
THE TECHNICAL SUPERVISION INTERFACE: A JAVA BASED
SYNOPTIC VIEW ENVIRONMENT

P. Sollander, J. Courthial, U. Epting, R. Martini, P. Ninin, C. Pesard, CERN, Geneva, Switzerland

Abstract

The development of high-level synoptic views for
supervision of the technical infrastructure at CERN is
becoming increasingly important. Synoptic views are
traditionally used by the control room as a means of
supervising remote equipment but are also becoming of
increasing interest to the equipment owners themselves
as the computing power and network connectivity
available in offices and homes permit the use of these
views. The use of common synoptic views facilitates
communication between control room operators and
equipment specialists and helps to limit the amount of
development required. In addition, the development of
synoptic views is better done by the control room
operators and equipment specialist than by a computer
scientist. The Technical Supervision Interface (TSI) is
built to meet the new requirements of users. It will
provide a Java applet viewer that can download synoptic
view files from a web server and connect to any data
source through a standardized protocol. The client-
server communication will be done via a standardized
event driven data acquisition protocol implemented on
each data source type. This document describes the
requirements, the design and the implementation of the
Technical Supervision Interface.

1 INTRODUCTION
CERN's Technical Control Room (TCR) is today

using some 700 mimic diagrams developed with a tool
known as the Uniform Man Machine Interface (UMMI).

The UMMI tool was created in 1990 for use on control
room workstations.

Over time, change requests have been made and new
users like equipment groups want to use the tool. More
recently, the TCR has introduced the Technical Data
Server (TDS) [2] as a common data source for the
different types of data clients: alarm screens, data
logging and mimic diagrams. The TDS may be seen as a
real-time database containing the equipment states to
which the client may subscribe and receive changes as
they appear.

In order to implement new user requirements,
interface to the TDS properly and to prepare for the
LHC, we decided start a project to replace the UMMI.
A new tool should take advantage of recent visualisation
technology, implement an appropriate client to the

publish-subscribe mechanism of the TDS and take into
account feedback on the previous tool.

2 SPECIFICATIONS FOR A NEW TOOL
User interviews were conducted with most of the

current users of the UMMI and with potential users of a
new system. The resulting user requirements document
(URD) [3] was analysed and the following concepts were
seen as important features for a new sy

•

stem.

Object-oriented graphics and symbols. -- Object
created must be completely independent and
should contain everything they need to be run.
Data should be device oriented rather than tag
oriented.

• Standard Symbols. -- Many symbols; pumps,
valves, etc. are the same in many views. There is a
real interest in standardising these symbols largely
in terms of colour use and symbol shapes.
Standard symbols ease development and provide a
homogeneous operational environment for the
operator.

• Flexible navigation. -- The tool should permit
totally flexible navigation in the hypertext
fashion. We can forget the notion of application if
we can make hyperlinks between views. Each
user may set up his own "application" by
organising a list of "bookmarks" to his views.

• Event driven data acquisition. -- This is an
inherent feature of the TDS that the TSI must
make use of.

• Open architecture. -- Not all data comes from the
TDS. The TSI will define an open
communications protocol that can be used by
future data providers.

• Platform independent user interface. -- Users
want to access views from control rooms, offices,
their homes and firemen want access from the
road. However, performance must be optimised
for control room users.

• Simplified view design. -- The creation of a view
should not need any programming. Any user
should be able to design his views simply by
selecting the equipment he wants to supervise
from a list and place them on a screen in the way
of a graphics editor with predefined symbols.

International Conference on Accelerator and Large Experimental Physics Control Systems

594

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25328384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3 A NEW SUPERVISION
ARCHITECTURE

The analysis of the requirements in the SRD [4]
indicated the type of solution we should look into:

• Multi-platform requirements imply platform
neutral views in a centralised view repository.

• The view editor needs an interface to a
configuration database: to have direct access to
the available equipment descriptions.

• Event driven data acquisition is clearly an
objective of the system. De-coupling the data
acquisition and the data display will open the
system to any data source, while also keeping the
event driven concept for optimal performance of
the user interface. The TSI must provide the
necessary self-tests to ensure that the
communication channels are available and notify
the operator should they become unavailable.

In the Software Requirements phase of the project, we
built a logical model [Figure 1] with the following
entities:

• View editor: The graphics editor used to create
the mimic diagrams and their dynamics.

• View repository: The common repository for all
views.

• Configuration database: An off-line database
holding descriptions of the equipment parameters
(tags) that may be supervised by a TSI view.

• Viewer: The software running on the client side.
It is capable of loading a view from the view
repository and connecting to the necessary data
servers in order to subscribe to data. It may be
implemented in a web browser.

• Data Source Adapter (DSA): Entity that gives
access to a specific data source through a
predefined standardised protocol.

• Data Server (DS): Entity that dispatches
messages from Data Source Adapters to the
viewers and vice versa. It manages one or more
DSAs and works like a data switch or a data
multiplex. Its role is to permit simultaneous
access to different data sources and to de-couple
data source specific information (tag names,
addresses) from the views.

4 THE DESIGN OF A PHYSICAL MODEL

A market survey was performed in Autumn 1998 to
find a suitable commercial product for the TSI project.
Six different products that fit the requirements were
identified. They were products of very different size and
scope ranging from complete SCADA systems including
communication drivers to simple drawing editors with
associated run-time software.

View Editor

Viewer

T

T

T Data Server

DSA

DSA

View repository

TDS

DS ?

Database

Figure 1: The logical model

The product chosen for the first TSI implementation is
the product SL-GMS from the company Sherrill-
Lubinski. It was chosen considering the following
arguments: it has an appropriate scope (only drawing
editor and run-time engine), it is a well-established
product that has existed for several years and the HP-UX
run-time engine is being complemented with a Java run-
time engine that will be used for view access from
offices and homes.

The in-house development needed for a TSI
implementation using SL-GMS comprises a tag selection
tool for the graphics editor, the data server (DS) and one
data source adapter (DSA) for the technical data server.

There are several possible ways to distribute the above
modules (Viewer, DS, and DSA) on the physical
machine in the control environment. After studying the
two main architectures; "Thick client", where the client
application contains all modules, and the "Centralized
server" where the viewer is located on the client machine
and the data server on a centralized machine somewhere
in the controls environment, we decided to implement
the latter. It is a solution that has the following
advantages (+) and disadvantages (-):

+ It makes the client smaller and lighter than the
previous architecture.

+ It allows for centralized access control to data
sources.

+ It permits the development of different modules in
different languages (as long as they implement
CORBA). This can be especially important for
future implementations of DSAs.

+ It permits data filtering at the DS/DSA level to
reduce the data flow to the viewer.

+ It makes it possible to have a flexible creation
schema for data server and data source adapters.
It may be advantageous to give priorities to
different user groups or to supervise and balance
the load on servers for optimal performance.

− However, it implies a centralized CORBA service
that can create data servers on demand. This
service must be available at all times.

For the TSI pilot implementation, we selected the
"Centralized server" architecture. Below is the main
class diagram for the TSI [Figure 2]

595

Figure 2: Main class diagram for TSI

The following entities constitute the TSI class model:
• Manager: This is an interface implemented by

classes that create data servers and data source
adapters.

• TsiManager: A class implementing the Manager
interface for the TSI.

• DataClient: This is an interface to implement for
classes requiring data.

• DataServer: This is an interface to implement for
classes providing data.

• SupervisionSession: The class associated with
the view. It implements the DataClient interface.

• TsiDataServer: The TSI data server class. It
implements the DataServer interface for
communication with the SupervisionSession and it
implements the DataClient interface for
communication with the DataSourceAdapter for
data acquisition.

• TdsDataSourceAdapter: The specific data
source adapter for the TDS. It implements the
DataServer interface.

• TsiRefDB: The tag database for the TSI. This
database stores a mapping between a data source
tag name (the way an equipment parameter is
defined in a data source specific context) and a
TSI tag name (the way an equipment parameter is
defined in the TSI context). This solution was
chosen because it has the same naming
conventions in all views, and also allows for easy
maintenance of views.

A first prototype system has been implemented using
the Orbacus CORBA implementation of Object Oriented
Concepts, Inc. The Manager, DataServer and
TdsDataSourceAdapter as well as a Java and a C++
prototype client exist at present. An interface between
the SL-GMS run-time engine and the TSI
SupervisionSession is under development and will be
used in the TSI pilot application.

We have also developed a first tag selection tool
which connects to the TDS reference database. This tool
will be integrated with the SL-GMS editor GMSDraw.

5 OUTLOOK
The first TSI application will be the user interface for

the CERN Safety Monitoring prototype system. It is
planned to be ready by the end of 1999 and will include
five views representing fire detection installations. It will
use one data source adapter for the TDS.

The development of the TSI software will be iterative.
After the first iteration and implementation of the basic
subscription and command sending functionality, we
will implement the access control and the user
management features of the Manager.

Other DSAs will be implemented for the TSI. First in
line is a DSA allowing access to archived data and
functionality within the viewer to play back that data.

The TdsDataSourceAdapter will also be used by the
Event Logging System [6] that will use it for data
acquisition of TDS data.

It is thought that the TdsDataSourceAdapter could
eventually be the standard CORBA interface to TDS
data for any client program.

6 CONCLUSION
Finding a supervision tool for the next decade today is

a difficult task. From what we have seen it looks as if
WindowsNT and Java tools will dominate the market
and for our use, we have opted for Java. One challenge
with using Java is to provide the same performance that
operators have with platform specific applications today.

We have designed the modules in the TSI to be
simple, flexible and reusable and we have defined a
standard interface for new data sources. It will handle
other LHC data sources and could perhaps be the
standard slow control data acquisition interface.

The choice of using CORBA seems the best
alternative for distributed inter-object communication
today. We will evaluate the performance and
maintainability of it with the TSI pilot application, but
we are quite confident that we have a system
architecture that will last for the required period.

REFERENCES
[1] U. Epting & al "CERN LHC Technical

Infrastructure Monitoring ", ICALEPCS'99, Trieste,
October 1999.

[2] P. Ninin & al. "Technical Data Server: A Large
Scale Supervision System", ICALEPCS'97, Beijing

[3] M-J Padilla, P. Sollander, "TSI, User Requirements
Document", - CERN ST/MC/97-01

[4] P. Sollander & al, "TSI, Software Requirements
Document", - CERN ST/MC/98-17

[5] P. Sollander & al, "TSI, Market Survey Report and
Implementation Proposal", - CERN ST/MC/98-53

[6] M. Zurek & al, "Event Logging System,
Architectural Design Document", ST/MO/99-08

596

