
CONTROLS THROUGH PICTURES - GRAPHICAL TOOLS FOR
BUILDING CONTROL SYSTEM SOFTWARE

S. Hunt, PSI, Villigen, Switzerland

Abstract

Advances in controls hardware performance and
reliability have not been matched in the domain of
controls software development. Commercial tools are
available to improve the software development process,
but these are often targeted at the software professional,
not the equipment specialist who is often now responsible
for low-level equipment interface software. Within the
Epics collaboration, graphical tools have been available
for some time to aid in the production of systems, but this
was restricted to the functional (dataflow) behavior. In
order to build the dynamic (state machine) aspects of a
system it was still necessary to write code. In Epics this is
done in a specialized language State Notation Language)
which is C like and provides the necessary constructs to
build state machines for Epics systems. In order to
improve the development and maintenance of systems for
the Swiss Light Source, ‘Visual State Notation Language’
(VSNL), a tool to graphically build Epics state machines,
has been developed. This tool allows equipment
specialists to very quickly build the code necessary for
low-level control of the accelerator. In place of using a
intermediate representation of the states, and saving
separately the graphical content, VSNL consists of a set of
objects containing both graphical and state information.
This approach, makes the program easy to maintain, but
also easy to adapt to other output formats and target
environments.

INTRODUCTION

Advances in hardware technology (processor speed
continuing to double every 18 months), and improving
reliability are now taken forgranted when planing and
implementing accelerator control systems. Implementing
controls software however has remained a time
consuming and error prone task. However a number of
tools are becoming available to improve this situation.

COMMERCIAL TOOLS

Case Tools

Many Computer Aided Software Engineering (CASE)
tools are now available to improve the software
development process. Often based on a software design
methodology such as SASD or more commonly now
Object Oriented Analysis and Design they aid the author

in the analysis, design and documentation of software.
Tools such as Rational Rose[1] and Software Through
Pictures[2] take the process further than design - being
able to generate templates or code in the chosen language
such as C++ or Java. The more advanced tools now allow
back annotation or reverse engineering - the ability for
changes in the code to be incorporated in the visual design
or to import existing code into the design. The negative
aspects of these tools is they are aimed only at the
software professional, have a relatively steep learning
curve, and are best implemented on a project wide basis.

LabVIEW

“Why not use LabVIEW ?”, is perhaps the question
most asked of controls specialists at the start of a project.
LabVIEW[3] is a toolkit which runs on PC’s and Unix
workstations. It allows control and data acquisition
functions to be defined, modified and operated all within a
graphical environment. Support is provided for a vast
number of PC, VXI and GPIB devices. It is very easy for
a user to get started and quickly get data from an
instrument or configure a simple control loop.

Despite increased use in the accelerator community
[4][5] it has not been widely accepted for control of
accelerators and large experimental control systems due to
limitations (perceived or real) in performance, scalability,
and maintainability of large LabVIEW designs. Although
LabVIEW designs can be well structured[6], most are not,
and it can be very difficult for anyone but the original
author to understand a moderately large design.

International Conference on Accelerator and Large Experimental Physics Control Systems

584

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25328381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TOOLS FROM THE ACCELERATOR
CONTROLS COMMUNITY

The Epics Revolution

Epics[7], perhaps to become the ubiquitous accelerator
control system toolkit, gives the possibility to non
programmers to build accelerator controls. Systems are
built using text files which configure the operation of
standard functions. Most standard control functions
needed are supported (Read from input, Write to an
output, PID control, …) as well as data manipulation
(convert to engineering units, setting alarm limits, send
data only on change). However in almost all real systems
some programming is required - for writing support for
new hardware, adding new functions, or building state
machines. This programming is carried within a well
defined structure, and not everyone involved on a project
need have this level of knowledge.

Epics configuration tools

Epics also has a number of tools to aid the developer in
configuring her system, these fall into two categories :
Forms Based, where the user is prompted to fill in tables
of values; Graphical, where the developer builds a visual
representation of the control process. Database
Configuration Tool (DCT)[8] is a forms based tool, which
prompts the user to fill in the necessary values. Basic type
checking can be performed, and the user is able to pick
from a list of possible values. GDCT [9] provides the
same functionality as DCT, but displays each function
block graphically, including the links between blocks.
This allows the developer to more easily see the structure
of the design. Capfast is a commercial schematic editor,
which has been adapted to configure Epics control
systems. It also displays the function blocks graphically,
but has the advantage of allowing hierarchy.

TOOLS WRITTEN FOR THE SLS
PROJECT

Visual database configuration tool

Visual DCT is a new Epics configuration tool written in
Java. Its development was necessary because of a desire
for more features (particularly hierarchical designs) than
available with DCT, and the unavailability of Capfast on
Linux (our development platform). We would also
potentially have had licensing complications distributing
Capfast to outside collaborators, institutes and companies
who are building components for us. A specification was
written at SLS and the implementation was carried out as
part of a collaboration, by the Joseph Stefan Institute.

Visually Visual DCT resembles GDCT, users can
create, move and link records. Fields can be modified, and
any fields not using the default values are displayed. Data
flow direction is indicated by an arrow. Records can be
grouped together in a logical block, which allows a
hierarchy of functions to be built, making the design
easier to understand.

Visual State notation language

Visual State Notation Language (Visual SNL) is a
graphical tool used to generate Epics State Notation
Language Code. SNL gives the ability for the system
designer to add state machines in an Epics Input Output
Controller (which is normally a VME system running
VxWorks). The language has a C like syntax and has
constructs for building state machines:

state rf_off {
when (heater==ON && water==OK){

hv_power_supply=ON;
} state rf_standby

}

state rf_standby{
….
}

The SNL source code is pre-processed to create C code,
which is in turn compiled to create a VxWorks object file
to run in the IOC. Visual SNL enables non programmers
to build these state machines, enables programmers to
avoid having to learn yet another language, and provides
better documentation.

Visual SNL is written in Java (JDK 1.1),without swing
extensions, and so should run in any Java 1.1 enabled
browser, or it can be run as an application. Running in a
browser has the restriction that it is not possible, without
redefining the security configuration, to load or save
designs. The user creates on screen a state transition

585

diagram, and can add, delete, move, and edit states as well
as defining transitions between states. New features are
being implemented, including the ability to read an
existing SNL file.

CONCLUSION
Graphical tools are becoming available to aid the

implementers of accelerator controls software. While
commercial tools can be used as is, or adapted to meet our
needs, there is a place for tools to be built closely tailored
to the needs of the accelerator controls community, with a
very simple user interface and without a steep learning
curve.

REFERENCES
[1] Rational Rose - trademark of Rational Software

Corperation
[2] Software Through Pictures - trademark of Aionix

Inc.
[3] LavVIEW - trademark of National Instruments Inc.
[4] E.Carlier, et. al., “Outsourcing of the New WaveForm

Acquisition, Surveillance and Diagnostic System for
the LEP Injection Kisckers”, ICALEPCS 97, Beijing,
China.

[5] Xu Jing-wei, et.al., “The Virtual Instrument Control
System”, ICALEPCS 97, Beijing, China.

[6] K. Rybaltchenko, “Object-Oriented Technology in
LabVIEW Programming”, ICALEPCS 97, Beijing,
China.

[7] L. Dalesio, et. al., “The Experimental Physics and
Industrial Control System Architecture: Past Present,
and Future”, ICALEPCS, Oct, 1993.

[8] J. Anderson, “Database Configuration Tool (DCT) -
Tcl/Tk Version for EPICS 3.13”,

[9] J. Kowalkowski, “GDCT User’s manual”.

586

