
SOFTWARE ENGINEERING MANAGEMENT FOR

 PRODUCTIVITY AND QUALITY
K. S. White, Jefferson Lab, Newport News, VA, USA

Abstract

Since the advent of electronic computers, people have
struggled to develop effective software engineering
processes. While these processes are similar to those used
by hardware engineers, the software industry has earned a
reputation for late delivery of inadequate products. Most
software managers are looking for ways to deliver quality
products faster, or with fewer resources. The development
time and product outcome of any software project can be
influenced by four variables: the product characteristics,
the people involved, the processes they use, and the
underlying technology. In order to have an impact on the
productivity of a software development effort, the
manager must focus on and balance these areas. This
paper will discuss effective ways to improve productivity
by using this approach.

1 INTRODUCTION

1.1Background

In the late 1940’s, as the first electronic computers began
to appear, the software engineering industry was born.
Since that time, project managers have been
experimenting with ways to manage software
development. Over fifty years later, a process that began
with fairly small, single purpose machine language
programs developed by an individual engineer or
mathematician, has grown into mammoth, multiyear
projects staffed by teams of software engineers. Early
projects typically ran in batch mode on a single platform,
whereas today’s projects must run interactively on
multiple hardware platforms and operating system
configurations. Software development has ballooned into
a multibillion dollar industry involved in virtually every
new government and private sector project. A few low
level languages have been superceded with numerous high
level languages, often complete with tools to aid in
development. However, the benefits gained from the
relative ease of programming with high level languages
and tools have been overshadowed by the increased
complexity of software projects.
 Most software project managers are constantly looking
for ways to deliver better products faster. On the surface,
a software development project is a lot like any other
project. There are schedules to be worked out, resources
to balance and project goals to achieve. However, a big
difference comes from the fact that each new software
project is unique. Programmers are fond of modifying
existing code, but with large, complex projects, there are
many pieces that must be created and integrated and code

reusability is often limited. Software sharing, the practice
of writing commonly needed code so that it can be used
for a variety of projects, is an increasingly popular
concept, but cannot always be used in practice due to
unique and complex project requirements.
 For a software project to be a success, it must create a
product that is what the customer wants, and the product
must be delivered within a reasonable time frame. Faced
with limited resources and unlimited work, the
productivity of the software team becomes critical to
project success. Productivity is a measure of the
efficiency with which resources are employed to produce
goods or services, in this case software. As managers
approach software development projects, knowing how to
facilitate productivity can be very helpful.

1.2 Common Problems

With software development, one problem occurs when
projects begin without adequate product requirements.
Another problem involves the imprecise practice of
generating time estimates for software projects. Starting
with a poor time estimate can doom even the most
efficient development team to late delivery. Another
factor working against success stems from the very nature
of software. There are as many ways to design and
program as there are programmers. There are also many
opportunities to introduce errors. Add this to the fact that
modern programs are typically too large to exhaustively
test and many potential problems loom before the project
even begins. Couple these problems with increasing
pressure to produce more with fewer resources and the
software project manager’s job becomes a real challenge.

2 PRODUCTIVITY FACTORS

2.1 Factors

While there have been volumes written on the topic of
software development and many methods put forth to
increase productivity, there are four factors that are
recurring themes [1][2][3]. Effectively managing these
four areas can help a project manager maximize
productivity. The outcome, including the efficiency of
development, of any software project is heavily
influenced by the people involved, the processes they use,
the product size and characteristics, and the underlying
technology used to implement the product. In order to
have an impact on the overall productivity of a software
engineering effort, the manager must focus on the
characteristics of the product, the along with the
combination of people, processes and technology used to

317

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25328477?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

develop the product. It is not enough to do well in one or
two of these areas; all four must be considered and
balanced when there is a desire to raise productivity.
Within each area, there are many ways to improve.

2.1 Products

The product is the desired outcome of a development
effort. The characteristics of a product, as defined by the
requirements, affect the overall development time. At this
phase of a project, the manager’s primary concerns center
on the scope and the quality of the requirements.
 The requirements document should cover all functions
the product must perform, and therefore is the best
indicator of the scope and size of the project. The number
of functions needed and the complexity of these functions
directly impact the size of the product and therefore the
time it will take for each stage of development. Working
with the customer in the early stages of a project, as the
requirements are defined, the project manager can
influence the product definition and therefore the
development time. For example, if the requirements call
for a large product with many features, the manager can
suggest to the customers that the most critical features be
called out explicitly so the work can proceed in a phased
manner. This will enable the programmers to design the
product with the full requirements in mind, but deliver a
partial product sooner, satisfying the customers most
urgent needs. The manager can also suggest acceptable,
less complex, alternatives to requirements that may be
very onerous to implement. He can also make the
customer aware of the direct relationship between the
scope of the requirements and the time to delivery.
Customers then may be less prone to “gold plate” the
requirements if they understand how such extra,
unnecessary features will slow the process.
 Aside from the scope of the product requirements, one
must also ensure the quality of the requirements. The
quality or lack thereof, of the requirements is usually
mirrored in the final product. Poorly written requirements
can effectively extend the project duration as customers
file numerous change orders, requesting work to turn the
requested product into the desired product. This issue goes
beyond the written document, which must be clear and
complete, and extends to the understanding of the
requirements. Often, product requirements are not well
communicated and understood by the customers or the
programmers. This situation leads to wasted time as
development proceeds down the wrong path, with
programmers creating a different product than the
customer wants. An effective way to prevent this is
tasking customers and programmers to develop the
requirements together. During this phase, the customers
and the developers need to document and understand a
common vision of what the product will be. This may
involve developers learning some of the language of the
customer’s business, and the customers learning some

software terms. Having some common language helps the
programmers and customers communicate better
throughout the project, a key to good results. Often, the
requirements stage will become easier once customers and
developers have worked together this way a few times.
 Beyond the requirements phase, continuing to include
the customer in the development process helps ensure the
developing product stays on target to meet the product
goals. One common way this can be accomplished is to
have the developers do some rapid prototyping of the
product framework and interface, then allow the customer
to experience the evolving look and feel of the product.
Customer feedback at this stage can save a lot of
programming changes later in the process and helps to
further define the product. The more closely programmers
and customers work throughout all phases of
development, the better the product will meet the
customer’s expectations. This improves quality by
preventing the product from turning into something
different from what the customer wants, thereby saving
much time in the end.

2.2 People

It is important to have the right people working on a
software project. This means software engineers who are
knowledgeable, skilled and satisfied with their work. It is
even more important to have a project manager that works
well with people and values their contributions. No single
person can ensure project failure more effectively than the
project manager. Studies indicate that people related
issues have the biggest impact on programmer
productivity and software quality [1]. Individual
productivity has been reported to vary by up to a factor of
ten between programmers with similar experience levels.
Team productivity has been reported to vary by as much
as a factor of five. With people issues having so much
potential power over the outcome of a project, it makes
sense for leaders to learn what they can do to have a
positive influence in this area. The most common people
issues are staffing, motivation, and the work environment.
 When selecting staff, it is important to take the time to
find the best possible people. The selection process should
not be limited to the candidates’ professional skills and
knowledge. Rather, it should provide ways to determine
what type of employee the candidate is likely to be,
whether the candidate fits with the work environment, and
if he has the potential to contribute to the team
framework. Since many software projects are now large
enough to require a team of people, one should pay
attention to the composition of each team in terms of
developers skills, task assignments and compatibility. It
often takes time for people to learn to work together as a
team, and some managers have success by providing some
team building training or activities to jump start this
process. Another key to having good staff is providing

318

training. Ensure developers have the time and opportunity
for training to develop the project skills they need.
 Having selected excellent staff, or making the best of
existing staff, motivation is necessary to build
productivity. Motivated individuals tend to work longer
and harder than others. Different factors motivate
different people. Part of the project manager’s job is to
know team members well enough to know what motivates
them. Among the top motivators for programmers are the
opportunity for professional growth, achievement, and
challenging work. Some people measure their worth in
terms of money, and are motivated by a bonus or raise as
a reward for a job well done. Others enjoy the opportunity
to travel to professional conferences and the recognition
that comes from presenting their work among peers. Some
people want their work to be recognized within the
organization. This can be accomplished by giving awards,
or just taking the time to stop by and comment on the
progress of their project. Morale building activities, such
as getting the group together for a social meal or activity,
can also be effective motivators as well as team builders.
In any event, knowing what motivates your team, and
doing your best to provide such opportunities can improve
productivity for any project.
 Many organizations pay little attention to the work
environment. To facilitate productive programming, the
workplace should provide quiet spaces with a minimum of
interruptions [3]. Programming is the type of work that
requires periods of concentration, and each time the
thought process is broken, it takes some time for the
developer to become reimmersed in thought. Minimizing
interruptions due to telephones ringing, pagers buzzing
and people dropping by can help programmers make more
effective use of their time. For this reason, ideally, there
should be no more than two programmers per office. If
people are to be paired together in offices, be sure to pay
attention to putting compatible people together to avoid
unnecessary stress. To enhance teamwork, all team
members should be located in close proximity.
Programmers also need physical resources such as
computers and test equipment, and the workspace should
provide adequate space for these items. There should also
be a place, apart from the offices, where the team can
meet informally to discuss the project.

2. 3 Processes

The processes involved in software development are put
in place to standardize development practices, a very
necessary element to ensure quality. Good processes will
also result in consistent documentation. A full range of
recommended practices for various levels of product
quality has been developed by the Software Engineering
Institute and is called the Capability Maturity Model [4].
Utilizing such resources as a model can benefit any type
of serious software effort.

 While studies over the past decade support the
importance of good processes as a way to reduce delivery
time, it is important that these processes are value added.
This means the process must make development easier or
better than it is without the process. Because processes are
sometimes applied in a strictly arbitrary bureaucratic
fashion, many programmers have come to dread the very
word. The best way to insure a process does not fall into
this category is to allow the people who will use the
process to develop it. In order to make this approach
work, a manager must first think carefully about the
motivation for implementing or changing the process. The
manager must then clearly communicate the goal to the
programmers and have them develop the process. This
will result in a process that the programmers will use,
because they developed it to make their work easier and
better.

2. 4 Technology

The technology chosen for a project has the potential to
shorten or lengthen the development time. When selecting
a technology, it is important to consider the product, the
stability and longevity of the supplying company, and the
experience of your staff working with similar products. It
is often possible to gain productivity by switching to a
newer technology that is easier to use. For example, in the
past, changes from machine languages to high level
languages have facilitated a tremendous productivity
improvement during the coding phase of a project. One
must be sure to plan for the inevitable time needed to
make the switch, including purchasing, installing and
testing new products and staff training time. It is
important to be aware that selecting a very new, unproven
technology can add substantial time and risk to a
development project. This time is typically spent working
out problems with the new technology instead of
developing the product.

3 CONCLUSIONS
By increasing their awareness of productivity factors, and
using this information when managing software
development projects, managers can have a positive
impact on productivity. Many of these same techniques
also help to improve product quality and customer
satisfaction.

REFERENCES
[1] S. McConnell, “Rapid Development”, Microsoft Press,

1996.
[2] D. Phillips, “The Software Project Managers

Handbook”, IEEE, 1998.
[3] T. DeMarco, T. Lister, “Peopleware”, Dorset House,

1987.
[4] Carnegie Mellon University/Software Engineering

Institute. “The Capability Maturity Model”, Addison-
Wesley, 1995.

319

