
A CORBA BASED C LIENT-SERVER MODEL
FOR B EAM D YNAMICS A PPLICATIONS AT THE SLS

M. Böge
�

, J. Chrin
� �

Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

�
email: Michael.Boege@psi.ch

� �
email: Jan.Chrin@psi.ch

Abstract

A distributed object oriented client-server model, based
on the Common Object Request Broker Architecture
(CORBA), has been established to interface beam
dynamics application programs at the Swiss Light Source
(SLS) to essential software packages. These include
the accelerator physics package, TRACY, the Common
DEVice (CDEV) control library, a relational database
management system and a logging facility for error
messages and alarm reports. The software architecture
allows for remote clients to invoke computer intensive
methods, such as beam orbit correction procedures, on
a dedicated server running the UNIX derivative, Linux.
Client programs typically make use of graphical user
interface (GUI) elements provided by specialized toolkits
such as Tk or Java Swing, while monitored data required
by procedures utilising the TRACY library, such as
beam optics parameters, are marshalled to the model
server for fast analysis. Access to the SLS accelerator
devices is achieved through a generic C++ CDEV server.
The architectural model components are described
and a prototype application within the beam dynamics
environment is presented.

1 INTRODUCTION

The Swiss Light Source (SLS) [1] is a 2.4 GeV electron
storage ring currently under construction at the Paul
Scherrer Institute, Switzerland. Electrons from an
injector booster synchrotron, fed by a 100 MeV linear
accelerator, are transferred to the main ring at full
operating energy. Scheduled for operation in August
2001, the SLS will provide synchrotron radiation of high
brilliance to experimenters from a variety of disciplines.
A considerable number of high-level beam dynamics
application program interfaces (APIs) are required for
the commissioning and operation of the SLS accelerator
complex and for machine physics studies. These APIs
typically share a number of generic tasks including:

� access to an accelerator physics package,
� accelerator device control,
� database access and management, and
� logging of error messages and alarms.

With the aid of object-oriented methodology, common
functions can be identified and developed as reusable
components. Furthermore, a distributed system allows
optimal use of available resources, an important
consideration given the computer intensive physics
algorithms employed by the accelerator modelling
procedures. To this end, a distributed client-server
model, based on the Common Object Request Broker
Architecture (CORBA) [2], is presented; client programs
readily access shared services, either locally or across the
network, through CORBA objects.

2 ARCHITECTURAL MODEL
In the evolution of object-oriented distributed computing
systems, CORBA is a recent standard that provides a
mechanism for defining interfaces between distributed
components. Its most distinguished assets are platform
independence, in so far as the platform hosts a CORBA
Object Request Broker (ORB) implementation, and
language independence, as ensured through the use of the
Interface Definition Language (IDL). The latter feature
is of particular interest to SLS beam dynamics API
developers as it provides for the option between high-level
application languages. For instance, the client component
of the prototype closed orbit correction API has been
implemented in Tcl/Tk [3] using the BLT extension, a
package that is an appropriate match to the requirements
of this particular application. The server components, on
the other hand, have been implemented in C++ for high
performance and run on a dedicated server machine. It is
interesting to note that in this multi-language scenario,
the Tcl/Tk client program is comparatively short in length
and, therefore, quite managable. Optimal use of the
Tk/BLT package is made for building the graphical user
interface (GUI) component of the API, while the more
complex components are routed to server processes by
means of CORBA objects.

2.1 Server Hardware and System Software
Components

The chosen operating system and platform for server
applications is RedHat Linux version 6.0 on a server
housing dual 550 MHz Intel Pentium III processors.
The use of Linux and the GNU project C++ compiler

International Conference on Accelerator and Large Experimental Physics Control Systems

555

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CERN Document Server

https://core.ac.uk/display/25328374?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

GUI TRACY
Model Server

Tcl/Tk or Java
client

 API

 Local Control System

CDEV
Server

Monitor Control

 Analysis
 Server

 Database
 Server

Database

 Message
 Ser ver

 All processes

Figure 1: Software Architectural Model for SLS Beam Dynamics APIs

(egcs) avoids vendor dependency; compilation with egcs
further reduces the dependency on the operating system
thereby increasing the portability of applications. A
second identical server is permanently available to provide
redundancy. Client programs typically run on local Linux
PCs.

The principal CORBA product employed is MICO [4],
a fully compliant CORBA 2.2 implementation, available
free of charge under the GNU public license terms.
Use is made of the Naming Service and Interface
Repository facilities provided by MICO. Significantly,
in addition to the given IDL to C++ mapping, a Tcl
interface to MICO [5] that provides CORBA client and
server functionality to Tcl scripts has been incorporated.
Noticably absent from MICO at present, however,
is mapping for the Java programming language [6].
Since Java client components will be an integral part
of SLS beam dynamics applications, another CORBA
product, namely the Java-based JavaORB package [7],
provides IDL mapping to Java. Applications involving
permutations of client-server processes written in C++,
Tcl/Tk and Java have all been tried and tested, further
verifying the interoperability between the different
CORBA 2-compliant products1.

2.2 Server-Client Software Components

Fig. 1 illustrates the conceptual design of the software
model employed for the retrieval, analysis and display of
pertinent data for a specific beam dynamics API, namely
the closed orbit display. The prototype Tk/BLT client GUI
is shown in Fig. 2.

A CORBA interface to the C-based TRACY library [8]

1Interoperability is made possible by virtue of the CORBA
2.0 requirement that the Internet Inter-ORB Protocol (IIOP) be
the standard protocol for communication between ORBs

provides users with convenient access to the accelerator
physics routines. This capability in itself provided strong
motivation for the use of CORBA as it allows access to
the same machine model as used in offline simulations;
procedures tested in simulation can thus be effectively
employed for the optimization of the acceleratoronline.
In this present example, measured beam positions are
marshalled to the dedictated TRACY model server for
analysis. A new set of corrector values is calculated
and presented to the client together with the predicted
orbit. The corresponding hardware settings required to
achieve the improved orbit are handled by the Analysis
and Database Servers.

Synchronous and asynchronous interaction with the
EPICS-based local accelerator device control system [9]
is achieved through use of the Common DEVice (CDEV)
C++ class library (version 1.6.2) [10]. A generic CDEV
Server employs a CORBA server object that responds
to CDEV-type verbs. The “set”, “get” and “monitor”
verbs are accompanied by a CORBA sequence of objects
containing the parameters required to, respectively,
download setpoints, readback device attributes and
monitor selected channels. The configuration information
is held in a SQL92 compliant relational database [11]
which is accessed through a CORBA wrapped Database
Server. The Analysis Server further retrieves monitored
data from the real-time system, through the CDEV Server,
for recalibration and analysis. The application API
embedded in the client GUI component polls the Analysis
Server for updated values and displays them.

All client-server processes are able to report error
messages and alarms to a dedicated Message Server
through a CORBA interface. Presently the server employs
the UNIX syslog message logging facility, incorporating
a variety of priority levels. Syslog entries are further
converted to SQL insert queries for immediate entry into

556

Figure 2: A prototype client application displaying measured beam positions

the database. Error messages are viewed either through a
Tcl/Tk based browser or the native database browser.

The server-client components featured are typical of
the requirements of several anticipated applications. The
framework further allows for critical code components to
be better tested through their eventual use in different APIs.

3 FUTURE DEVELOPMENTS
The model presented here represents work in progress

and, as such, a number of developments are foreseen.
Since several of the servers have write privileges to
sensitive software and hardware channels, it is intended to
add authentication procedures that identify and authorize
the client, e.g. through use of the Secure Sockets Layer
(SSL), a protocol also supported by MICO. Server
diagnostic tools will also be added to provide a synopsis
of usage and performance.

It is envisioned that configuration, calibration and other
data will be held in an Oracle database. Work is in progress
within the CDEV community to interface Oracle to the
CDEV service layer allowing easy database access through
the CDEV device/message paradigm [12].

Of the CORBA facilities and services that are becoming
increasingly available, particularly appealling is the Event
Service which offers a convenient channel for distributing
data to one or more consumers. Data from a supplier
is distributed to consumers, on a push or pull basis,
without the supplier requiring knowldege of the receiving
objects. Such a service would be usefully employed in the
distribution of calibrated data to client consumers.

The use of Java is noticably gaining momentum in
the accelerator physics community; its unique features
of garbage collection, exception handling and integrated
thread support are desirable assets for building large-scale
distributed systems. Java Swing and Java Beans further
offer components for building GUI operator interfaces

(OPIs). In this respect, an effort to coordinate activities
with the aim of releasing a standard Java OPI is on the
Software Sharing Workshop agenda [13].

4 CONCLUSION
An object oriented client-server model in which dedicated
C++ servers provide essential services to clients by means
of CORBA objects has been presented. A prototype
client application has demonstrated that the proposed
architectural model offers an appropriate framework for
application programmers to develop APIs within the beam
dynamics environment.

5 REFERENCES
[1] M. Böge et al., “The Swiss Light Source Accelerator

Complex: An Overview”, Proc. 1998 6th European Particle
Acc. Conf. (EPAC-98), Stockholm, Pub: IoP, UK, p. 623

[2] OMG, CORBA, http://www.omg.org/
[3] J.K. Ousterhout, “Tcl and the TK Toolkit”, Pub: Addison-

Wesley; Tk/BLT, http://www.tcltk.com/blt/
[4] A. Puder, K. Römer, “Mico is CORBA”, Pub: Ap

Professional; http://www.mico.org/
[5] F. Pilhofer, “TclMico, A Tcl Interface to Mico”, http:

//www.informatik.uni-frankfurt.de/˜fp/Tcl/tclmico/
[6] Java, http://java.sun.com/
[7] JavaORB, http://www.multimania.com/dogweb/Projects/Java

ORB/javaorb.html
[8] J. Bengtsson, “TRACY-2 User’s Manual”, SLS Internal

Document (1997); M. B¨oge, “Update on TRACY-2
Documentation”, SLS Internal Note, SLS-TME-TA-1999-
0002 (1999); http://slsbd.psi.ch/pub/slsnotes/

[9] M. Dachet al., “Control and Data Acquisition System of the
Swiss Light Source”, ICALEPCS’99, Invited Paper MA1I01

[10] CDEV, http://www.jlab.org/cdev/
[11] PostgreSQL, http://www.pgsql.com/
[12] W. Watson, T. Pal, private communication
[13] SOSH’99, http://www.jlab.org/sosh/sosh99/

557

