
Abstract:

The Run Control (RC) for the Atlas detector in the Atlas
Data Aquisition/Event Filter (DAQ/EF) Prototype-1
Project is the component that coordinates the operation of
the DAQ and provides the user interface to the shift opera-
tor. The current distributed object oriented RC implemen-
tation is presented. Recent work and future plans on
integrating autonomous failure handling and diagnosis is
discussed.

1 INTRODUCTION
The ATLAS data acquisition (DAQ) and Event Filter

(EF) prototype-1 project [1] is intended to produce a pro-
totype system representing a ‘‘full slice’’ of a DAQ suit-
able for evaluating candidate technologies and
architectures for the final ATLAS DAQ system on the
LHC accelerator at CERN. Within the prototype project,
the back-end sub-system encompasses the software for
configuring, controlling and monitoring the DAQ but spe-
cifically excludes the management, processing or trans-
portation of physics data. The back-end software must co-
exist and co-operate with the other sub-systems. The RC is
a central part of the backend software.

2 ARCHITECTURE
The RC is defined as the component that guides the

DAQ through the startup and shutdown phase and takes
care of keeping the system in the running status. It pro-
vides the interface between the shift operator and the com-
ponents that make up the DAQ/EF system. The RC uses
the following basic backend components as depicted in
Figure 1:

• Configuration Database (CONFDB): Object ori-
ented persistent storage management system with
corresponding schemes to model hardware and soft-
ware usage for coping with the required high con-
figurability of the DAQ especially in respect to the
testing activities of the detector. An access library
layer provides transparence in respect to the used
storage manager (OKS, Objectivity) [2]

• Inter Process Communication (IPC): Layer to pro-
vide independence of communication from the used
CORBA ORB and supports the partitioning scheme
needed to be able to run several DAQ sessions in

parallel without interference (comparable to
namespaces) [3].

• Information Service (IS): client server based means
of storing and retrieving information based on IPC
(e.g. controller states)

• Message Reporting System (MRS): client server
based means of distributing messages based on IPC
(comparable to the mailing list scheme)

• Process Manager (PMG): component for starting/
stopping monitoring processes corresponding to
software applications found in the CONFDB on dis-
tributed hosts with defined environment and param-
eters.

Figure 1: The RC in the context of Backend Components

The central component of the RC is the RC-controller, a
customizable entity that inherits a Finite State Machine
(FSM) with CORBA based communication abilities from
a skeleton. The FSM, in C++, was generated using Harel
State Charts with the CHSM package [4]. It provides hier-
archical concurrent sets of states to model the status of
any DAQ-component in a uniform way. For individual
components a specific controller can be built using inherit-
ance and overloading of the action methods corresponding
to the state changes of the FSM.

The whole RC is made up by a hierarchical distributed
tree of controllers via a parent/child relationship that mod-
els the logical decompositon of the DAQ system as
defined in the CONFDB. The controller at the top of the
hierarchy (root controller) is , in the general case, the point
of interaction with the operator via a Java graphical user
interface. Commands issued there are conveyed through

Run Control tree

Root cont rolle r

RC_Dynamic DB

P MG_Dyna micDB

Information Se rvice

Run Control

DAQ_S upe rvisor

Sof tware database

M
es

sa
ge

 R
ep

or
tin

g
Sy

st
em

Java GUI

Process M anager

THE RUN CONTROL IN THE ATLAS PROTOTYPE-1 DAQ/EF PROJECT

D. Schweiger, Institute f. Experimental Physics, Innsbruck, Austria / CERN, Switzerland
R. Jones, L. Mapelli, CERN, Switzerland

P.-Y. Duval, Centre de Physique des Particules, Marseille, France
A. Kazarov, S. Kolos, Y. Ryabov, PNPI, Gachina, St. Petersburg, Russia

International Conference on Accelerator and Large Experimental Physics Control Systems

591

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25328383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the tree towards the actual domain specific controllers.
The performance of the communication was found to be
acceptable and scalable even for a large setup of 250 con-
trollers as expected for the final system [5]. A controller
with TCP socket based communication has been added
recently for components that can’t use the CORBA ORB,
as the case for the data flow component.

The second major element of the RC is the RC-Supervi-
sor. Currently its task is to set up and shut down the DAQ
i.e. the starting/termination and supervision of the pro-
cesses as listed in the CONFDB taking into account
dependencies between processes using the PMG.

 The IS component is used by the RC to publish the
FMS states of the controllers for synchronisation pur-
poses. MRS messages are being sent mainly from the
component controllers as a means of publishing domain
specific events to be displayed to the operator or to be
used for automated diagnosis procedures.

The system as described above has been successfully
used to control the DAQ setup of the June99-Milestone
that integrated the backend with the data flow components
of the DAQ.

3 HANDLING FAILURES
One of the last remaining challenges in the scope of the

backend software is the handling of unexpected situations.
Historically in High Energy Physics (HEP) this problem
was attacked after the actual start of data taking for most
existing experiments. The aim of systems alike was
mainly to reduce human expert presence during the shift,
reduce knowledge loss due to staff turnover, and reduce
down time by speeding up the recovery action by means
of automation.

3.1 Simple Error Handling Scheme

 The Atlas Run Control can work without such a com-
ponent as there are no real time requirements in respect to
fault recovery. A simple error handling scheme included
in the skelleton controller takes care of errors:

• If a controller (or controlled component respec-
tively) falls into the Fault state during data taking
the whole tree will exit the data taking state. This
minimizes the effect of failures to other components
(failure propagation).

• A failure of a controller at any state will be reported
up the tree to the root controller making it visible to
the operator and locking certain transitions of the
FSM. The manual recovery isolates the faulty parts
of the tree (logical subsystems) and permits their
recovery by repeating the initialisation or resetting
the subsystem. After arriving in a good state the tree
can be relinked and the system can be guided
towards the running state. This is preferred as it is
too expensive in terms of down time to reset the
whole DAQ system for every failure occurence.

With this tree approach and via the graphical user inter-
face the operator gets a comprehensive and detailed pic-
ture of the system status with uniform interaction points
making it easy to control the system. MRS error messages
give additional hints.

3.2 Intelligent Error Handling Schemes

The same applies to an automated approach that is
eased considerably by this well defined uniform structure.
A component for this task has been foreseen in the DAQ-
1 project but the design was left open, so that it could
emerge more recently.

The so called Diagnostics package comprises two com-
ponents: The Verification Component (VC) deals with
complex tests to aid failure diagnosis mainly when the
DAQ is not taking data.

The Supervision Component(SC) is a intelligent exten-
sion for the Supervisor as described above. It acts either as
an intelligent agent, autonomously performing reasoning
in case of failures and adequate recovery actions or gives
aid to the human operator. Both the VC and the SC use the
C-Language Embedded Production System (CLIPS), a
rule based language for building expert system (ES) [6].
Rule based systems have been successfully used in control
and diagnosis in the domain of HEP data aquisition inside
the DEXPERT system for the ALEPH experiment [7].

The main advantage for these domains is the relative
ease of extending and integrating knowledge(about failure
cases) compared to conventional programming languages.
This is because the rules (basically if <expression> then
<action> statements) are not arranged in a rigid control
structure (i.e. decision tree) but rather that the rules act
concurrently on the available data (facts). Rules and facts
make up the knowledge base. But the unpredictable flow
of control becomes a problem for a large number of rules
(more than several hundreds) [8].

The current basic implementation of the SC maintains
the functionality of the Supervisor, that is the FSM
describing the DAQ status from the process view as
described above. The state machine is implemented by
means of the State pattern [9], using the object oriented
programming extension of CLIPS. The rules are addition-
ally grouped in several autonomous knowledge bases
using the module structure of CLIPS to ease the flow con-
trol and making the rulesets more manageable. The cur-
rent modules which correspond to the states of the FSM
are being handed the control on the common data by the
rules in an extra module acting as a controller within a
Blackboard Architecture. The shared information that is
defined and owned by the controlling module is:

• IS information (e.g. controller status)
• MRS messages (e.g. notification of faults from

components)
• PMG messages i.e. process creation/death notifica-

tions
• Configuration information for the individual hard-

592

ware and software setup.
This design now provides the skeleton that can be

extended as more knowledge is aquired by adding rules to
the corresponding modules. Rules for the booting and
shutdown phases of the DAQ are mainly concerned with
processing the creation/termination of processes according
to the chosen setup in the CONFDB and problems related
to configuration inavailability of resources as network,
filesystems, hardware and basic software components.
The part of the knowledge base for when the RC is active
is the most challenging. Here the subsystem specific fail-
ures have to be handled.

Our first simple approach to handling failures in sub-
systems is to follow the scheme depicted for the manual
interaction above: perform a deep first search through the
tree to find the erronous component controllers, isolate
them and try to get them back into a good state by exersis-
ing statechanges. This generic approach lacks any knowl-
edge of the functionallity of the controlled components in
respect to diagnosing the fault propagation. A primary
fault will often cause cascading faults in several compo-
nents. This problem can be reduced by grouping depen-
dent components accordingly in the tree so that failures
stay mainly inside this group’s boundaries. This way
actions on the corresponding group controller can still
resolve the problem and synchronisation of state changes
is taken care of by the knowledge about its subsystems
inherent in this controller.

4 FUTURE WORK
A more advanced scheme would take component spe-

cific knowledge into account. This can be done in a classi-
cal approach by using directly the rule based language to
insert knowledge of known or expected problems as done
in DEXPERT. The rules would have to be configuration
independent which requires some additional information
inside the CONFDB e.g. showing the relationship of a
controller to its controlled component. But, as stated
above, rule based ES become difficult to maintain for
large systems. Model based reasoning became very comon
in the field of diagnostics and maintenance field [8]. In the
model based approaches, e.g. the fault digraph model the
knowledge of system behaviour in respect to faults is rep-
resented as a network of nodes representing the functional
components connected by propagation paths of errors. The
main advantage of this approach is that knowledge presen-
tation is deep compared with the rule based systems. This
means that rules are rather an indirect or implicit presenta-
tion of the knowledge about a system. With the very intui-
tive (graphic) system knowledge representation in model
based reasoning it is easier to maintain and keep the
knowledge consistent and comprehensive. The OO char-
acter makes it easily configarable. Not every failure pat-
tern has to be stated explicitely. The fault digraph analysis
tool EDNA has been successfully implemented using the
CLIPS rule based system [10]. Hence it seems to be an

approach worth studying to enhance the capabilities of the
SC in terms of maintainability and user acceptance.

5 SUMMARY
The Run Control in the DAQ/EF Prototype-1 project

has shown that it can be successfully integrated with other
DAQ components. The rule based approach has shown to
be a suitable method for adding knowledge for a advanced
failure handling. For the future we would like to investi-
gate on model based approaches in order to improve
knowledge manageability and consequently user friendli-
ness.

 REFERENCES
[1] G. Ambrosini et al., ``The ATLAS DAQ and Event

Filter prototype ``-1'' project", Computer Physics
Communications, vol. 110, pp. 95-102, May 1998.

[2] R. Jones, I. Soloviev, ``Configuration Databases in
the ATLAS Prototype DAQ'', CHEP'98, Chicago
USA, September 1998, http://www.hep.net/chep98/
PDF/66.pdf

[3] S. Kolos et al., ``Applications of CORBA in the
ATLAS prototype DAQ'', Proceedings of the IEEE
Real Time Conference, Santa Fe, USA, June 1999,
http://atddoc.cern.ch/Atlas/DaqSoft/components/ipc/
RT40.ps

[4] P. Croll et al., ``Use of Statecharts in the Modelling
the Dynamic Behaviour of the ATLAS DAQ Proto-
type-1'', IEEE Transactions on Nuclear Science, vol.
45, no. 4, pp. 1983-1988, August 1998

[5] I. Alexandrov et al., “Performance and Scalability of
the Back-end sub-system in the ATLAS DAQ/EF
Prototype”, proceedings of the IEEE Real Time Con-
ference, Santa Fe, USA, June 1999, http://atd-
doc.cern.ch/Atlas/Conferences/RT99/RT175.ps

[6] J. Giarratano, G. Riley, “Expert Systems: Principles
and Programming”, PWS-Kent, Boston, Mass., 1989

[7] P. Mato, "DEXPERT: an Expert System for Read-Out
Error Recovery in the Aleph Data Acquisition Sys-
tem", pp. 537-542, Second International Workshop
on Software Engineering, Artificial Intelligence and
Expert Systems in High Energy and Nuclear Physics,
L'Agelonde, France, January 13-18, 1992

[8] M. Ben-Bassat et al., “Different approaches to diag-
nostic modeling”, pp. 175-186, IEEE AUTOTEST-
CON 98 Proceedings, IEEE Systems Readiness
Technology Conference, Salt Lake City, UT, USA,
24-27 Aug. 1998

[9] E. Gamma et al., “Design Patterns”, Addison Wesley,
ISBN 0-201-63361-2

[10]V.V.Dixit, “EDNA: expert fault digraph analysis
using CLIPS”, pp. 118-124, Proceedings of the first
CLIPS Conference, NASA Conference Publication
10049, Houston, Texas, 1990

593

