
CDEV-NT: PORTING THE CONTROL DEVICE INTERFACE TO
WINDOWS NT

W. Akers, TJNAF; J. Chen, TJNAF; C. Watson, TJNAF

Abstract

In recent years the rapid increase in processing power
of the personal computer has made it a significant
competitor to high-end workstations for accelerator
control and experimental physics applications. When the
decreasing price of the PC and the availability of
inexpensive commercial software is also considered, NT
becomes a very attractive alternative to traditional UNIX
systems. In order to simplify the integration of Personal
Computers into our operating environment, we have
ported the Control Device (CDEV) Interface to Windows
NT. By supporting CDEV on this platform, we can
provide routine access to our existing control system.
Additionally, CDEV allows us to create an interface from
our UNIX workstations to Windows NT applications
(such as databases) that are significantly less expensive on
the PC. This paper details the pitfalls that we encountered
during the software migration and will provide a direct
comparison between the performance of CDEV
applications on UNIX and NT. Particular attention is paid
to network performance, which represents most of the
overhead of this transition.

1 MOTIVATIONS

1.1 A Common Interface

One of our primary goals at Jefferson Lab has been to
develop and use a consistent programming interface
whenever possible. CDEV is one of the products of this
effort. The CDEV core provides a standard interface that
can be wrapped around any control system device making
it accessible through a standard API. CDEV extensions
provide a set of network interface classes that simplify the
development of client/server applications to extend the
control system.

As Windows NT machines become more prominent in
the control room, concerns have been raised that they
might fragment our software development efforts and
create unnecessary distinctions between programmers
who are developing similar products on different
platforms. The extension of CDEV to Windows NT is
aimed at reducing this problem by providing a common
interface to the control system on both platforms.

1.2 Portable Applications

In addition to making the transition between platforms
easier for software developers, another goal is to make the

software as portable as possible. Much of the
incompatibility between platforms exists in the internal
representation of data and the techniques used to move the
data between machines. CDEV provides an API that
conceals communications details from the application,
making it possible to write client/server programs that can
be compiled and run on either platform without
modification.

2 THE DEVELOPMENT
ENVIRONMENT

2.1 Compiler/Linker Selection

One of the first considerations in porting CDEV to
Windows NT was to determine which compiler should be
used. We examined the venerable GNU C++ compiler,
which offered the benefit of having command line
parameters that would be consistent between
architectures. Several factors dissuaded us from this
decision.

When porting CDEV to different UNIX architectures
we have traditionally used the native compiler for that
platform and have provided the GNU compilation as an
alternative. Additionally, the cost of compilers and good
quality development tools for Windows NT is relatively
low, making the use of GNU tools atypical on this
platform. For these reasons, we opted to use the Visual
C++ environment for software development.

2.2 Selecting the Build Environment

The selection of the build environment was a more
difficult decision than the selection of the compiler.
GNU’s gmake is commonly used on most UNIX
platforms and has been the standard for building the
CDEV distribution from the first release. However,
building and installing gmake under Windows NT proved
to be an annoyance and led us to consider using
Microsoft’s build utilities.

When performing a build under Windows NT, a
developer has the option of using the Visual C++’s system
of project files or using Microsoft’s nmake. We found
that the project files used to perform a build in Visual
C++ had many built in restrictions that limited our ability
to use our existing directory hierarchy. Many of these
“default options” could not be readily overridden, and we
abandoned the project files in favor of performing the
build with Microsoft’s nmake.

The syntax of commands used by nmake is very
different from that used by gmake. These differences

International Conference on Accelerator and Large Experimental Physics Control Systems

603

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25328386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

required us to create a separate makefile for Windows
NT. A consolidated Makefile is still present for all of the
UNIX platforms, and a new Nmakefile has been added to
perform the build for Windows.

3 PITFALLS OF PORTING

3.1 Dynamic Link Libraries vs. UNIX Shared
Libraries

CDEV is designed to associate a device/message pair
with a control system object and then dynamically load a
library (the cdevService) that acts as the interface between
CDEV and the control system. In UNIX these are called
shared objects, in Windows NT they are called Dynamic
Link Libraries or DLLs. The most difficult part of porting
from UNIX to Windows NT was in discovering the
vaguely documented differences between UNIX shared
objects and Windows NT’s DLLs.

Our first and most significant discovery was that DLLs
and Windows applications do not share file descriptors.
This made it impossible to directly pass file pointers that
were created in the application into a CDEV library
function for I/O processing. One solution to this problem
was to convert any file descriptor to an osfHandle prior to
passing it to the DLL and then have the DLL convert it to
a file descriptor before using it. Besides being an
inelegant solution, this approach produced source code
that was bafflingly complex and non-portable.

After further discussions with Microsoft, we learned
that we could link our applications and libraries with the
shared version of the C standard libraries. This would
provide file and memory operations to both the
applications and CDEV libraries from a common source,
allowing file descriptors and certain memory blocks to be
exchanged seamlessly. While this approach will fail if the
application and library are linked with different versions
of the C standard library, it provided the most efficient
and portable solution to this problem.

3.2 Networking

The socket API in Windows NT is remarkably similar
to that used in UNIX and much of the code was reused
without modification. Many of the incompatibilities that
existed were caused by function name differences
between the two platforms. To create a map between
function names in Windows NT and similar functions on
UNIX, a single file, cdevPlatforms.h, was added to the
CDEV Generic Server distribution. This file also maps
error codes returned by socket operations in Windows NT
to the enumerated values that are commonly used in
UNIX.

The use of pipes in CDEV posed a more difficult
problem. In the UNIX environment, a pipe is functionally
the same as a file descriptor or a socket. In Windows NT,
however, a pipe is a software entity created by the

application that emulates a file descriptor. Because of
this, pipes that are generated by Windows NT cannot be
passed to the select system call. We addressed this
problem by writing a new pipe function that creates two
UDP sockets and connects them to one another. These
two file descriptors are then returned to the caller as a
socket pair.

The select system call proved to have other
inconsistencies that had to be addressed. When the user
tells CDEV to pend for a specific time interval, the
cdevSystem object will collect all of the file descriptors
from the underlying services and will select on them for
the specified interval. In UNIX, if no file descriptors are
returned by the services, the select function will sleep
until the time interval expires. Conversely, the Windows
NT implementation of select is designed to fail and return
immediately if no file descriptors are specified. In order
to make the behavior consistent between the two
platforms, we added a cdevSelect function that detects
this condition on Windows NT and explicitly calls sleep.

3.3 Portable Data Interchange

All of the data interchange in CDEV is performed using
Sun’s External Data Representation (XDR). XDR is used
to encode all data prior to transmission and to decode data
that is received. Because XDR libraries are not provided
with Windows NT, we have included Sun’s External Data
Representation source code with our distribution. These
modules are conditionally compiled when performing a
build on Windows NT.

4 PERFORMANCE BENCHMARKS

4.1 Platforms

In order to make the comparison between the Window
and Unix versions of CDEV as fair as possible, we
decided to perform our benchmarks on the same two
systems. The client system is a 133 MHz IBM ThinkPad
and the server is a 450 MHz DELL Dimension. Both
systems are configurable to run either Windows NT or
Red Hat Linux and are connected using 10 Mbit Ethernet.

4.2 Performance Test Application

The test application measures the performance of
communications between a CDEV Generic Server and
Client running on separate hosts. The application used for
this test is provided with the CDEV distribution in the
/extensions/cdevGenericServer/tests/Performance
directory.

Because most CDEV services are developed using the
client/server framework, our test focuses on throughput
between a client and server. The test begins by
transmitting very small (44 byte) packets between the
client and server, and calculating the time required to

604

complete a round trip. The size of each packet is
gradually increased until the packet size is one megabyte.

As illustrated by the chart, the performance between the
same systems running Linux and Windows NT versions of
CDEV is consistent. For packets whose size is at the very
high and very low end of the scale, Windows NT
outperforms Linux slightly. However, Linux shows
significantly better performance in the transmission of
mid-range packets.

The dip that is seen when transmitting packets that are
64 kilobytes is related to the buffering scheme that is used
by the CDEV Generic Server. One goal of the design is to
ensure that a server is not adversely impacted by a
misbehaving or slow client. This is done by buffering
small packets and automatically forcing flushes when the
data transmission size reaches a certain threshold. Future
releases of the CDEV Generic Server will use a non-event
driven scheme that will result in more consistent
performance at higher packet sizes.

5 CONCLUSIONS
The performance difference between CDEV

applications compiled on Windows NT and Linux is
negligible and should not impact the decision of which
platform to use. The greatest benefit provided by
Windows NT is the reasonable price and availability of
good quality commercial software. The developer can use
CDEV to collect information from the control system and
then plug this information into products such as Microsoft
Excel or Access for analysis and reporting. Using the
CDEV interface, developers will be able to write macros
for these commercially available spreadsheets and

databases that allow them to collect and analyze data in
real-time.

6 FUTURE DIRECTIONS
Jefferson Lab in association with CERN is developing

an extended CDEV interface that is written entirely in
Java. CDEV Java currently accesses the control system
through the CDEV Gateway and native Java method calls,
and provides mechanisms for attaching to JDBC
compliant databases directly.

CDEV extensions, such as the CDEV Generic Server
and CDEV Gateway, are continuing to be refined to
improve performance and reliability. Upcoming
development on these products will attempt to improve
network throughput and connection management by
replacing the current select-driven, socket management
model with a thread oriented approach.

Version 1.7 of the CDEV distribution can be obtained
from the CDEV web page at http:\\www.jlab.org\cdev.

REFERENCES
[1] ‘An Object-Oriented Class Library for Developing

Device Control Applications’, J. Chen, W. Akers, G.
Heyes, D. Wu, C. Watson, ICALEPCS 1995
Proceedings.

[2] ‘The CDEV Generic Server’, W. Akers, J. Chen, C.
Watson, S. Witherspoon, J. Van Zeijts, B. Bowling,
ICALEPCS 1997 Proceedings.

[3] ‘A Portable Accelerator Control Toolkit’, C. Watson,
Particle Accelerator Conference 1997 Proceedings.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

44 72 332 1100 4172 16460 32844 65612 131148 262220 1048652
Packet Size

B
it

s/
Se

co
nd

WINNT (Bits/Sec) LINUX (Bits/Sec)

605

