sign pion pairs is obtained from 17.0M pion pairs

form VTPC1 data as shown in Fig. 5.6.

In accordance to Eq. 5.8 the parameter r0 is determined as 6 fm for an appropriate

description of the data distribution and indicated as the solid line in Fig. 5.6. As de-

noted by the dashed line, the standard Gamov correction does not describe the data.
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Fig. 5.6: The Coulomb correlation between unlike-sign pions. The solid

line indicates the numerically calculated Coulomb correlation

function with the parameter r0= 6 fm in Eq. 5.8 and for com-

parison the standard Gamov correction function is shown by

the dashed line.

Correlation Function between like-sign Pions

Finally, the Coulomb corrected correlation between like-sign pions is obtained as

shown in Fig. 5.7 after bin-wise dividing the raw correlation in Fig. 5.5 by the

numerically calculated correction function with an exchanging the sign of � in Eq.

5.8.

The proper �t to data with the parameters of Eq.2.20 is performed excluding the

�rst three bins due to the constraint of pair selection as discussed in Section 4.2.3.

The obtained parameters are � = 0:26 � 0:01, Rinv = 5:4 � 0:1 for �+�+ and

� = 0:27� 0:01, Rinv = 5:7� 0:1 for �+�+.
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Fig. 5.7: The Coulomb corrected 1-dimensional correlation function be-

tween like-sign pions. The solid lines indicate the proper �t

to the data by Eq. 2.20 and the extracted parameters are in

each �gure.

5.2.3 Comparison of Rinv for Kaons and Pions

Comparing the invariant radius Rinv of kaons with that of pions, one has to realize

that they contain spatial as well as temporal information. This can be seen when

factorizing the expansion of Eq. 2.20 into :

C2 = 1 + �e�j~qj2R2�q2
0
�2 : (5.13)

From the general relation q0 = ~q � ~�pair = j~qjj~�pairjcos� (where ~�pair is the velocity

of the pair frame relative to the reference frame), the spatial and invariant radii of

Eqs. 2.20 and 5.13 can be related [Aki93] via�
Rinv

R

�2

=
1 + (� 2=R2)j�pairj2cos2�

1� j�pairj2cos2� : (5.14)

For this equation it is clear that Rinv represents an average over an ensemble of pair

rest frame, so that the relation between Rinv and R may be di�erent for kaons and

pions.

The distributions of j�pairj and cos� in the nucleon-nucleon center-of-mass frame

for pairs used for the analysis are shown in Fig. 5.8. Clearly, the distributions of

pion and kaon pairs are signi�cantly di�erent. This explicitly demonstrates that
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Fig. 5.8: The distribution of j�pairj and cos� in the nucleon-nucleon

center-of-mass frame for kaon pairs and pion pairs

Rinv measures a Lorentz extended value of the source radius R as viewed from the

pair rest frame [Sin89]. Note that the size of this e�ect depends on the magnitude

and direction of ~�pair, and that these factors are signi�cantly di�erent for kaons and

pions.

Under the assumption of R � � the relatively well known pion results [Abb92], the

transformation factor Rinv=R is calculated pairwise. The mean values of Rinv=R and

the transformed results are summarized in Tab. 5.2. In addition, the 3-dimensional

e�ective radius Rrms is calculated as Rrms =
qP3

i=1 < x2i > =
p
3R.

Even though the Lorentz-invariant radii of kaons and pions are quite di�erent as

shown in Tab. 5.2, the transformed spatial radii of kaons and pions in the

reference frame are quite similar.

Particle � Rinv [fm] < Rinv=R > R [fm] Rrms [fm]

K+ 0.41�0.10 3.7�0.4 1.12�0.05 3.3�0.5 5.7�0.8

K� 0.44�0.06 4.1�0.5 1.11�0.05 3.7�0.6 6.4�0.9

�+ 0.26�0.01 5.4�0.1 1.53�0.12 3.5�0.3 6.1�0.5

�� 0.27�0.01 5.7�0.1 1.51�0.12 3.8�0.4 6.5�0.7

Table 5.2: The extracted parameters and the transformed radii for kaons and

pions
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5.3 3-Dimensional Correlation Function

As given in Eq. 2.32, the correlation function was parameterized by Yano, Koonin

and Podgoretskii in terms of q?, q0 and qk as
3 :

C2 = 1 + �exp
��q2?R2

? � 2YK(qk � vYKq0)
2R2

k � 2YK(q0 � vY Kqk)
2R2

0

�
(5.16)

In general, the longitudinal velocity vY K depends on the pair mean momentum K.

Accordingly, this analysis should be performed in each K-bin, in particular in each

j ~KT j-bin for the investigation of the transversal freeze-out con�guration, just like

the rapidity range is here restricted for the longitudinal freeze-out con�guration.

Since the kaon statistics is, however, not suÆcient to be analyzed in each j ~KT j-bin,
in this thesis the 3-dimensional analysis is performed over the complete range of

j ~KT j or j~pT j, which is distributed with a similar mean value of about 0.2 GeV/c for

pions and kaons as shown in Fig. 4.7 and 4.9.

5.3.1 HBT Radii of Kaons

Raw Correlation

The correlation functions with the YKP-parameterization without Coulomb correc-

tion are shown in Fig. 5.9, as 1-dimensional projections with the other components

being restricted to below 30 MeV. In these projections the counts at small qi are

suppressed, due to the detector constraints and the Coulomb repulsion. In particular

the limited q0 ranges in Fig. 5.9 (b) and (e) are due to the relation 2.36.

3where

q? = j~qT j

q0 = E1 �E2

qk = qz (5.15)

in Fig. 2.2.
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Fig. 5.9: 1-dimensional projections in qi of the 3-dimensional distribu-

tions with qj � 30 MeV (j 6= i) (a), (b) and (c) are for K+K+

correlation, and (d), (e) and (f) are for K�K� correlation.

Coulomb Correlation between unlike-sign Kaons

Analogously to the 1-dimensional analysis, the 3-dimensional correlation between

unlike-sign particles gives information about Coulomb attraction, which do not need

to be symmetric in 3-dimension. The 1-dimensional projections (perpendicular com-

ponents < 12 MeV) are shown in Fig. 5.10.

A three-dimensional �t of the function 5.10 to the data distribution is performed

and the results are given in Tab. 5.3. This e�ective Coulomb correction inuences

Qk;eff 25 � 3 MeV

Q?;eff 20 � 5 MeV

Q0;eff 48 � 10 MeV

NDF 459

�2/NDF 1.17

Table 5.3: The parameters of the Coulomb correction function (Eq.

5.10) obtained by the unlike-sign kaon pairs. (Fig. 5.10).
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mostly the �rst two bins of the raw like-sign correlations, which will be excluded

for the extraction of HBT radii. The other data points are slightly corrected or un-

changed. However, this slight correction of the data points around qi � 40MeV is

most sensitive to the extraction of HBT radii. For comparison to the Gamov cor-

rection is indicated in Fig. 5.10 as the dashed lines, clearly the e�ective Coulomb

correction in this range is much more appropriate than the Gamov correction. (The

�-meson seen in Fig. 5.3 is here outside of the range used for the projections.)

The Coulomb-corrected Correlation between like-sign Kaons

By dividing the raw correlations by the Coulomb corrections, the 3-dimensional

correlation functions are obtained as shown in Fig. 5.11. According to Eq. 5.16 the

�t results obtained by the negative log-likelihood method are drawn in each �gure

and the extracted HBT radii and parameters are listed in Tab. 5.4.
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Fig. 5.10: 1-dimensional projections of the 3-dimensional distributions

between unlike-sign kaons, the perpendicular components be-

ing restricted to < 12 MeV. The solid lines in each histogram

indicate the proper �t to data by Eq. 5.10, whose extracted

parameters are listed in Tab. 5.3. For the sake of comparison,

the Gamov corrections are indicated by the dashed lines in

each histogram.
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Fig. 5.11: 1-dimensional projections in qi of the Coulomb-corrected 3-

dimensional correlation between like-sign kaons with qj � 30

MeV (j 6= i). The solid lines in each histogram indicate the

proper �t to data by Eq. 5.16 with parameters given in Tab.

5.4

� Rk[fm] R?[fm] R0[fm] vYK NDF �2/NDF

K+ 0.55 � 0.05 4.5 � 1.0 4.9 � 0.4 3.0 � 1.2 0.04 � 0.03 386 1.25

K� 0.65 � 0.08 4.9 � 1.2 5.5 � 0.8 3.0 � 1.5 0.03 � 0.02 891 1.15

Table 5.4: The extracted parameters of the 3-dimensional �t to the corrected cor-

relation function for kaons (Fig. 5.11).

Varying the �t ranges and excluding the detector constraint qi ranges, error estimates

of the �t results are obtained. The �nal results will be discussed together with those

of pions in the next chapter.
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5.3.2 HBT Radii of Pions

Raw Correlation

Just like in the case of kaons, the 3-dimensional distributions for like-sign pion pairs

are calculated and the results are as shown in Fig. 5.12. As one observes, the enhance-

ment at qi � 50 MeV and the slight breakdown at qi � 0 reects the Bose-Einstein

correlation and the Coulomb repulsion or the ineÆciency due to the detector con-

straint, respectively.

Coulomb Correlation between unlike-sign Pions

In order to obtain the Coulomb correction, the 3-dimensional correlation between

unlike-sign pion pairs is calculated as shown in Fig. 5.13. The Coulomb attraction
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Fig. 5.12: 1-dimensional projections on each component of the 3-

dimensional distributions, the perpendicular components be-

ing less than 30 MeV. (a), (b) and (c) are for �+�+ correlation,

and (d), (e) and (f) are for ���� correlation.
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Fig. 5.13: 1-dimensional projections onto each component of the 3-

dimensional correlation between unlike-sign pions, the per-

pendicular components being less than 12 MeV.

Qk;eff 27 � 5 MeV

Q?;eff 22 � 3 MeV

Q0;eff 20 � 5 MeV

NDF 2609

�2/NDF 1.08

Table 5.5: The parameters of the Coulomb correction function (Eq.

5.10) obtained by the unlike-sign pion pairs. (Fig. 5.13).

between unlike-sign pions obviously appears at qi � 40 MeV and is �tted with the

function given in Eq. 5.10. In Tab. 5.5 the extracted parameters are listed. Dividing

the raw correlation between like-sign pions (Fig. 5.12) by this �t function and ex-

changing the sign of � in Eq. 5.10, the e�ective Coulomb correction is performed.

The Coulomb-corrected Correlation between like-sign Pions

The corrected correlation function is presented in 1-dimensional projections, as

shown in Fig. 5.14. In order to extract the radii and other parameters, the 3-

dimensional distribution is �tted by Eq. 5.16 using the negative log-likelihoodmethod
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Fig. 5.14: 1-dimensional projections onto each component of the 3-

dimensional correlation between unlike-sign pions, the per-

pendicular components being less than 30 MeV.

� Rk[fm] R?[fm] R0[fm] vYK NDF �2/NDF

�+ 0.28 � 0.07 6.0 � 0.5 5.0 � 0.5 4.0 � 0.8 0.10 � 0.05 1362 1.02

�� 0.34 � 0.08 6.9 � 0.8 6.0 � 0.7 5.1 � 1.5 0.06 � 0.05 1128 1.12

Table 5.6: The extracted parameters of the 3-dimensional �t to the corrected cor-

relation function for pions (Fig. 5.14).

by excluding the �rst two bins near qi � 0.

In Tab. 5.6 the extracted parameters are listed. The error range is calculated with

the Coulomb correction errors and the �t errors.
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Discussion

The results of the analysis described in the previous section are compiled in Tab.

6.1 with Rrms from Tab. 5.2. We discuss here a few aspects important for their

interpretation.

6.1 Central Coulomb E�ect

The �rst one of them is the central Coulomb e�ect [Bay96] in the system of Pb+Pb

central collisions at 158 AGeV. In the collisions of nuclei, there exists a central

Coulomb potential produced by the positive charge of the protons. Even though the

Coulomb e�ect between the two particles of a pair is investigated and corrected in

� Rk[fm] R?[fm] R0[fm] vY K Rrms[fm]

K+ 0.55 � 0.05 4.5 � 1.0 4.9 � 0.4 3.0 � 1.2 0.04 � 0.03 5.7 � 0.8

K� 0.65 � 0.08 4.9 � 1.2 5.5 � 0.8 3.0 � 1.5 0.03 � 0.02 6.4 � 0.9

�+ 0.28 � 0.07 6.0 � 0.5 5.0 � 0.5 4.0 � 0.8 0.10 � 0.05 6.1 � 0.5

�� 0.34 � 0.08 6.9 � 0.8 6.0 � 0.7 5.1 � 1.5 0.06 � 0.05 6.5 � 0.7

Table 6.1: The summary of the extracted parameters of 3-dimensional

HBT analysis of kaon and pion, compared to the one-

dimensionally obtained Rrms.

79
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order to remove the �nal state interaction from the freeze-out state of the particles,

there remains the question of the inuence of the Coulomb interactions with the

other particles.

In general, this is a diÆcult many-body problem. It can be greatly simpli�ed with an

assumption that the remaining particles can be described by a central Coulomb po-

tential, Zeffe
2=r, where the e�ective charge Zeff is order of the total initial nuclear

charge (ZA+ZB) in a central collision of nucleus A with nucleus B. This central po-

tential accelerates positive mesons away and slows down the negatives; these e�ects

are described by the Coulomb wave functions for the potential. The �nal momentum

of any particle is related to the initial momentum pa at the production distance ra

by

�(p) = �(pa)� Zeffe
2

ra
; (6.1)

where �(p) = (p2+m2)1=2. (While Coulomb e�ects for the relative momentum can be

treated non-relativistically, the individual momenta are generally relativistic.) Since

the Coulomb interaction conserves the total momentum of the pair (n(~p)d3p =

n(~pa)d
3pa), the single particle distribution is modi�ed by the central potential by

n(~p) = n0(~pa)
d3pa
d3p

=
pa�(pa)

p�(p)
n0(~pa); (6.2)

where the subscript 0 indicates the 'initial' state.

Although the central potential shifts the single particle distribution, it cannot in-

troduce any correlations among emitted particles that have no initial correlation in

the absence of the central potential. If in the absence of the central potential un-

correlated particles [C(q) = 1] are emitted in independent free particle states, then

in the presence of the potential they are emitted in Coulomb states for the central

potential, but still n2(~p2; ~p2) = n(~p1)n(~p2) and C(q) remains unity.

Since positive particles are accelerated, the �nal momentum di�erence, ~q = ~p1� ~p2,

of a positive pair will generally be larger in magnitude than it initially is, while

for negative pairs the �nal momentum di�erence will generally be smaller. Thus

it is expected, that the central Coulomb potential causes the size of the

collision volume extracted from positive pairs to be smaller than the ac-

tual size, and that from negative pairs to be larger than the actual size

[Bay96] [Har98]. The �nal momentum di�erence q is therefore related to the initial
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momentum di�erence qa by

q ' qa

�
1� Zeffe

2=ra
pa

�
(6.3)

where the upper sign refers to both particles being positively charged and the lower

sign to both being negatively charged.

Here, the tendency appears between the extracted radii of positive particles and

negative particles, even though the di�erence is within the error ranges. In our ex-

periment the e�ect is an increase for positives (and a decrease for negatives) in the

observed scale of C(q) and a decrease (an increase) in the extracted radius of more

than 10% and it is theoretically explained with Zeff =164, the expected ra � 5 fm

for kaons and 6 fm for pions and supposingly pa � 300 MeV/c in Eq. 6.3. This can

also be seen in from Tab. 5.2 for the 1-dimensional analysis.

6.2 Comparison of the Results

for Kaons and Pions

The second subject to be discussed is the comparison between the results for kaons

and pions, and a physical understanding of the di�erence.

The Rrms, which are calculated from 1-dimensional analysis, are roughly comparable

with R? and Rk within the error range, even though in the case of kaons the Rrms is

somewhat larger than 3-dimensional spatial radii. This means, that the transforma-

tion from Rinv to Rrms works quite well in spite of a rough assumption R � �(� R0)

in Eq. 5.14.

The small values of vY K show that the particles possess almost central rapidity when

comparing YCM to the YKP-rapidity YY KP derived from vY K by

YYKP =
1

2
ln
1 + vY K
1� vY K

+ YCM (6.4)

where YCM = 2:9.

The di�erence of the chaoticity parameters � of pions and kaons can be explained
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Fig. 6.1: Comparison of the m?-distributions in the detector accep-

tance to those in the full acceptance. The arrows indicate the

mean values of each distributions.

by the di�erent inuence of resonance decays, particularly long lived !, � and �0,

which contribute to the pion multiplicity. In addition, the contamination of pions

by electrons is relative large1, which can cause the decrease of �, while in the case of

the kaon the anti-correlated protons are almost perfectly excluded by TOF particle

identi�cation.

The following discussion is based on two assumptions :

a) The freeze-out surface is identical for K and �. (This is supported by the data

shown in the previous sections.)

b) The transverse expansion is small compared to that in longitudinal direction.

Remembering the relation Eq. 2.40 in case of the expanding source, the HBT radii are

plotted as the function of the transversal mass m? =
p
m2
i +K2

? (Fig. 6.2), where

i denotes the particle species and the dashed line in the �gure indicates � m�
? as

a reference. According to the theory suggested by U. Heinz [Hei96], the HBT radii

parameters obey the m?-scaling in the absence of collective transverse ow, and

this scaling is broken by transverse ow. An accurate comparison of pion and kaon

correlations can thus resolve the issue whether the observed m?-dependence of the

1see Fig. 4.11.
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Fig. 6.2: m?-dependence of HBT radii using the mean m? in the de-

tector acceptance (see Fig. 6.1).

transverse radius parameter is due to transverse collective ow or other transverse

gradients.

For vanishing transverse ow, all three YKP-radii should show perfect m?-scaling,

i.e. R? remains the same for kaons and pions, Rk varies along m?. If the source

expands longitudinally, Rk and R0 must be smaller for kaon pairs than for pion

pairs, even without resonance decays. In the presence of transverse expansion, (a)

also the transverse radius R? shows an m?-dependence, and the strength of m?-

dependency is directly related to the magnitude of the transverse ow rapidity. (b)

The m?-scaling of the YKP radii is broken. The e�ect is not very large, but it goes

in opposite directions for Rk and the two other radius parameters.

In our case, the transverse radii of kaons and pions reveal a slight tranverse ow.

The longitudinal radii goes consistently almost along the m?-scaling, even though

they have relatively very large error ranges. This reveals, that the expansion of the

source is much stronger in the longitudinal than in the transverse direction.

Taking the freeze-out temperature T� 120 MeV [App98] for both particles, one can

plot the longitudinal radii as a function of
q

T
m?

as shown in Fig. 6.3. Since the

function 2.40 has only one slope parameter �f , one obtains the freeze-out proper

time �f= 10�1.5 fm/c for both particles. In Fig. 6.3 the results from the

pion HBT for each KT -bin [App97] are also plotted. Our results show very good

agreement with the values resulted in [Sch97], [App97], [App98], which are obtained
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Fig. 6.3: Rk as a function of
q

T
m?

with the particle freeze-out tem-

peratures T� 120 MeV [App98]. The solid and dashed lines

are the functions of Eq. 2.40 with the possible slope parame-

ters �f . The values from [App97] are also plotted, which are

analyzed in each KT -bin for the pions (2.9�Y���3.4).

from the previous pion HBT analyses by Rk in the function of KT -bins.

The relative long freeze-out proper time of 10 fm/c (' 3.3�10�23 sec) is extracted with
the standard deviation of ��f � R0 ' 4 fm/c (' 1:3 � 10�23 sec) for both particles,

and at that time the spatial extentions (one standard deviation) of particle sources

are extracted as transversely about the same R? ' 5 fm for both particles and as

longitudinally Rk ' 4.7 fm and 6.5 fm for the kaons and the pions, respectively.

6.3 Conclusion and Outlook

As mentioned in section 1.3, an anomalously long lifetime could be a signal of a

phase transition that has a latent heat associated with it. Our results are consistent

with such a scenario.
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With a larger kaon sample than available up to now the transverse expansion could

be studied by investigating the K?-dependency of R?. Production of new NA49

data on central Pb+Pb collisions at 158 AGeV is in progress. TOF-identi�ed kaons

from about 3 million events are expected. In addition, with the progress of tracking

and dE=dx analysis in the MTPC, one could also pick out MTPC kaons at other

rapidity ranges with little contamination.

The complete HBT analysis, i.e. the extraction of radii in each K? and rapidity bin

of kaons, would deliver detailed informations about the freeze-out con�guration for

kaons, and the comparison of those for kaons and pions would allow to understand

the development of the reaction zone.
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