
DESIGN AND IMPLEMENTATION OF A FINITE STATE MACHINE
QUEUING TOOL FOR EPICS

J.A. Perlas, D. Beltrán, J. Rosich
Synchrotron Light Laboratory, LLS-IFAE

Edifici Cn, Campus UAB, E-08193 Bellaterra, Barcelona (Spain)

Abstract
In the process of making a detailed design for a

synchrotron accelerator in Barcelona, we have designed
and implemented the control system for a magnetic
measurements system [1], conceived as an evaluation for
the accelerator control system which is planned to use the
EPICS toolkit [2].

In this article, we introduce a new sequencing tool
(called Finite State machine Queuing Tool or FSQT) and
we discuss its design and its advantages using a new
implementation of our test bench applications. FSQT has
born from the limitations of the equivalent EPICS tool
(the Sequencer).

1 WHY A NEW SEQUENCING TOOL
Although we have found the Sequencer [3] to be a very

useful tool for small applications, the necessity of
developing a new design arises mainly from its
limitations. These are listed below:

• It is not possible to determine the new state
dynamically (during the execution of the current
transition).

• A new state is required for the introduction of a
timeout timer.

• Accesses can be made via the Channel Access
(CA) facility in either synchronous or
asynchronous mode, but this can only be decided at
compilation time.

• The “put” to a Process Variable (PV) in
asynchronous mode does not provide any function
that indicates the completion of execution.

• There exists an intermediate “engine” (i.e. the
Sequencer) between the Operating System (OS)
and the code. This complicates the debugging
phase.

• The C-language code can be “escaped” in an
application but this makes it much less readable. In
addition, there are strong limitations in the
inclusion of subroutines and system calls.
Furthermore, the syntax used for CA accesses
inside subroutines is different to that used outside
them, making very difficult the readability and
reusability of the code.

• It is not portable.

After analysis of all these issues and considering the
desirable features that a minimally powerful sequencing
tool has to provide, we arrived at two options: a) upgrade

the Sequencer, or; b) create a new tool. Taking into
account that there are intrinsic limitations in the current
sequencing tool, which are not possible to overcome
(mainly because of the decision to provide its own
language/syntax) our decision has been to create a new
tool, which we call FSQT.

2 THE FSQT DESIGN CONCEPTS

2.1 General Background

The main idea in the new design is to provide a
centralized manager that listens to all the stimuli sources
(internal and external) of a real-time program and acts
accordingly and chronologically upon them.

Very often in a program it is necessary to wait for
events that are generated from several sources. When the
arrival of one such event takes place, it is desirable to take
action to perform a specific task. To standardize the
process of generation, waiting and management of events,
the FSQT tool has a centralized (and prioritized) FIFO
queue where the different generated events in the system
are received, waiting for later treatment. In this way, to
each of the stimuli of our system it will be assigned a
different “facility” that will allow to univocally identify
the stimulus that generated the event. These facilities will
be inserted (with priority) by the “stimuli generators” in
an unique queue, where they will remain stored until their
extraction and subsequent execution of their associated
actions. In this way, all the stimuli are processed in a
chronological way in the order in which they were
generated avoiding, in addition, any loss.

For an application of medium or high complexity, it is
desirable to implement it using the Finite State Machine
FSM approach [4]. In this case these stimuli can invoke
transitions between the previously designed states of our
State Diagram.

2.2 FSQT design requirements

In the FSQT conception process, besides solving the
Sequencer problems, we imposed the following
requirements:

• To use a standard programming language like C
and thus avoid the creation of a special syntax.

• The tool has to be well layered, containing
independent support libraries for the different
functionality that it has to provide. An application

International Conference on Accelerator and Large Experimental Physics Control Systems

564

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25328376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

program can use all or part of these support
libraries.

• Portability across different platforms.
• The package has to include a graphical tool to edit

the State Diagram and generate the source code.
• To support nested states (according to Booch [5]).
• Reusability for other control systems different to

EPICS.

3 FSQT IMPLEMENTATION

3.1 Tool components

Following the above philosophy and requirements, the
FSQT tool has been implemented as three completely
independent C-libraries. They have been ported to several
OS and their APIs are very well defined. These libraries
are:

1. Queue action library (fsqt_qa). This centrally
manages the different events generated in the
system and allows the execution of a routine that is
associated to every possible event.

2. FSM library (fsqt_fsm), which supports the
hierarchical implementation of State Diagram
based programs.

3. Channel Access library (fsqt_ca). This is a simple
interface with the EPICS CA Client layer used to
establish communication with the Process
Variables, both synchronously and asynchronously,
including transaction-completion functions.

Fig. 1 shows the FSQT software layer design and how it
is integrated inside the EPICS architecture.

Figure 1. FSQT software layers.

One of the implementation choices for these libraries
has been the use of the Posix 1003.1b standard wherever
possible to ensure that the code is portable to any other
RTOS. Where this has not been possible, a platform-
dependent library has been used. Nevertheless, our
intention is to eventually use the EPICS OSI Layer [6]
that is currently being developed.

All these library functions include a VxWorks-like
error code system. These error codes are associated to a
character string that explains the cause of failure.

The FSQT libraries also contain initialization and
cleanup functions that, due to their autonomous and

modular design, must be called from the application. It is
important to note that in spite that a full-featured FSQT
application should use the three libraries, those are
provided as “building blocks”, in the sense that any
application may use only one or two of them, e.g. a non-
real-time application in a Unix host machine, for a non-
EPICS control system could use only fsqt_fsm to do the
sequencing of user input data in an accelerator operational
procedure.

This set of libraries is complemented with a graphical
tool (called GFSQT), implemented in Tcl/Tk that allows,
in a comfortable and simple way, the graphical design of
Statecharts, and the generation of the associated C code.
An example is shown in Fig. 2.

Figure 2. Graphical FSQT example.

3.2 CA performance

One of the important aspects for any re-design is to
check that the performance of the new software (having
more functionality) has not been degraded.

The performance in the CA access times to the PVs in
the current fsqt_ca version has been evaluated and
compared with the Sequencer. Using the hardware timers
in the CPU board, we have measured the mean times for
the remote access (gets) of software PVs, for both the
fsqt_ca functions and the Sequencer equivalents, making a
comparison. The results are shown in Table 1.

Table 1. Comparison of average remote (get) times
(msec/PV) between FSQT and Sequencer.

Synchronous Asynchronous

FSQT 4.58 2.77

Sequencer 4.76 2.71

This test was carried out in a 68040 CPU board
accessing to 100 PVs residing in a remote database. We

Channel Access Client

Channel Access Server

Records, Devices, Drivers

Operating System (Real Time or Host)

Fsqt_ca

Fsqt_fsm

Fsqt_qa

Application

FSQT

565

can clearly see that the fsqt_ca library doesn’t introduce a
significant overhead, obtaining similar access times to
those using the Sequencer.

4 ADVANTAGES OF THE FSQT DESIGN
FSQT has solved most (and potentially all) the

problems of the Sequencer and it further extends its
functionality. This is summarized in the following
enhancements list:

Major additions:
• Permits hierarchical state diagram designs.
• Portability to be executed in any (supported) host

computer.
• Includes a graphical FSM editor with skeleton-

code generation.
• Optionally permits several state machines share a

single task.
• It is much easier to debug applications (no

intermediate “engine” present, and no multi-tasking
used).

• Provides full C-language support, including ISRs.
Minor additions:
• Allows pre and post-actions to be executed.
• Supports Channel Access put with callback.
• Allows an action not to reset timers.

5 CASE STUDY: THE MAGNETIC
MEASUREMENTS SYSTEM

Our “old” Sequencer code for the magnetic
measurements system has been ported to FSQT. A partial
State Diagram of the new code can be seen in Fig. 3.

Figure 3. Partial view of the application FSM.

This experience has been very useful to demonstrate the
big differences over the old version. These are:

1. Programming simplicity (through hierarchies and
the use of the graphical editor).

2. Faster reaction time to user intervention.
3. No loss of events.
4. Same CA performance.
5. Some applications now run in the Unix host.
6. Code more readable and maintainable.
7. Better code quality through the use of sub-routines

(avoiding duplication, resulting in 25 % less code).
8. Allow full use of OS resources.

6 CONCLUSIONS
We have performed a software analysis and produced a

new design and implementation for a new sequencing tool
(FSQT). This overcomes the problems of the current
EPICS Sequencer and adds much more flexibility and
power to future sequencing applications, both for EPICS
and non-EPICS.

Amongst the most important features, we emphasize
that it supports hierarchical state machine designs, it is
portable and runs in the host computer, it includes a
graphical FSM editor with C-code generation, it is much
easier to debug applications, and finally, since no
proprietary syntax is used it has the support of the C-
language and any other third-party C libraries.

The CA accesses performance of FSQT is as good as
that of the Sequencer and it has proved very satisfactory
for controlling our magnetic measurements system, after
porting the software that was using the EPICS Sequencer
to this new approach. Big improvements have been
attained in programming simplicity, faster reaction time to
user intervention and no loss of events. Furthermore,
using the graphical tool and the portability to the Unix
host, applications for prototyping and testing have been
developed in record time producing better code quality.

The testing of the FSQT tool is practically completed
and we intend it to be the next generation of the EPICS
sequencing tool. Although the library support is well
developed and tested, the GFSQT application is still under
development and will be essential for the proper support
of hierarchical statechart designs.

REFERENCES
[1] D. Beltrán, J.A. Perlas et al., “The LLS magnet test

facility...”, EPAC’98, Stockholm, June 1998.
[2] L.R. Dalesio et al., “EPICS: past, present and future”,

NIM A, 352 (1994) 1-5.
[3] A. Kozubal, W. Lupton, Sequencer v1.9.2 (1996).
[4] D. Harel, “Statecharts: a Visual Formalism for

Complex Systems”, Sci. Comp. Prog. 8 (1987).
[5] G. Booch, “Object-Oriented Analysis and Design

with Applications”, Ed. Addison-Wesley, 1994.
[6] M. Kraimer, Operating System Independent Layer for

EPICS, http://epics.aps.anl.gov/asd/controls/epics.

,1,7

581

723

/(9(/

581

67$7(

566

