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1. Introduction

The AdS/CFT correspondence [1] is a concrete realization of the broad class of holographic

ideas. An implication of such ideas is that the classical equations of motion of fields that

live in a curved bulk space determine the quantum states of a conformal field theory (CFT)

that lives in the boundary. In the prototype example of the AdS/CFT correspondence, the

equations of motion of classical IIB supergavity on AdS5× S5 determine the correlation

functions of N = 4 SYM on R4.

A remarkable success of the above example of AdS5/CFT4 correspondence is the equiv-

alence of (part of) the bulk and boundary spectra [2]. For example, the Kaluza-Klein modes

of IIB SUGRA on AdS5× S5 are in one-to-one correspondence with chiral gauge invari-

ant operators of N = 4 SYM, which are realised as single-traces of its elementary fields.

However, it is also clear that the boundary CFT spectrum contains an infinite number of

operators that do not correspond directly to any SUGRA modes. One class of such oper-

ators are the so called Konishi-like operators that may be defined as classically conserved

currents of the non-interacting boundary CFT [3]. These operators correspond to massive

string modes and hence cannot be seen in the SUGRA approximation of IIB string theory.

Another class of boundary operators with no obvious SUGRA counterpart are multi-trace

gauge invariant operators ofN = 4 SYM. They can be protected or non-protected by super-

conformal invariance [4]. After some initial confusion regarding their status (see e.g. [5]), it

was realized that such operators should have a SUGRA realization since they arise in the

operator product expansions (OPEs) of the boundary operators as strong coupling [6, 7].

The general perception is that they correspond to “multi-particle” supergravity states [8],

nevertheless we feel that their status is not yet fully clarified.

The study of boundary multi-trace operators can be accomplished indirectly through

the operator product expansion of single-trace operators. Such studies have lead to a
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number of non-trivial checks for AdS/CFT [6, 7, 8, 9], as well as to some unexpected

new properties [10]. One of them is the existence of operators whose scaling dimensions

are non-renormalized despite the fact that they are not in the BPS list [6, 7]. A new

protection mechanism had to be invoked to explain this phenomenon [11]. Also, it was

demonstrated that multi-trace operators can acquire finite non-zero anomalous dimensions

at strong coupling, but the detailed mechanism of such a phenomenon remains unclear.

Recently the interest on multi-trace operators has been revived due to ideas coming

from string theory. Namely, it has been argued that the “multi-particle” SUGRA states

might correspond to the “remnants” of non-local string couplings [12]. Such ideas give rise

to the practical question of how explicit calculations of correlators involving multi-trace

operators can be done in the context of AdS/CFT. This question is in direct relevance to the

study of multi-trace deformations of the boundary CFT. An answer to this question came

with the works of [13] and [14], where it has been argued that multi-trace deformations

of the boundary CFT can by studied via AdS/CFT by a generalization of the boundary

conditions. Further refinement was proposed in [15] and [16] such that both regular and

irregular boundary conditions are properly taken into account.

In this letter we approach the problem of incorporating multi-trace deformations, di-

rectly from the boundary CFT side. For non-zero sources the standard AdS/CFT corre-

spondence may be viewed as a prescription for deforming the strongly coupled boundary

CFT by single-trace operators coupled to x-dependent couplings. When the boundary ef-

fective action is evaluated at least up to quartic order in the sources, it is possible that the

operators which appear in the OPE of the single-traces might contribute to the deformation

of the boundary CFT. In explicit AdS/CFT examples such operators in general include

a number of multi-trace operators which may be relevant, marginal or irrelevant. Only

the relevant and the marginal ones survive in the UV limit. To illustrate our approach,

we study here a simple example of a scalar field in AdS5 with cubic self interaction [17].

By an appropriate reparametrization of the x-dependent couplings (sources) we arrange so

that the boundary CFT is perturbed by marginal operators. Moreover, we show that the

boundary conformal anomaly plays the role of the bare coupling for such marginal defor-

mations. Our methods can be applied to study the double-trace deformation in examples

of AdS/CFT where the boundary four-point functions and OPEs are known, such as N = 4

SYM in d = 4 or the (2,0) tensor multiplet in d = 61 [18].

2. Multi-trace deformations and boundary conditions

The standard procedure for calculating correlations functions in a boundary CFT from

AdS/CFT correspondence may be schematically written as

ZSUGRA[φ0] =

∫

(Dφ, φ0)e−Sgr[φ] ≡ eWR[φ0] ≡ 〈e
∫

φ0O〉CFT . (2.1)

In words this reads that performing the SUGRA path integral with prescribed boundary

conditions φ0 on the fields φ yields the generating functional (effective action) WR[φ0] of

1Of course, there is no notion of single- or multi-trace operators in the (2,0) tensor multiplet, nevertheless

one can still apply OPE techniques to study the operator content of the theory at strong coupling [18].
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connected renormalized correlation functions of the operator O in the boundary CFT. The

last equality in (2.1) shows that one may also view the AdS/CFT correspondence as a

definite prescription to deform the boundary CFT by the operator O coupled to the x-

dependent coupling φ0. This latter interpretation may not be widely known, nevertheless

there exist extensive studies of CFT deformations by x-dependent couplings [21] and their

general results can be applied to AdS/CFT.

The procedure described by (2.1) shows the difficulties with multi-trace deformations;

since in explicit SUGRA calculations the fields φ are sources for single-trace boundary

operators one does not know how to calculate directly correlation functions of multi-trace

operators, or equivalently how to perturb the boundary CFT by multi-trace deformations.

A procedure to incorporate multi-trace operators has been recently proposed in [13, 14].

The solution to the second order bulk equations of motion2 for the SUGRA field φ behaves

in general near the AdSd+1 conformal boundary r = 0 as

φ(r, x̄)|r→0 = rd−∆[φ0(x̄) +O(r2)] + r∆[A(x̄) +O(r2)] , ∆ =
d

2
+

1

2

√

d2 + 4m2 , (2.2)

where m2 ≥ −d2/4 is the AdS mass. The parameter ∆ becomes the scaling dimension

of the boundary operator O.3 To calculate now the expectation value 〈exp[
∫

φ0O]〉 in the

boundary CFT one needs the leading behaviour of φ(r, x̄) near the boundary which is given

by the first term in (2.2). Nevertheless, since it has been shown [19] that A(x̄) in (2.2)

corresponds to the expectation value of the operator O, the result of the expectation value

calculation above can be schematically represented as exp[
∫

φ0A]. Now, the proposal of [14]

is that if one wants to calculate the expectation value 〈exp[
∫

φ̂0O +
∫

F(O,dO)]〉, where
F(O,dO) is a generic functional of the operator O, then one should solve the same bulk

equations as the ones leading to (2.2) but with modified boundary conditions such that the

field φ now behaves at the boundary as

φ(r, x̄)|r=0 = φ̂0(x̄) +
δF(A,dA)
δA(x̄)

. (2.3)

Then, φ̂0 in (2.3) provides the source to the boundary operator O and the remaining term

the source to the multi-trace operator represented by the functional F(O,dO). Refinements

of the above proposal to include a proper treatment of both the so called regular and

irregular boundary modes were presented in [15, 16].

3. The boundary action to quartic order

The proposal for incorporating multi-trace deformations of the boundary CFT by modi-

fying the boundary conditions can in principle be used to perform explicit calculations in

specific AdS/CFT models. As we mentioned in the introduction, an alternative way of

2We use throughout the euclidean version of the Poincaré patch of AdSd+1 where dx
µdxµ = 1

r2
(dr2+dx̄2)

with x = (r, x̄).
3We assume here that ∆ ≥ d/2 as is relevant for our model as well as for the the standard IIB/N = 4

SYM duality.
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incorporating multi-trace operators in the boundary effective action could be through the

OPE of single-trace operators. This entails the calculation of the boundary effective action

up to quartic order in the sources to read off the four-point functions of the single-trace

operators. One advantage of this approach is, nevertheless, that one can use the known re-

sults for the four-point functions of some boundary CFTs from AdS/CFT correspondence,

such as N = 4 SYM to study their corresponding boundary deformations. The purpose of

this work is to illustrate our method in the toy model of a scalar field in AdS5 with cubic

self-interaction [17]. The classical massive action is

Sgr[φ] =
1

2

∫

d5x
√
g(gµν∂µφ∂νφ+m2φ2) +

λ

3!

∫

d5x
√
gφ3 , (3.1)

where λ is an AdS coupling constant. The equations of motion are

(∇2 −m2)φ =
λ

2
φ2 . (3.2)

One needs to solve the equations of motion (3.2) subject to boundary conditions imposed

at r = 0 and substitute their solution back to (3.1). This way one obtains a functional

of the boundary conditions which is interpreted as the generating functional for connected

renormalized correlation functions of the boundary CFT. A nice way to accomplish that

is to first solve an intermediate problem which amounts to exactly the same procedure as

described above but with the boundary conditions now imposed on some hypersurface of

AdS5 near the boundary as

φ(r, x̄)|r=ε = φε(x̄) , ε¿ 1 . (3.3)

Solving now the equations of motion (3.2) with the boundary condition (3.3) and sub-

stituting their solution back into (3.1) we will get a functional of φε. The latter is then

interpreted as the regularized generating functional of the boundary CFT. In doing the

above, one must always keep in mind that the r integration should also be restricted to

the range r ∈ [ε,∞).

The procedure above has been described in a number of works and here we recapitulate

its essential points. The general solution of the non-homogeneous equation of motion (3.2)

with the boundary condition (3.3) is

φ(r, x̄) = φ̄(r, x̄) +
λ

2

∫

d5y
√
gGε(x, y)φ

2(y) , (3.4)

where φ̄(r, x̄) is a solution of the homogeneous part of (3.2) that satisfies the boundary

condition (3.3) and Gε(x, y) is a Green’s function of the homogeneous part of (3.2) that

vanishes when either of its arguments lies on the “boundary” r = ε. The latter can be

written as

Gε(x, y) = G(x, y) + F (x, y) , (3.5)

where

(∇2 −m2)G(x, y) = δd(x− y) ,

(∇2 −m2)F (x, y) = 0 ,

F (x, y)|x,y∈∂ε = −G(x, y)|x,y∈∂ε , (3.6)
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and ∂ε denotes the “boundary” surface r = ε of AdS5. Explicit expression for the above

quantities exist since the early days of AdS/CFT [20] and although they are not needed

for our calculations here we give them for completeness in the appendix. We only present

here the so called bulk-to-boundary propagator that allows one to reconstruct the bulk

field given the boundary condition (3.3) as

φ̄(r, x̄) =

∫

d4x̄′K(r; x̄, ε; x̄′)φε(x̄
′) , (3.7)

K(r; x̄, ε; x̄′) =
(r

ε

)2
∫

d4p̄

(2π)4
e−ip̄(x̄−x̄

′)Kα(|p̄|r)
Kα(|p̄|ε)

, α = ∆− 2 , (3.8)

where Kα(z) are the standard modified Bessel functions. It is important to note that in

writing (3.7) and (3.8) we tacitly imposed the condition that the bulk scalar field vanishes

as r →∞. Substituting the above into the action (3.1) one obtains up to quartic order in

the boundary condition

S[φε] = −
1

2

∫

d4x̄ ε−3φε(x̄)∂rφ(r, x̄)|r=ε +

+
λ

3!

∫

d4x̄1d
4x̄2d

4x̄3 φε(x̄1)φε(x̄2)φε(x̄3)Π3,ε(x̄1, x̄2, x̄3) +

+
λ2

8

∫

d4x̄1d
4x̄2d

4x̄3d
4x̄4 φε(x̄1)φε(x̄2)φε(x̄3)φε(x̄4)×

×Π4,ε(x̄1, x̄2, x̄3, x̄4) , (3.9)

Π3,ε(x̄1, x̄2, x̄3) =

∫ ∞

ε

drr−5
∫

d4x̄K(r; x̄, ε; x̄1)K(r; x̄, ε; x̄2)K(r; x̄, ε; x̄3) , (3.10)

Π4,ε(x̄1, x̄2, x̄3, x̄4) =

∫ ∞

ε

drdr′(rr′)−5
∫

d4x̄d4ȳ
[

K(r; x̄, ε; x̄1)K(r; x̄, ε; x̄2)Gε(x, y)×

×K(r′; ȳ, ε; x̄3)K(r′; ȳ, ε; x̄4)
]

. (3.11)

From (3.7) and (3.8) one easily obtains the asymptotic behaviour of φε near ε→ 0 as

φε(x̄)|ε→0 = ε4−∆[φ0(x̄) +O(ε2)] + ε∆[A(x̄) +O(ε2)] . (3.12)

The functions φ0(x̄) and A(x̄) would be two independent boundary data necessary for the

complete solution of the second order bulk equation of motion (3.2), nevertheless due to

the imposed regularity of the bulk solution implied by (3.8) there is a relationship between

them as

A(x̄) = C∆

∫

d4x̄′
φ0(x̄

′)

(x̄− x̄′)2∆
, C∆ =

Γ(∆)

π2Γ(∆− 2)
. (3.13)

For r = 0 the boundary action is a functional of the boundary data φ0. For example, to

quadratic order in φ0 one finds

Sε[φ0] =
1

2

∫

d4x̄1d
4x̄2φ0(x̄1)φ0(x̄2)Π(x̄12, ε) , (3.14)

Π(x̄12, ε) = ε4−2∆
∫

d4p̄

(2π)4
e−ip̄x̄12

[

(4−∆)− |p̄|εKα−1(|p̄|ε)
Kα(|p̄|ε)

]

. (3.15)
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The action (3.14) is interpreted as the regularized action of the boundary CFT since in

general it contains a finite number of divergent terms as ε → 0. One can subtract these

divergences by introducing local counterterms built out from the field φ(r, x̄) at r = ε.

This subtraction procedure amounts to a specific choice of renormalization scheme as the

counterterms include finite parts [24]. After subtraction, one can take the limit ε→ 0 and

is left with an action that is the generating functional WR[φ0] of connected renormalized

correlation functions of the operator O. However, in order to apply the OPE we need

the partition function of the boundary CFT which is the generating functional of both the

connected and disconnected n-point functions. Up to four-point functions this reads

ZR[φ0] ≡ eWR[φ0]

= 1 +
1

2

∫

d4x̄1d
4x̄2φ0(x̄1)φ0(x̄2)〈O(x̄1)O(x̄2)〉R −

− λ
3!

∫

d4x̄1d
4x̄2d

4x̄3φ0(x̄1)φ0(x̄2)φ0(x̄3)〈O(x̄1)O(x̄2)O(x̄3)〉R + (3.16)

+
λ2

4!

∫

d4x̄1d
4x̄2d

4x̄3d
4x̄4φ0(x̄1)φ0(x̄2)φ0(x̄3)φ0(x̄4)〈O(x̄1)O(x̄2)O(x̄3)O(x̄4)〉R ,

where the symmetry factors have been changed according to the requirement that the

correlation functions are totally symmetric with respect to permutations of their arguments.

For completeness, the explicit formulae for the various correlators in (3.16) are given in the

appendix and we refer the reader to [17] for the calculations of the integrals.4

If one has managed to remove completely all scale dependence from (3.16), then one

would find the generating functional of a quantum CFT.5 This is in general possible,

however for special values of the dimension ∆ one cannot do this. As it was shown in [22]

following the ideas of [23], for integer values of the parameter α the renormalized correlation

functions in (3.16) necessarily contain logarithms which break conformal invariance. The

relevant case for our present work is when

∆ = 2 + k , k = 0, 1, 2, . . . (3.17)

Then, the renormalized two-point function

〈O(x̄1)O(x̄2)〉R = CO

[

1

x̄2∆12

]

R

, (3.18)

contains logarithms and this implies the existence of a conformal anomaly in the theory

as [22]

〈Θ〉 ≡
∫

d4x̄〈Tµµ(x̄)〉 =
1

2
Pk

∫

d4x̄ ∂2k φ20(x̄) , Pk = CO
2π2

22kΓ(k + 1)Γ(k + 2)
. (3.19)

4Despite that fact that a complete analysis of the counterterms needed to renormalized the ε → 0

singularities in n-point functions for n ≥ 3 has not been performed, one can obtain explicit expressions for

non-coincident arguments by simply taking the ε → 0 limit of (3.8), (3.10) and (3.11) before performing

the integrals.
5Notice that logarithms of the invariant ratios in four-point functions are in perfect agreement with

conformal invariance since they do not need an arbitrary mass scale for their proper definition.
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For example, when ∆ = 2 using the correct normalization for the two-point function

CO = 1/2π2 we have

〈Θ〉 = 1

2

∫

d4x̄ φ20(x̄) . (3.20)

In this case only the two-point function contributes to the conformal anomaly.

4. Operator deformations and the OPE

The essential observation now is that once the renormalized effective action of the boundary

CFT is calculated up to quartic order in the sources, operators that appear in the OPE

of two O’s are naturally incorporated into it. In the case of N = 4 SYM such operators

will in general include both single- as well as double-traces. In the simple model (3.1), the

OPE analysis of the four-point function in (3.16) has been done in whole generality in [17]

and here we summarise the essential points. The OPE of the fields O that reproduces the

explicit form of the four-point function in (3.16) can be schematically written as

O(x̄1)O(x̄2) = 〈O(x̄1)O(x̄2)〉R +
∑

{O}

GO

CO

1

(x̄212)
∆−

∆O
2

C(x̄12, ∂x̄2) · O(x̄2) , (4.1)

where {O} is an infinite set of operators with corresponding dimensions ∆0 and even spin,

while the dot in (4.1) denotes the appropriate tensor contraction. The OPE coefficients

C(x̄12, ∂x̄2) are complicated non-local expression which are explicitly known. For example,

when O is a scalar we have

CO(x̄12, ∂x̄2) =
1

B(∆2 ,
∆
2 )

∫ 1

0
dt[t(1− t]∆2 −1 ×

×
∞
∑

m=0

(−1)mΓ(∆ + 1− d
2)

m!Γ(∆ + 1 +m− d
2)

[

x̄212
4
t(1− t)

]m

∂2mx̄2 e
tx̄12 ·∂x̄2

= 1 +
1

2
(x̄12)µ∂x̄2,µ +

∆+ 2

8(∆ + 1)
(x̄12)µ(x̄12)µ∂x̄2,µ∂x̄2,ν −

− ∆

16(∆ + 1)(∆ + 1− d
2)

(x̄212)∂
2
x̄2

+ · · · . (4.2)

The parameter GO is the unique coupling constant in the three-point function 〈OOO〉
and CO is the normalization constant of the two-point function 〈OO〉. The infinite set of

operators {O} are classified according to increasing powers of their dimension and spin. In

our case, the first few operators that contribute singular and marginal terms as x̄12 → 0

in (4.1) are the operator O itself, a scalar operator with dimension 2∆ + λ2γ∗ which we

denote as O2 and the energy momentum tensor which is a spin-2 operator with dimension

d. The quantity γ∗ is the anomalous dimension of the operator O2 which can be explicitly

calculated from the results in [17]. In general, an OPE such as (4.1) is supposed to hold

when the two operators are close to each other. However, there is strong evidence (see

– 7 –
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e.g. [25]) that in CFTs the OPE is an analytic partial wave expansion, even for D > 2, and

as such it can be inserted into the generating functional (3.16) yielding

ZR[φ0] = 1 +
1

2

∫

d4x̄1d
4x̄2 φ0(x̄1)φ0(x̄2) 〈O(x̄1)O(x̄2)〉R −

− λ

2

∫

d4x̄1d
4x̄2d

4x̄3 φ0(x̄1)φ0(x̄2)φ0(x̄3)×

× GO
CO

1

(x̄232)
∆
2

C(x̄32, ∂x̄2) · 〈O(x̄2)O(x̄1)〉R +

+
λ2

4

∫

d4x̄1 · · · d4x̄4φ0(x̄1) · · · φ0(x̄4)×

×
∑

{O}

GO

CO

1

(x̄243)
∆−

∆O
2

C(x̄43, ∂x̄3) · 〈O(x̄3)O(x̄1)O(x̄2)〉R +

+
λ2

8

∫

d4x̄1 · d4x̄4 φ0(x̄1) · φ0(x̄4)〈O(x̄1)O(x̄2)〉R〈O(x̄3)O(x̄4)〉R . (4.3)

From (4.3) we see that when we view the AdS/CFT correspondence as a deformation of

the boundary CFT with an x-dependent coupling constant φ0(x̄), many operators enter

naturally into the partition function via the OPE. Of course, keeping the x-dependent cou-

pling non-zero in general breaks the conformal invariance. The meaning then of equations

such as (4.3) is that conformal invariance is broken by perturbing the CFT by all possible

operators that appear in the OPE (4.1) [26].

Given the form of the generating functional (4.3) it is possible to choose exactly which

operator deforms the boundary CFT by appropriately adjusting the sources φ0. Such an

adjustment of the sources φ0 has a dual interpretation; from the point of view of the bulk

theory it corresponds to a modification of the boundary conditions (3.12) [13, 14], while

from the point of view of the boundary theory it corresponds to a reparametrization of the

x-dependent couplings. Namely, setting

φ0(x̄) = φ̂0(x̄) + φ1(x̄) , (4.4)

we find from (4.3)

ZR[φ0] = ZR[φ̂0] +

∫

d4x̄1d
4x̄2φ1(x̄1)φ̂0(x̄2) 〈O(x̄1)O(x̄2)〉R −

−λ
2

∫

d4x̄1d
4x̄2d

4x̄3 φ1(x̄1)φ̂0(x̄2)φ̂0(x̄3)〈O(x̄1)O(x̄2)O(x̄3)〉R + · · · . (4.5)

To proceed now we have to take into account an important point that follows from the

analysis of [17]. As we have mentioned, the four-point function in (3.16) contains both

connected and disconnected parts. In the normalization of (3.16) the disconnected part

comes with a factor λ−2 in front. It has been observed in [17] that in generic AdS graphs

the contribution to the four-point function from the operator O itself comes only from the
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connected part. This means that the form of the OPE (4.1) implies

Z[φ̂0] = 1 +
1

2

∫

d4x̄1d
4x̄2 φ̂0(x̄1)φ̂0(x̄2) 〈O(x̄1)O(x̄2)〉R −

− λGO
2C∆

∫

d4x̄2d
4x̄3 φ̂0(x̄2)φ̂0(x̄3)

1

(x̄232)
∆
2

CO(x̄32, ∂x̄2)A(x̄2) +

+
λ2GO
4CO

∫

d4x̄1 · · · d4x̄4 φ̂0(x̄1) · · · φ̂0(x̄4)×

× 1

(x̄243)
∆
2

CO(x̄43, ∂x̄3)〈O(x̄3)O(x̄1)O(x̄2)〉R +

+
GO2(λ)

4CO2(λ)

∫

d4x̄1 · · · d4x̄4φ̂0(x̄1) · · · φ̂0(x̄4)×

× (x̄234)
λ2γ∗
2 CO2(x̄43, ∂x̄3)〈O2(x̄3)O(x̄1)O(x̄2)〉R +

+
λ2

8

∫

d4x̄1 · · · d4x̄4φ̂0(x̄1) · · · φ̂0(x̄4) 〈O(x̄1)O(x̄2)〉R〈O(x̄3)O(x̄4)〉R + · · · , (4.6)

where the dots represent terms involving higher orders in λ and correlation functions in-

volving tensor operators, while we have also used (3.13). The meaning of (4.6) is that the

coupling and scaling dimension of the operator O2 contain both O(λ0) as well as O(λ2)

contributions. This is generically true for all operators in the OPE (4.1) except O itself.

We have seen already the λ-dependence for the scaling dimension of O2, while for the cou-

pling (more precisely, the ratio of the coupling the the two-point function normalization),

we may write
GO2(λ)

CO2(λ)
=

GO2

CO2

∣

∣

∣

∣

0

[1 + λ2b∗ +O(λ3)] , (4.7)

where the subscript 0 denotes the λ-independent part coming from the disconnected graphs

in the four-point function. The finite number b∗ can be read from the results in [17].

We now observe that if the two φ1-dependent terms of (4.5) cancel the third and fourth

terms in the rhs of (4.6), then ZR[φ̂0] would generate correlation functions of O with O2

insertions. This can be arranged if the following integral equations are satisfied

CO
C∆

∫

d4 x̄φ1(x̄)A(x̄)−
λGO
2C∆

∫

d4x̄2d
4x̄3 φ̂0(x̄2)φ̂0(x̄3)

1

(x̄232)
∆
2

CO(x̄32, ∂x̄2)A(x̄2) = 0 ,

(4.8)

and

λ

2

∫

d4x̄1d
4x̄2d

4x̄3φ1(x̄1) φ̂0(x̄2)φ̂0(x̄3) 〈O(x̄1)O(x̄2)O(x̄3)〉R− (4.9)

− λ2GO
4CO

∫

d4x̄1 · · · d4x̄4φ̂0(x̄1) · · · φ̂0(x̄4)
1

(x̄243)
∆
2

CO(x̄43, ∂x̄3)〈O(x̄3)O(x̄1)O(x̄2)〉R = 0 .

From (4.8) we find

φ1(x̄) =
λGO
2CO

∫

d4x̄2d
4x̄3 φ̂0(x̄2)φ̂0(x̄3)

1

(x̄232)
∆
2

CO(x̄32, ∂x̄2)δ4(x̄− x̄2) . (4.10)
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Substituting (4.10) into (4.9) and integrating the delta function by parts we see that (4.9)

is also satisfied. Therefore, by reparametrizing the initial sources as in (4.4) and (4.10)

one gets a new partition function ZR[φ̂0] that corresponds to a deformation of the original

CFT by the operator O2. For example, the leading correction to the connected two-point

function would then read

〈O(x̄1)O(x̄2)〉′R = 〈O(x̄1)O(x̄2)〉R +

+
GO2

2CO2

∣

∣

∣

∣

0

∫

d4x̄3d
4x̄4 φ̂0(x̄3)φ̂0(x̄4)

[

1 +
λ2γ∗
2

ln(x̄234µ
2) + λ2b∗

]

×

× CO2(x̄43, ∂x̄3)〈O2(x̄3)O(x̄1)O(x̄2)〉R + · · · , (4.11)

where the arbitrary mass parameter µ is necessary for the correct definition of the loga-

rithm. The dots in (4.11) correspond to terms of order O(λ4) as well as to three-point

functions involving scalar operators with dimensions greater that 2∆ and operators with

non-zero (even) spin [17]. Now, all angular dependent terms in the integrand on the rhs

of (4.11) drop out. This means that one is left with three-point functions involving only

scalar operators. Finally, we restrict ourselves to the case when ∆ = 2. Then, from

translation invariance and renormalization arguments one obtains

〈O(x̄1)O(x̄2)〉′R = 〈O(x̄1)O(x̄2)〉R +
GO2

2CO2

∣

∣

∣

∣

0

∫

d4x̄4φ̂
2
0(x̄4)×

×
∫

d4x̄3

[

1 +
λ2γ∗
2

ln(x̄23µ
2) + λ2b∗

]

〈O2(x̄3)O(x̄1)O(x̄2)〉R + · · · ,(4.12)

where now the dots in (4.12) represent multiple O2 insertions coming from higher corre-

lation functions. Insertions from scalar operators with dimensions greater than 2∆ = 4

are irrelevant and drop out. One way to see how (4.12) is derived from (4.11) is to in-

troduce a short-distance cut-off L¿ 1 in (4.11) and write a simple representation for the

x-dependent couplings as

φ̂0(x̄) = L−2
∫

d4ȳ δ4(x̄− ȳ) . (4.13)

Then, using translation invariance one can show that only the unit term of the OPE

coefficient CO2 survives the UV limit L→ 0 of (4.11). Since now (4.12) is to be interpreted

as the deformations of the CFT by a coupling of the form
∫

φ̂0O2, the O(λ2) terms could

be absorbed in a renormalization of the of the operator O2 as

O2(x̄) =

[

1− λ2γ∗
2

ln(x̄2µ2)− λ2b∗
]

O2
ren(x̄) , (4.14)

and then (4.12) becomes by virtue of (3.20)

〈O(x̄1)O(x̄2)〉′R = 〈O(x̄1)O(x̄2)〉R+
GO2

CO2

∣

∣

∣

∣

0

〈Θ〉
∫

d4x̄〈O2
ren(x̄)O(x̄1)O(x̄2)〉R+ · · · . (4.15)
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5. Conclusions and outlook

For the simple model of a scalar field in AdS5 with cubic self-interaction we showed that

deformations of the boundary CFT by scalar operators which appear in the OPE of the

basic operators O can be incorporated in the context of AdS/CFT by an appropriate ad-

justment of the boundary data φ0. From the point of view of the bulk theory such an

adjustment should correspond to a change in the boundary condition for the bulk fields.

From the point of view of the boundary theory such an adjustment is a reparametriza-

tion of the x-dependent coupling associated with the boundary operator O. Our results

can be generalized to the case when the OPE contains many more relevant and marginal

operators.

Essential role in our calculations played the OPE of the boundary fields O. In the

N = 4 SYM case, the generalization of our results should provide a concrete method to

study multi-trace deformations of the boundary CFT via OPEs of single-trace operators.

Moreover, it is conceivable that our method could also be useful in studies of deformations

of the (2,0) tensor multiplet in d = 6. In particular, in theN = 4 SYM case one knows a list

of double-trace operators in various representations of the SU(4) symmetry group that have

naive dimension 4 and could in principle be incorporated by our method. Furthermore,

their three-point function couplings and two-point function normalization constants are

known. One has to distinguish between the various operators that are deforming the

boundary CFT. For example, the double-trace operator in the [1] of SU(4), denoted O1

in [6], acquires anomalous dimensions of order 1/N 2 at strong coupling. Therefore, to

incorporate such a deformation one needs to know the anomalous dimension of the operator

as well as the correction to its coupling. On the other hand, the double-trace operator in

the [20] of SU(4), denoted O20 in [6], has protected dimension and can be incorporated

more easily. It is highly probable that both operators above break the conformal invariance

of the theory, although the case of O20 deserves further study.

In explicit AdS/CFT calculations, bulk actions such as (3.1) do not in general include

arbitrary parameters since the relative coefficients of all terms are fixed by SUGRA. Nev-

ertheless, deforming the boundary CFT by a double-trace operator entails the introduction

of an arbitrary “bare” coupling constant. As shown in (4.15), for marginal deformations

this is nothing but the integrated conformal anomaly. In the simple model studied here,

(3.19) is the only conformal anomaly in the boundary CFT, however in explicit SUGRA

calculations we expect that the gravitational anomaly will also play a role as a bare cou-

pling for double-trace marginal deformations. The implications of such a result for a better

understanding of the double-trace operators in terms of string theory, either as non-local

string couplings or otherwise, is an interesting question.
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A. Appendix

We give for completeness the explicit representation for the bulk-to-bulk propagator needed

for the calculations of the boundary effective action.

G(x, y) = −c∆ξ−∆2F1

(

∆

2
+

1

2
,
∆

2
;∆− 1; ξ−2

)

ξ2 =
r2 + r′2 + (x̄− ȳ)2

2rr′
, c∆ =

Γ(∆)

2∆+1π2Γ(∆− 1)

F (x, y) =

∫

d4p̄

(2π)4
e−ip̄(x̄−ȳ)(rr′)2Kα(|p̄|r)Kα(|p̄|r′)

Iα(|p̄|ε)
Kα(|p̄|ε)

∂rGε(x, y)|r=ε = −ε3K(ε; x̄, r′; ȳ)

The explicit expression we use for the correlators appearing in (3.16) are (for non-

coincident points and general d) [17]

〈O(x̄1)O(x̄2)〉 = CO
1

x̄2∆12

〈O(x̄1)O(x̄2)O(x̄3)〉 =
1

4πd
Γ3(∆2 )Γ(

3∆
2 − d

2)

Γ3(∆− d
2 )

1

(x̄212x̄
2
13x̄

2
23)

∆
2

〈O(x̄1)O(x̄2)O(x̄3)O(x̄4)〉 =
1

λ2
〈O(x̄1)O(x̄2)O(x̄3)O(x̄4)〉disc +

+ 〈O(x̄1)O(x̄2)O(x̄3)O(x̄4)〉conn
〈O(x̄1)O(x̄2)O(x̄3)O(x̄4)〉disc = 〈O(x̄1)O(x̄2)〉〈O(x̄3)O(x̄4)〉+ (x̄2 ↔ x̄3) + (x̄2 ↔ x̄4)

〈O(x̄1)O(x̄2)O(x̄3)O(x̄4)〉conn = −
∫ ∞

0

drdr′

(rr′)d+1

∫

ddx̄ddȳ
[

K̂(r; x̄, , x̄1)K̂(r; x̄, x̄2)×

×G(x, y)K̂(r′; ȳ, x̄3)K̂(r′; ȳ, x̄4)
]

+(x̄2 ↔ x̄3) + (x̄2 ↔ x̄4)

K̂(r′; ȳ, x̄) = C∆

[

r′

r′2 + (ȳ − x̄)2

]∆
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