
Abstract

Recent experience when developing vacuum control
applications at CERN made evident that a significant
amount of work was induced by the variety of Application
Programming Interfaces (API) in different parts of the
huge accelerator vacuum control system. A natural
solution to the problem is to provide an isolation layer of
software that will effectively decouple applications from
any dependencies on the specific interfaces by presenting
its own unique API to application programmers. The
CDEV [1] package developed at TJNAF has been used as
an implementation framework for this layer of software.
The implementation follows a 3-tier architecture where
vacuum equipment servers, based on the CDEV "generic
server engine", act as intermediaries between applications
and subsystem specific controls. The paper describes in
detail this client-server architecture and presents
experience with using CDEV in the CERN accelerator
control environment.

1 INTRODUCTION

For the time being, all three main accelerator control
systems at CERN (LEP, SPS and PS) use significantly
different protocols and interfaces for the vacuum
equipment access. As a consequence, in each system
application programmers have to write completely
different code to read, for example, a pressure value from a
vacuum gauge.

The software presented in this paper aims at hiding these
differences to the application programmer. The basic idea
is that, despite the diversity of existing low level equipment
controls, at the application software level devices of the
same kind can be represented by a common control model
reflecting their prime operational purpose rather then
specific implementations.

The Common Control Model (CCM) for the vacuum
equipment [2] presents a vacuum system to the
applications as a collection of logical devices. Each logical
device contains a number of functional components
corresponding to physical variables in the underlying
vacuum equipment and belongs to a device class. Each
functional component is uniquely identified by a name

within its device. All devices belonging to the same class
have the same nomenclature of functional components.

Several classes of the functional components have been
defined in the CCM; each class provides a standard
interface to a certain type of physical device variables and,
depending on the type (analog or discrete, input or output),
specifies a number of attributes which applications can
observe and, in some cases, modify. For example,
components of the Measurement class have value, validity,
timestamp, units, minValue, maxValue, resolution and
format attributes and serve to model analog input channels.

This model can be implemented on top of the existing
control facilities and, along with a common API, serve as a
basis for portable application software.

2 OVERVIEW

The prototype implementation of the model on LEP and PS
accelerators at CERN is based on the CDEV class library
developed at TJNAF [1]. Basic concepts of the CDEV
software are very close to the control model, so the
mapping is rather simple and straightforward. Functional
components map to CDEV device attributes, and attributes
of the functional components map to CDEV properties.

Figure 1: Device server.

Applications linked to the CDEV client library
communicate with Device Servers using the CDEV
networking protocol (CLIP, Figure 1). The Device Servers
are implemented within the CDEV Generic Server

Device Server

SL-EQUIP PS-EQP

CDEV Generic Server

LEP Vacuum Equipment PS Vacuum Equipment

Application

CDEV Client

CLIP

USING CDEV AS MIDDLEWARE IN VACUUM EQUIPMENT
CONTROLS

I.Laugier, N.N.Trofimov, CERN, Geneva, Switzerland

International Conference on Accelerator and Large Experimental Physics Control Systems

517

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25328361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

framework and their primary function is to map logical
devices to the underlying physical equipment. For each
logical device the servers provide the “stub” functions
which link the device to physical I/O points in the
equipment. The physical I/O is performed using the PS [3]
and LEP [4] specific equipment access interfaces and
protocols.

Since the physical I/O is relatively slow, the servers
maintain a cache for the most recent data read from the
equipment. Applications read device attribute values from
the cache; the cache data is periodically updated so that it
always reflects with a required precision current state of the
physical equipment attached to the server. Upon each cache
update, the applications that subscribed to (monitorOn)
values of device attributes can be notified on changes if the
data received from equipment is different from the cached
data.

3 CONFIGURATION DATA

One of the main goals in the Device Server design was to
make the server software, as much as possible, data driven.
In particular, it shall be possible to introduce a new device
class in the control model or a new device in the system
without recompilation, just by entering the device or the
class descriptor into a configuration database. In the
prototype implementation, the general accelerator (Oracle)
database was used to store the configuration data.

Figure 2: Data Server.

Since access to the accelerator database is relatively slow
and not always guaranteed, the two level data extraction
scheme is used (Figure 2). Information from Oracle data

tables is dumped into files that are read at startup by the
Data Server which then acts as an actual data source for the
Device Servers and applications.

The Data Server is also implemented using the CDEV
Generic Server framework and is seen by its clients as a
special "well known" database device that responds to the
select, query and get messages. The first two messages
clients can use to locate a required descriptor in the
database. When the descriptor is found, its contents can be
obtained from the database using the get message.

With this approach, we practically do not use the
cdevDirectory device and DDL files. The DDL file in use
only describes interfaces to the CDEV name server and the
Data Server. All directory services are provided by the
database device.

4 DEVICE SERVER SOFTWARE

The Device Server software is written in C++. Classes
shown in Figure 3 constitute the server framework;
altogether, they allow to create, according to the database
description, the software objects which represent logical
devices and “export” them over the network to client
applications.
.

Figure 3: Object model for the Device Server.

Data Server

CDEV Generic Server

in-memory
data tables

Application

CDEV Client

Device Server

CDEV Client

CLIP

Accelerator Database

Oracle data tables

Data Files

cdevServer

runServer

DeviceServer

processMessages

Device

create

Component

get
set
installMonitor
removeMonitor

update

fireMonitor

Timer

interval

initialize
read
write

IOHandler

IOHandleattachHandle

0..1

name

name

1

*

monitors

1

cdevMonitorNode

updateTimer component

component

IOhandle

0..1

handler 1

1

device 1

handler 1

1

1

1

1

CDEV Library Classes

cdevMonitorTable

removeMonitor
insertMonitor

*

518

The server main function simply creates a DeviceServer
object giving the server name as an argument to the
constructor.

The constructor locates the server description in the
database using the name as a key and extracts from the
database a list of all devices attached to the server. It then
iterates through the list calling for each device the static
create method of the Device class.

The create method in turn extracts from the database a
class description for the specified device and for each
functional component defined in this device class creates a
corresponding Component object. At this point, it also
creates a Timer and an IOHandle for the Component.

The Timer will periodically activate the Component update
method which refreshes the Component attribute values
with new data obtained from the equipment. If the values
change during the update, the method can fire monitors
installed on the Component and hence report the changes
to all interested clients. The Timer interval value is set from
the database according to the sampling rate required to
follow changes of the corresponding physical variable.

The physical I/O during the Component update procedure
is performed using the read method of the associated
IOHandle object. The IOHandle is an abstract class which
just defines a common interface to the I/O operations. A
concrete implementation must be provided for each
specific I/O connection.

Logical devices, even of the same class, can map to many
different hardware “boxes” connected to the control
system in different ways. The IOHandler is a collection of
the IOHandles required to connect a logical device to some
type of the physical equipment via certain I/O interface.
For each logical device, the configuration database
specifies the name of its IOHandler. The create method of
the Device class extracts this information from the
database and dynamically attaches appropriate IOHandles
to the device Components.

Component attributes can be dynamic if their values
change during the operation of the vacuum device (the
pressure value, for example) or static otherwise. The static
attributes, such as units of measurement, typically get their
values from the configuration database during the
Component creation. In some cases, they can be initialized
from the device hardware using the init method of the
IOHandle class.

When the server is populated with Device objects, the main
function invokes the runServer method of the cdevServer
class and the server starts to accept client connections and
process incoming messages. The communications are
handled by the CDEV library classes; incoming messages
from connected clients are buffered in the input queue and
then dispatched to the processMessages method of the
DeviceServer class.

The method first locates the Device and the Component to
which a message is targeted and then, depending on the
message type (get, set, monitorOn, monitorOff), invokes
one of the Component accessor functions (get, set,
installMonitor, removeMonitor).

The get function packs values of the Component attributes
specified in the message context into a cdevData object and
send this object back to the client in the response message.
The set function assigns new values to the Component
attributes specified in the inbound cdevData object and
then downloads the values to the equipment using the write
method of the IOHandle class. The install/removeMonitor
functions call corresponding methods of the
cdevMonitorTable class to register/unregister a monitor on
the Component attributes specified in the message context.

The message processing and the regular update of
Component attribute values are performed in different
(POSIX) threads to allow the server to handle client
requests during relatively long I/O operations. In each
Component, a mutex prevents simultaneous access to the
Component data from the message handling and update
threads.

5 RESULTS

Several device servers providing access to more then a
thousand vacuum devices of the PS complex are in
operation for over a year now. The device server for the
vacuum equipment of the new Antiproton Decelerator has
been successfully used in the commissioning of the
machine [5]. The server software has proved to be reliable
and showed performance adequate for vacuum control
applications.

6 REFERENCES

[1] Jie Chen et al., ‘CDEV: An Object-Oriented Class
Library for Developing Device Control Applications’,
ICALEPCS’95, Chicago, 1996.

[2] I.Laugier, P.M.Strubin, N.N.Trofimov, ‘A Common
Control Model for Vacuum Equipment at CERN’,
ICALEPCS’99, Trieste, 1999.

[3] F. Di Maio, A.Risso, ‘The CERN-PS Equipment
Access Library’, CERN PS/CO Note 93-87, 1994.

[4] P.Charrue et al., ‘The Equipment Access Software for a
Distributed UNIX-Based Accelerator Control System’,
ICALEPCS’93, Berlin, 1993.

[5] P.M.Strubin et al., ‘First Experience with Control and
Operational Models for Vacuum Equipment in the AD
Decelerator’, PAC’99, New York City, 1999.

519

