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Abstract

We investigate the possibility of mixing between open and closed string
excitations in D-brane models with the fundamental string scale at the
TeV. The open string modes describe the Standard Model Higgs, while
closed strings describe graviscalars living in the bulk. This provides a
string setup for computing the Higgs-graviscalar mixing, that leads to a
phenomenologically interesting invisible width of the Higgs in low scale
quantum gravity models, as suggested previously by Giudice, Rattazzi and
Wells.
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1 Introduction

An interesting possibility to address the gauge hierarchy problem and guarantee
its stability is when the string scale lies in the TeV region [1, 2]. In this work, we
consider the scenario of large extra dimensions [3, 4] in the framework of pertur-
bative type I string theory with the Standard Model localized on a collection of
D-branes, in the bulk of δ extra large compact dimensions of submillimeter size
R. Standard Model degrees of freedom are described by open strings ending on
the D-branes, while gravity corresponds to closed strings that propagate also in
the bulk.

In this framework we will study the mixing between brane fluctuations, or
branons for short, and closed string modes, such as the graviton, graviphotons
and the dilaton or other graviscalars. Since branons are generically gauge non
singlets, such a mixing can arise from trilinear couplings of the form σ2h, involving
two open and one closed string modes that we denote σ and h, respectively. Upon
identifying σ with the Standard Model Higgs scalar, the above coupling induces
a Higgs-graviscalar mixing proportional to the Higgs vacuum expectation value
(VEV). It has been suggested that this mixing leads to an invisible width of
the Higgs that may be observable experimentally [5]. Indeed, since the Higgs is
much heavier than the spacing of the bulk Kaluza-Klein (KK) modes, it would
feel a coupling to a quasi-continuous tower of states, leading to a disappearance
amplitude rather than to oscillations.

In the context of the effective field theory, the required trilinear coupling σ2h
was postulated to emerge from an Rσ2 term, where R is the curvature scalar
formed by the pull-back metric on the D-brane world volume. Its coefficient ξ
cannot be fixed by the effective field theory and should be of order unity in order
to obtain a visible effect. However, in the conformal case, one obtains a small
value, ξ = 1/6, dictated by the conformally coupled scalar in four dimensions.

In this work, we study the branon-bulk mixing in type I string theory and we
compute in particular the trilinear coupling involving two open and one closed
string states. Our results are obtained in supersymmetric theories but remain
valid in non supersymmetric D-brane models, where supersymmetry is mainly
broken only on the world-volume of some D-branes, located for instance on top
of anti-orientifold planes [6]. More precisely, there are three possibilities for the
Higgs field that we analyse separately.

In the first case, the Higgs scalar is identified with an excitation of an open
string having both ends on the same collection of parallel D-branes (Dirichlet-
Dirichlet or DD open strings in the transverse directions). To lowest order,
the effective action can then be obtained by an appropriate truncation of an
N = 4 supersymmetric theory. In the abelian case, it is given by the Born-
Infeld action, depending on the pull-back of bulk fields on the D-brane world
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volume. Expanding in normal coordinates one finds that although no Rσ2 term
is strictly speaking generated, there is a quadratic coupling of branons to the
internal components of the Riemann tensor, Rµ

nµmσ
nσm, which induces a Higgs-

graviscalar mixing. Moreover, there is an additional coupling of branons with the
longitudinal component of a graviphoton in the bulk of the form σnσm∂n∂µh

µ
m.

The total effect in the invisible width can be summarized in terms of an effective
parameter ξ which is of order unity in the case of δ = 2 large transverse extra
dimensions of (sub)millimeter size. The compatibility of this coupling with the
conformal symmetry of D3-branes can be explained by analyzing the explicit form
of the corresponding conformal transformations.

The second possibility is when the Higgs corresponds to an open string with
one end on the Standard Model branes and the other end on another D-brane
extended in the bulk (Neumann-Dirichlet or ND strings). In this case, the branon
interactions do not emerge from a Born-Infeld action but can be extracted directly
by evaluating the corresponding string amplitudes involving twist fields. An
explicit computation of the 3-point function shows that the branon coupling to
the Riemann tensor now vanishes but it remains the mixing with the graviphoton.
As a result, the invisible width is much smaller than in the previous case.

In the third case, the Higgs lives on a brane intersection, corresponding to an
open string stretched between two orthogonal D-branes transverse to the large
dimensions (ND string in non bulk directions). The Higgs-graviscalar mixing in
this case vanishes.

The paper is organized as follows. In Section 2 we consider the first case where
the Higgs is a DD state living on the brane and we derive the coupling between
branons and closed string modes by expanding the Born-Infeld and Chern-Simons
action [7]. In Section 3 we discuss the generalization to the non abelian case. In
Section 4 we comment on the compatibility of the result obtained in the previous
sections with the conformal symmetry of the D3-brane effective action in the
α′ → 0 limit. In Section 5 we compute the disappearance amplitude for the
Higgs. In Section 6 we extend our analysis to the cases where the Higgs emerges
as an excitation of a ND open string, stretched between two orthogonal branes.

2 Branons’ effective action

In the following we use capital Latin letters for 10-dimensional indices, lower case
characters (µ . . . ω) for indices tangent to D-branes, i . . . n for directions orthog-
onal to the D-branes, the first part of Greek alphabet (α . . . δ) for spinor indices,
and a, b will be used for gauge indices. The metric signature is (−,+, . . . ,+).

We start by considering the effective field theory on a single Dp-brane, i.e.
with U(1) gauge group, which is given by the sum of Born-Infeld and Chern-
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Simons actions:

SBI =−Tp

∫
dp+1x e−Φ̃

√
− det

(
G̃µν + B̃µν + 2πα′Fµν

)
(1)

SCS =µp

∫
dp+1x eB̃+2πα′F ∧

∑
p

C̃(p+1) , (2)

where Fµν is the field strength of the abelian world-volume gauge field, and Tp, µp

are the tension and Ramond-Ramond (R-R) charge of the Dp-brane. The closed
string fields are the pull-back of the bulk fields to the D-brane world volume:

G̃µν = Gµν +Gmµ∂νσ
m +Gmν∂µσ

m +Gmn∂µσ
m∂νσ

n (3a)

B̃µν = Bµν +Bmµ∂νσ
m − Bmν∂µσ

m +Bmn∂µσ
m∂νσ

n (3b)

Φ̃ = Φ (3c)

C̃(p+1)
µ0...µp

= C(p+1)
µ0...µp

+ ∂µ0σ
mC(p+1)

mµ1...µp
+ ∂µ0σ

m∂µ1σ
nC(p+1)

mnµ2...µp
, (3d)

where G, B, Φ and C are the metric, two index antisymmetric tensor, dilaton
and the R-R (p + 1)-form potential, respectively. Here, we define the transverse
coordinates of the brane as our σ fields and an implicit antisymmetrization over
indices µ0, µ1, . . . , µp in (3d) is understood.

The tension and R-R charge of the brane can be computed either by T-
dualizing the tree level one-point closed string amplitude [8] or by one loop vac-

uum computation [9] and they are given in terms of the Yang-Mills coupling g
(p)
Y M

on the brane by

µp = Tp =
(
2πα′g(p)

Y M

)−2

. (4)

We now recast the Born-Infeld action (1) into the Einstein frame, where the Ricci
scalar in the bulk action is canonically normalized. This is obtained by rescaling
to the Einstein metric gMN given by

gMN = e−Φ/2GMN , (5)

in terms of which the corresponding action S
(E)
BI is

S
(E)
BI = −Tp

∫
dp+1x e

p−3
4

Φ̃

√
− det

(
g̃µν + e−Φ̃/2B̃µν + 2πα′e−Φ̃/2Fµν

)
. (6)

No rescaling is needed for the Chern-Simons action as it is metric independent.
Expanding S

(E)
BI + SCS around a flat Minkowski space,

gMN = ηMN + hMN (7a)

BMN = bMN (7b)

Φ =φ , (7c)
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one obtains [7]

L(1) = −Tp

[
(p− 3)

4
φ+

1

2
hµ

µ

]
± µpC

(p+1)
µ0...µp

εµ0...µp

(p+ 1)!
, (8)

L(2) = −Tp

[
∂µσ

mhµ
m + σm

∂mh
µ
µ

2
+
p− 3

4
σm∂mφ+ πα′bµνF

µν

]

±µp

[(
σm∂mC

(p+1)
µ0...µp

+ (p+ 1)σm∂µ0C
(p+1)
mµ1...µp

) εµ0...µp

(p+ 1)!
+

πα′F ∧ C(p−1)
]
,

(9)

L(3,NS2) =

{
1

2g2
Y M

[
(∂ρAµ∂

ρAν + ∂µA
ρ∂νAρ − 2∂µA

ρ∂ρAν)h
µν−

(∂ρAσ∂
ρAσ − ∂ρA

σ∂σA
ρ)
hµ

µ

2
− (∂ρAσ∂

ρAσ − ∂ρA
σ∂σA

ρ)
p− 7

4
φ

]

+
Tp

2

[(
∂µσm∂νσ

m − 1

2
ηµν∂ρσm∂

ρσm

)
hµν − hmn∂ρσ

m∂ρσn− (10)

∂ρσm∂ρσm

(
p− 3

4

)
φ− σmσn∂m∂n

(
p− 3

4
φ+

hµ
µ

2

)
−

2 (∂µσ
n)σm∂mh

µ
n − 2πα′ (2bµmF

µν∂νσ
m + σmFµν∂mb

µν)
]}

,

L(3,R2)
br = ±µp

{
1

2
σmσn∂m∂nC

(p+1)
µ0...µp

+ (p+ 1)σm∂µ0σ
n∂mC

(p+1)
nµ1...µp

+

(p+ 1)p

2
∂µ0σ

m∂µ1σ
nC(p+1)

mnµ2...µp
+

(p+ 1)p

2
(2πα′)Fµ0µ1σ

m∂mC
(p−1)
µ2...µp

+

(p+ 1)p(p− 1)

2
(2πα′)Fµ0µ1∂µ2σ

mC(p−1)
mµ3...µp

+

(p+ 1)p(p− 1)(p− 2)

8
(2πα′)2Fµ0µ1Fµ2µ3C

(p−3)
µ4...µp

}
εµ0...µp

(p+ 1)!
,

(11)

where the ± signs correspond to the two choices of the D-branes R-R charge
(branes or anti-branes) and εµ0...µp is the usual antisimmetric tensor density.

The non kinetic terms in the above expressions (with no spacetime derivative
on σ) are obtained by retaining the terms up to quadratic level of the Taylor
expansion

∞∑
k=1

(σm∂ym)k

k!

(
e

p−3
4

Φ√g ∓ C(p+1)
)

(yn)
∣∣∣
ym=0

. (12)

This shows that the branons experience a non derivative interaction in a nontrivial
background, which can be interpreted as a potential Vbr for the position of the
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brane

Vbr ≡ Tp

(
e

p−3
4

Φ√g ∓ C(p+1)
)
. (13)

We expect that in a supersymmetric background the Neveu-Schwarz Neveu-
Schwarz (NS-NS) and the Ramond Ramond (R-R) fields give mutually compen-
sating contribution to the potential term: we shall check this fact in Section. 4,
using the supergravity description of branes.

Let us consider now the trilinear Lagrangian (10). It corresponds to the closed
string linearization of the following non linear Lagrangian, quadratic in NS open
string modes:

LNS = −e p−3
4

Φ√g
[

1

4g2
Y M

FµνFρσg
µρgνσ +

Tp

2
(∇µσ

m∇νσ
ngµνgmn−

σmσnRµ
mµn + 2πα′ (2bµmFµν∂

νσm + Fµνσ
m∂mb

µν)
) ]
,

(14)

where we introduced the (gravitational) covariant derivative over σ fields

∇µσ
m = ∂µσ

m + Γm
nµσ

n . (15)

The gravitational connection is given by

Γm
nµ =

1

2
gmM (gnM,µ + gMµ,n − gnµ,M) , (16)

where column denotes differentiation as usual.
We thus found, besides the expected Yang-Mills kinetic terms, a potential

of interaction between branons and the bulk closed string states. Note that the
potential term in (14) vanishes in a trivial background; it generates interactions
of σm with higher KK modes of the bulk fields. The above results can be also
obtained by a direct computation of corresponding on shell string amplitudes.

3 Non-abelian generalization

In the non-abelian case, we cannot rely on the Born-Infeld action to obtain the
effective field theory. Instead, one can compute the relevant 3-point amplitude
involving two branons and one closed string state. We concentrate below on the
NS-NS sector. The amplitudes are given in terms of one kinematical invariant
variable t, which is given in terms of the momenta of the open string excitations,
k2, k3, and the momentum k1 of the closed string state by

(k2 + k3)
2 = 2k2 · k3 = −t

kµ
1 · k1µ = −km

1 · k1m = −t (17)

(k2 + k1)
2 = (k3 + k1)

2 = t ,
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where the last product is understood to be over the full ten dimensional space,
such that k2,3 have non-vanishing components along the brane directions only,
and

√−t is the KK mass of the closed string particle. The relevant amplitudes
in our analysis are1 [10]

A(h, σ, σ) = igc
2−α′t√πΓ(1/2−α′t/2)

Γ(1−α′t/2)
Tr(tatb)

[
2ik2µσ

amik3νσ
b
mh

µν

−2ik2µσ
amikµ

3σ
bnhmn − 4ik2µσ

anσbmik1mh
µ
n−

σamσbnik1mik1nh
µ
µ − ik2µσ

amikµ
3σ

b
mh

ν
ν(1 + α′t)−1

]
+ (2 ↔ 3)

(18a)

A(φ, σ, σ) = igc
2−α′t√πΓ(1/2−α′t/2)

Γ(1−α′t/2)
Tr(tatb)

[
σamσbnik1mik1n(3− p)+

ik2σ
amik3σ

b
m

(
4−p

1+α′t − 1
)]× 1

2
√

2
φ+ (2 ↔ 3)

(18b)

which are in agreement with the Lagrangian (14) in the U(1) case and justify its
straightforward generalization to nontrivial Chan-Paton factors. Comparing the
two expressions one must use the relations [9]

gc = κ/2π (19)

and the following rescaling of the fields

σm→ σm/ (2πα′gY M) , (20a)

hMN → hMN/(2κ) , (20b)

φ→
√

2φ/(2κ) , (20c)

where κ =
√

8πGN is the gravitational coupling.

4 Conformal invariance

It is known that the gauge field theory on a D3-brane is N = 4 supersymmetric,
which is conformal invariant. It is also known that conformally coupled scalar
fields in four dimensions exhibit a ξRσ2 interaction with ξ = 1/6 and R the
four-dimensional Ricci scalar. One may be worried why the calculations exposed
so far do not show the expected ξRσ2 coupling for p = 3, which is also a source
of Higgs-graviscalar mixing. In fact we shall argue below that the conformal
symmetry is realized in a rather different way. Moreover in Section 5 we shall
show that the potential interaction we obtained in Eq. (14) gives rise still to a

1The dilaton is defined by a polarization tensor ζMN of the closed string vertex operator
of the form ζMN = φ(ηMN − lMkN − kM lN)/

√
8, where k is its momentum and l a vector

satisfying l2 = 0, kl = 1.
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disappearance amplitude for the Higgs that can be parametrized in terms of an
effective ξ that we shall compute.

Looking back to (14), we can check that conformal invariance of the gauge
fields for p = 3 (and no other values of p) is obtained in the usual way, using a
conformal transformation on the brane

gµν → ĝµν = Ω2gµν , (21)

with the dilaton Φ and the gauge field Aµ inert. For the scalar branons the sit-
uation is different as they also couple to graviphotons and graviscalars. Here we
show that conformal invariance on a flat 3-brane is achieved if (21) is supple-
mented by

gmn → ĝmn = Ω−2gmn , (22)

with the branons unaltered. Indeed, it is easy to see that (21) and (22) applied
together correspond to a conformal symmetry of the action derived from (14) for
p = 3 in a trivial background. Moreover in the presence of a R-R field, applying
the transformations

Cµ0...µp → Ĉµ0...µp =Ω4Cµ0...µp (23a)

Cmµ1...µp → Ĉmµ1...µp =Ω2Cmµ1...µp (23b)

Cmnµ2...µp → Ĉmnµ2...µp =Cmnµ2...µp , (23c)

with gµm inert, one can show that the conformal symmetry is exact provided
the background is chosen so that the potential (13) vanishes and that

√
ghµ0

m =
Cmµ1...µpε

µ0...µp/p!. Here, we dropped for simplicity the (p+ 1) superscript on the
R-R form C(p+1).

The effect of the ξRσ2 term is thus replaced by other interaction which at
the quadratic level becomes σmσnRµ

mµn. In relation to these effects, one may
wonder about the argument in [11], where the N = 4 super Yang-Mills theory was
considered on S4 rather then on R

4 and it was claimed that the flat direction of σ
is lifted by the curvature couplingRσ2, thus making the path integral to converge,
at least if the metric is close enough to the one of a four sphere, which has R > 0.
In our case the (σm∂m)k(

√
g+C) or its quadratic expansion may equally well do

the job for the case of a four sphere embedded in a higher dimensional spacetime.
It would be interesting to check this explicitly.

Amusingly enough, there is at least one case in which the potential (13) van-
ishes in a non-trivial way, thus preserving the conformal symmetry. It corresponds
to the supergravity background induced by some parallel Dp-branes. The back-
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ground is given, in the string frame, for p < 7, by [12]

ds2 = H− 1
2 (dxµdxµ) +H

1
2 (dymdym)

eΦ = H
p−3
4

Cµ0...µp = εµ0...µpH
−1

H = 1 +
Q

7− p

1

r7−p

(24)

where r ≡ √ymym. The solution (24) depends on the parameter Q, with dimen-
sions of [length]7−p, defined by∫

⊥
d ∗ dC(p+1) =

∫
∂⊥
∗dC = S7−pQ (25)

where S7−p is the volume of the (7 − p)-dimensional sphere of unit radius. The
classical parameter Q is related to the microscopic string parameter µp by2

Q = Nµp2κ
2 (26)

where the integer N counts the number of D-branes and the classical limit is
recovered at N →∞. Using that µp ∝ g−2

o , κ ∝ gc and that g2
o ∝ gc ∝ e〈Φ〉 ≡ gs

we have also

Q ∼ Ngs(2πα
′)

7−p
2 . (27)

In this supersymmetric background the potential felt by a stuck of N ′ test
Dp-branes with tension and charge T test

p (assuming N � N ′ so that the test
branes alter negligibly the background they are plunged into) is

Vbr = TpH
−1 − µpH

−1 = 0 (28)

2This is derived using the terms in the supergravity action that involve the R-R form

S = − 1
4κ2

∫
d10x(dC)2 − µp

∫
branes

C .

Thus, the equation of motion is ∫
⊥

d ∗ dC = 2κ2
∑

branes

µp

which, compared to (25), gives (26).
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where we used the BPS relation Tp = µp. We also note that in this case the
conformal transformations (21), (22) and (23) can be described at once by defining
the conformal transformation of the function H

H(r) → Ĥ(r) = Ω−4H(r) . (29)

If the background is non supersymmetric and cancellation (28) does not hold (as
in the case of a test antibrane) conformal invariance is broken.

Finally, we check the limit of validity of the supergravity solution (24). We
should have α′R� 1 for the curvature scale R, and the weak coupling condition
eΦ � 1. In fact, on the background (24) we have

R∼ H ′2

H5/2

{
r→0−→ Q−1/2r

3−p
2

r→∞−→ (Q/r8−p)
2

eΦ =H
p−3
4




r→0−→
(

Q
7−p

)p−3
4
r

(p−7)(p−3)
4

r→∞−→ 1 + p−3
4(7−p)

Q
r7−p

Thus, in the r → ∞ limit the curvature vanishes and the coupling is bounded
for every p, whereas in the r → 0 limit both curvature and coupling blow up for
p > 3. However, in the p ≤ 3 case, the curvature is bounded by Rmax

Rmax ∝ Q− 2
7−p (30)

and thus, for p ≤ 3, α′ corrections can be taken under control for any value of
r by sending Q → ∞ in a way that α′Q−2/(7−p) → 0 (for p = 3, the AdS5 × S5

geometry is obtained in this way). If we plonge a brane into a nontrivial general
background, relation (28) generally won’t hold and a potential for the position of
the brane will be generated.

Hence, everything appears to be consistent even in the absence of a ξRσ2

term.

5 Higgs-graviscalar mixing

We shall now show how in our scenario a mixing may take place between branons
and a graviscalar. The mixing is triggered by the trilinear coupling σ2h in (10)
if σ acquires an expectation value [5]. Before we analyse the mixing, we discuss
first the abelian case of a single brane, where the graviphoton absorbs the branon
and acquires a (localized) mass. For this purpose we need the expansion of the
Born-Infeld action (6) at the quadratic level of the NS-NS closed string modes:

L2NS2 = −Tp

[
1
8

(
hµ

µ

)2 − 1
4
hµνh

µν + 1
2

(
p−3
4

)2
φ2 + p−3

8
φhµ

µ + 1
4
bµνb

µν
]
, (31)
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which can also be checked by computing the relative string scattering amplitudes
[13].

We might have expected the appearance of a mass-term for the graviphoton
as the presence of the brane breaks translational invariance. The graviphoton
indeed becomes massive and eats the U(1) part of the branons, but this is not
manifest with the parametrization of the metric that we used, gMN = ηMN +hMN .
Actually, with this parametrization, the field hµm is not the graviphoton unless
one is restricted to the lowest order approximation. The graviphoton V m

µ is
defined by parametrizing the metric in the following way

ds2 = g
(10)
MNdx

MdxN = gµνdx
µdxν + gmn

(
dxm + V m

µ dxµ
)
(dxn + V n

ν dxν) ,

or equivalently

gMN =

(
gµν + gmnV

m
µ V n

ν Vµn

Vmν gmn

)
. (32)

Then V m
µ can be identified with the graviphoton since the ten dimensional coor-

dinate transformation

xm → xm′ = xm + ξm

becomes equivalent to the gauge transformation

V m
µ → V m

µ
′ = V m

µ + ∂µξ
m .

The resulting bulk kinetic terms for the dimensionally reduced theory, omitting
the terms involving graviscalars and dilaton, is

Lbulk =
1

2κ2

√
|g|

[
R(p+1) − 1

4
gmn

(
∂µV

m
ν − ∂νV

m
µ

)
(∂µV νn − ∂νV µn)

]
(33)

Expanding the Born-Infeld action (6) over the metric (32) we obtain, up to
quadratic order in the fields

L′2NS2 = −Tp

√
|g|

[
1
2

(
hµ

µ + p−3
2
φ
)

+ 1
2

(
V m

µ + ∂µσ
m

)2
+ 1

8

(
hµ

µ + p−3
2
φ
)2−

1
4
hµνh

µν + 1
2
σi∂i

(
hµ

µ + p−3
2
φ
)

+ 1
4
(bµν + 2πα′Fµν)

2] (34)

where we arranged the terms involving the branons and the graviphotons in a
perfect square, showing that for each m the U(1) branon is eaten by the corre-
sponding graviphoton which becomes massive [14]. Its mass mgp is given by3

m2
gp =

16πTp

(MP l)
p−1 , (35)

3In our analysis we implicitly assumed that the Kaluza-Klein scale 1/R � mgp otherwise
bulk terms may induce mixing and mass terms of comparable strength to (35).
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where MP l is the lower dimensional Planck mass on the p-brane. This eating
mechanism is T-dual of the mechanism which makes the antisymmetric tensor
bµν massive by eating the U(1) world-volume gauge field Aµ [15], triggered by the
last term in (34). In fact, a massless two-index antisymmetric tensor in (p + 1)
dimensions has 1

2
(p−1)(p−2) components which absorbs the (p−1) components

of a gauge field through the last term of (34) to make a massive antisymmetric
tensor field with 1

2
p(p− 1) components.

The terms quadratic in hµ
µ and hµν are due to the cosmological constant term

associated to the brane tension. The additional interaction σi∂i(h
µ
µ +(p− 3)φ/2)

can be interpreted as a mixing between the longitudinal mode of the gravipho-
ton (involving only the branon with the identity 11 Chan-Paton factor) and the
Kaluza-Klein excitations of the zero helicity part of the graviton and dilaton.
Using canonically normalized fields, this mixing is given by

L′mix = − 1

2
√

16π
mgpM

p−1
2

P l σi∂i

(
hµ

µ +
p− 3

2
φ

)
. (36)

We note that there is also a similar mixing with excitations of the R-R sector,
whose amplitude is equal in magnitude and opposite in sign to the previous one.
The equality of the magnitude of the NS-NS and R-R mixing contributions is not
surprising, as unitarity relate these mixing amplitudes to the imaginary part of
the one loop two branon point-function, which must vanish in a supersymmetric
background.

We will now focus on the NS-NS sector. The mixing (36) vanishes on-shell
unless σm is massive for some direction m̄ and involves only the identity 11 Chan-
Paton factor. For non trivial Chan-Paton factors, we start from the trilinear
coupling we found in Sections 2, 3

L = −1

4
σmσn∂m∂n

(
hµ

µ +
p− 3

2
φ

)
− (∂µσ

n) σm∂mh
µ
n (37)

and assuming that one of the branons gets a mass mσ and a non-vanishing VEV
v, we substitute

σm̄ = v + ρm̄ (38)

and obtain the mixing term

Lmix = −1

2
vρm̄∂2

m̄

(
hµ

µ +
p− 3

2
φ

)
+ vρm̄∂µ∂m̄h

µ
m̄ . (39)
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Using next the contractions

hµ
µh

ν
ν +

(
p− 3

2

)2

φφ=
64π

Mp−1
P l

1

k2 +m2
KK

(40)

hµ
m̄h

ν
n̄ =

16π

Mp−1
P l

gµνgm̄n̄

k2 +m2
KK

(41)

hµ
µh

ν
m̄ =0 (42)

and assuming that mσ � 1/R (large extra-dimensions), so that the branons do
not resolve the discreteness of the Kaluza-Klein spectrum, we obtain the following
correction to the branon self-energy (in the notation of [5]):

Σ(p2) = v2 16πV

Mp−1
P l

∫
dδk

(2π)δ

k4
m̄ + k2k2

m̄

p2 + k2 + iε
, (43)

where δ is the number of large extra dimensions and V their volume. Σ contains
the contribution from the insertion of KK modes in the branon propagator, which
reads:

Gσ(p2) = − 1

p2 +m2
σ + Σ(p2) + iε

. (44)

The imaginary part of Σ above is related to the decay amplitude Γ of the
branon. Using

lim
ε→0

Im

[
1

x+ iε

]
= πδ(x) ,

and the type I relation for the theory on a p+ 1 brane in ten dimensions [16]

Mp−1
P l =

2

α2
Y M

M5−p
s V̄ (2π)p−3 , (45)

with V̄ the reduced volume defined by

V̄ ≡M9−p
s Π9

i=p+1Ri ,

and Ms the string scale, we have

Γ =
1

mσ

Im
[
Σ(p2 = m2

σ)
]

=
4πα2

Y M

(2π)p−3

a(δ)

2
mσπ

v2

M5−p
s

(
mσ

Ms

)δ

Sδ−1 , (46)

where Sδ−1 is the volume of the (δ− 1)-dimensional sphere of unit radius and we
defined

a(δ) ≡ 3

δ(δ + 2)
+

1

δ
=

δ + 5

δ(δ + 2)
. (47)
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Equation (46) is the same with the expression that appears in [5], usingM3p+δ−7
D =

(2π)p−3Mp+δ−1
s /(4πα2

Y M) and identifying κξ with
√
a(δ)/2. The two terms in the

expression (47) of a(δ) correspond to the contributions from the mixing with the
graviscalars (first term) and with the graviphotons (second term).

Thus, we see that despite the absence of a ξσ2R term in the effective action,
a mixing can nevertheless take place with an effective ξ given by

ξ =

√
δ + 5

6δ(δ − 1)
. (48)

This mixing becomes maximal for the case of δ = 2 large extra dimensions, where
ξ =

√
7/12 ' 0.76, leading to a possible observable invisible width for the Higgs

[5]. For δ > 2, the effective ξ decreases and varies between ξ ' 0.47 for δ = 3
and ξ ' 1/4 for δ = 6.

6 Higgs on branes intersection

In this Section, we study the case where the Higgs lives on a branes intersection,
corresponding to an open string with mixed Neumann-Dirichlet (ND) boundary
conditions in four internal directions. We will distinguish two subcases, depending
on whether one of the two orthogonal branes extend (partly) in the bulk of large
extra dimensions.

We thus consider the coupling between two ND open string modes and a closed
string NS-NS state. We will consider first the oriented theory. As we cannot use
now the Born-Infeld action, a string calculation is the only way to compute this
coupling.

The kinematics of the problem is the same with the one described in (17).
The vertex operator for a NS open string state χ, with one end on D5-branes and
the other end on D9-branes, is (in the (−1)-ghost picture, ϕ is the superghost
field):

V
(−1)
59 = gotaa′χαe

−ϕ∆SαeikX , (49)

where the Chan-Paton factor index a(a′) transforms in the (anti-)fundamental
of the D5(9)-branes gauge group. The operator ∆ is the product of twist fields
associated to the four internal coordinates with mixed ND boundary conditions,
Sα is the corresponding spin field, and χα selects the internal spinor helicity. This
vertex operator has the same expression as the left (supersymmetric) part of the
vertex for a massless heterotic twisted state of a Z2 orbifold [18]. For a 95 state,
one has the same operator with χα replaced by (χ̄)α ≡ (χα)† and Sα replaced by

14



Sα. The NS-NS closed string state vertex operator (in the 0-ghost picture) is

V
(0,0)
2NS2(ζ, k) =

−2gc

α′
ζMN

(
i∂XM +

α′

2
k · ψψM

)
eikX

(
i∂̄X̃N +

α′

2
k · ψ̃ψ̃N

)
eikX̃ ,

(50)

where XM denote the bosonic coordinates and ψM their (2d) fermionic super-
partners.

The relevant correlators between the twist field ∆ and X is (for left-movers)
[17]:

〈∆(z1)∆(z2)X
M
L (z3)X

N
L (z4)〉

〈∆(z1)∆(z2)〉 = −α
′

2
ηMN ln


1−

√
z13z24

z14z23

1 +
√

z13z24

z14z23


 , (51)

where zi denote the corresponding world-sheet positions. For right-movers, the
correlator is the same provided one substitutes L, zi with R, z̄i. The correlator
between two ∆’s is

〈∆(z1)∆(z2)〉 =
1

(z1 − z2)
1/2

. (52)

Note that the normalization coefficient go (it is understood go for p = 5) in
front of the vertex operator (49) is the same with the normalization of untwisted
open string states. This can be checked by comparing the χ2A2

µ amplitude and
the exchange interaction χAχχAχ which leads to internal propagation of a ND
state. The χα field carries an index which labels the spinor representation of the
internal SO(4) and the GSO projection forces it to be a Weyl spinor. Hence, it
has two helicity states forming the fundamental representation of SU(2) (usually
called SU(2)R), rather then the full SO(4). This representation is pseudoreal,
two-dimensional in the complex sense and four-dimensional when viewed over
the real numbers. In the oriented theory the two χ’s correspond to the two
independent excitations described by 59 and 95 states which together make up
the bosonic content of an N = 1 hypermultiplet in six dimensions.

In the unoriented theory, we expect just one complex boson (the bosonic
content of half of a hypermultiplet) as 59 and 95 modes are correlated. This is
obtained [19] via a projection which involves SU(2)R as well as the 5-brane gauge
index, being the gauge group Sp(k). The projection is a reality condition which
can be applied to the spinor χ as the representation (2k, 2) of Sp(k) × SU(2)R

is real (the 2k of Sp(k) being also pseudoreal).
The relevant correlators involving the spinor fields Sα in 4 internal dimensions
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are [20]:

〈Sα(z1)S
β(z2)ψ

MψN(z3)〉 = −1
2

(
ΓMN

) β

α

z
1/2
12

z31z32
(53a)

〈Sα(z1)S
β(z2)ψ

M(z3)ψ
N (z4)〉 = 1

2
(z32z42z31z41)

−1/2 z
−1/2
12 z−1

34 ×[
δMNδβ

α (z32z41 + z31z42)−
(
ΓMN

) β

α
z12z34

] (53b)

〈Sα(z1)S
β(z2)ψ

MψN(z3)ψ
RψS(z4)〉 = − δβ

α

z12

ηMRηNS − ηMSηNR

z2
34

+(
ηMRΓNS + ηNSΓMR − ηMSΓNR − ηNRΓMS

) β

α
(2z34)

−1 (z32z42z31z41)
−1/2 ,

(53c)

where −iΓMN/2 = −i[ΓM ,ΓN ]/4 is the Lorentz generator in the spinor represen-
tation. This correlators can be used to compute the 3-point amplitude, which in
the α′t→ 0 limit becomes:

A2ND,NS2 = 2igcπ

[(
−k2 · k3η

µν + kµ
2k

ν
3 + kµ

3k
ν
2 +

2

πt
(kµ

3k
ν
2 − kν

3k
µ
2 )

)
δβ
αζµν

+
k1r

4

(
(Γrm) β

α (k2 − k3)
νζmν + (Γrn) β

α (k2 − k3)
µ ζµn

)]
(χ2

α)
†
χ3

β ,
(54)

where χ2,3 is the χ-field with momentum k2,3. The amplitude4 above displays a
pole term in t due to the χχAAb exchange interaction that has to be subtracted
in order to extract the contact terms. Using (19) and after the usual rescaling
(20b) one obtains the trilinear Lagrangian:

L2ND,NS2 = −1

2

[
−∂µχ̄∂νχh

µν + ∂χ̄∂χ

(
hµ

µ

2
+
p− 3

4
φ

)
+

1

4
∂nhµm (∂µχ̄Γmnχ− χ̄Γmn∂µχ)

]
.

(55)

No contact interaction with bµν is found, neither a potential coupling to the
internal components of the Riemann tensor, as in the untwisted DD case we
studied in Sections 2, 3. However, besides the standard kinetic terms we find still
a coupling of the ND open string modes to the KK excitations of the graviphoton,
arising through the spin connection in the gravitational covariant derivative

∇gr
µ χ = ∂µχ +

1

4
ω mn

µ Γmnχ . (56)

4Note that in contrast to the SO(3, 1) case, for Euclidean SO(4) spinors, the quantity χ†ξ
is scalar provided χ and ξ have the same chirality.
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Here, ω mn
µ is the standard spin connection (with one index parallel and two

orthogonal to the D5-brane) which is given in terms of the vielbein ea
µ by

ω mn
µ =

1

2
eνm

(
∂µe

n
ν − ∂νe

n
µ

)− 1

2
eνn

(
∂µe

m
ν − ∂νe

m
µ

)− 1

2
eρmeσn (∂ρeσi − ∂σeρi) e

i
µ

whose first order expansion around flat space, gMN = ηMN + hMN , is

ω mn
µ = h [m,n]

µ . (57)

The connection part of the covariant derivative is completed by gauge terms to
make the full covariant derivative

∇µχ = ∂µχ+
1

4
ω mn

µ Γmnχ+
(
ig5Aµ − ig9A

′
µ

)
χ , (58)

where Aµ(A′µ) is the D5 (D9) world-volume gauge field with gauge coupling g5

(g9). Finally, open string excitations σ and χ have also non-derivative (D-terms)
interactions [9]

LD = −g
2
Y M

4

(
[σm, σn]− i

2
χ̄Γmnχ

)2

(59)

in the normalization of (55).
We consider now the possibility of mixing between χ and closed string modes.

In the case where the Higgs, identified with χ, lives on an intersection of two
orthogonal branes, both transverse to the submillimeter bulk (e.g. D3 and D7,
or D5 and D5’), no mixing is generated between χ and closed string states. On
the other hand, in the case where one of the two orthogonal branes extends in
the bulk, a mixing is induced, as can be seen from the effective Lagrangian (55),
between χ and the longitudinal component of the corresponding graviphoton in
the bulk. As in the DD case, in order to obtain a quadratic coupling between
closed and open string states, one of the χ’s must acquire a non-vanishing vacuum
expectation value.

Note that a VEV of χ along a supersymmetric flat direction, i.e. when the
D-term (59) vanishes, gives rise to the well-known Higgs branch which provides a
string realization of a non-abelian soliton [19] that we are not interested in here.
We consider instead a real vacuum expectation value for χ, with non-vanishing D-
term that breaks supersymmetry, and we study the effective field theory obtained
by expanding around the VEV v, χ1 = v+χ′1, where χ1 is one of the two complex
bosons. Dropping the prime from χ′1 and assuming the ND conditions to be along
the directions 6̂ . . . 9̂ (orthogonal to the 5-brane), we have up to quadratic order
in χ and σ:

L′D = −g
2
Y M

4

[
v4 + 4v3Re(χ1) + v2

(
4(Reχ1)

2 + 2χ†1χ1 + 3χ†2χ2

)
+

+v2
(
[σ6̂, σ9̂] + [σ7̂, σ8̂]

)]
,

(60)
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where fields are canonically normalized. Note the appearance of a cosmological
constant and of a tadpole for χ1. This is anyway only an effective approach and
other potential terms may be generated when supersymmetry is broken.

On the other hand, χ can also obtain a mass in a supersymmetric way, avoiding
the cosmological constant and tadpole-like terms, as in (60). This is achieved by
turning on a Wilson line for the gauge fields with polarization parallel to the
5-branes, or if we T-dualize, by separating lower and higher dimensional branes
by giving an expectation value to one (or some) of the branons orthogonal to
both branes. This corresponds to moving in the so-called Coulomb branch of the
theory.

The χ1 expectation value determines the mixing terms between the χ field
and the corresponding graviphoton

Lmix = −1

4
v

(
∂[6̂h9̂]µ + ∂[7̂h8̂]µ

)
∂µImχ1 . (61)

Using (41), one finds for the bosonic field Imχ1,

Σχ(p2) =
v2

8

8πV

Mp−1
P l

∫
dδk

(2π)δ

k2k2
m̄

p2 + k2
(62)

and consequently, using (45), one finds the following invisible width

Γχ =
1

mχ
Im

[
Σ(p2 = m2

χ)
]

=
4πα2

Y M

(2π)p−3

π

32δ

v2

M5−p
s

mχ

(
mχ

Ms

)δ

Sδ−1 . (63)

Hence, the resulting effective parameter ξ in this case reads

ξ =
1

4

√
δ + 2

6δ(δ − 1)
, (64)

which is significantly smaller than in the DD case, studied in Section 5. Indeed,
the highest value obtained for δ = 2 is ξ ' 1/7. Due to the fact that the
graviphoton and its KK tower form a quasi-continuum set of states, this result is
not altered if we consider unoriented type I models in which an orbifold projection
takes the zero mode of the graviphoton out of the spectrum.

In conclusion, in this work, we investigated the possibility of mixing between
the Higgs, identified as an open string excitation, and closed string states from
the bulk (graviscalars), when the fundamental string scale is in the TeV region.
We found that such a mixing can occur, leading to a possible observable invisible
decay width of the Higgs, only when the Higgs lives on the Standard Model
world-brane and corresponds to a DD open string with both ends on parallel
D-branes.
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As we mentioned in the introduction, although our analysis was done in the
context of supersymmetric type I theory, our results remain valid in non super-
symmetric D-brane models where supersymmetry is broken (mainly) in the open
string sector, using appropriate combinations of branes with (anti)-orientifolds
that preserve different amount of supersymmetries. The reason is that in these
cases, the effective action can be obtained by a corresponding truncation of a
supersymmetric action.
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