

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN - PS DIVISION

CERN/PS 2001-068 (CO)

A FRAMEWORK FOR JAVA APPLICATION PROGRAMS
IN THE CERN PS CONTROL SYSTEM

M. Arruat, J. Cuperus, M. Gourber-Pace, R. Hoh, E. Roux

Presented at ICALEPCS 2001, San Jose, CA, U.S.A., November 27-30 2001

Geneva, Switzerland
13 December 2001

A FRAMEWORK FOR JAVA APPLICATION PROGRAMS IN THE CERN
PS CONTROL SYSTEM

Michel Arruat, Jan Cuperus, Marine Gourber-Pace, Roger Hoh, Eric Roux,

CERN, 1211 Geneva 23, Switzerland

Abstract
The user interface for a system controlling 5 inter-

connected accelerators is composed of a large number
of windows organized in a tree structure of application
programs with a console manager at the top. All
programs run in a single Java Virtual Machine (JVM)
without interfering with each other. The windows show
accelerator data and interaction widgets. A framework
has been built to design these windows and make them
interact and cooperate with a minimum of effort from
the programmers. A project manager controls the life
cycle of the programs, including use of templates and
CVS [3]. Program development and execution can be
done on both the Microsoft Windows and Linux
platforms through files that are visible to both systems.

1 INTRODUCTION
The CERN PS accelerator complex consists of 5

accelerators that deliver protons, antiprotons and ions
for local experiments or injection into the SPS
accelerator and later the LHC. Some can change
completely their mode of operation from cycle to cycle.
To control this complex we need a generic control
system that is data-driven so that it can work with any
accelerator. We are moving from an application layer
written in C/C++ to one written in Java.

2 APPLICS AND FRAMES
The basic program unit is what we will call an applic

which extends the AbstractApplic class. An applic can
have an associated window or frame. An application
consists of a tree of applics. Application trees can also
form trees and so on but formally there is only one tree
of applics (see Fig.1).

Figure 1: Tree of applics and associated frames.

Any applic can be started as a dependent of a
manager applic and then executes in the same JVM. It
can also be started independently in its own JVM, in
which case it becomes a top manager with special
privileges.

A console manager is a top manager with a frame
that is essentially a large menu to start applications and
to hide or iconify entire application trees.
AbstractApplic contains code for managing these trees
and the communication between applics.

Figure 2: Class diagram for an applic frame.

A frame can be internal or external (see Fig.2) and if

the programmer uses only the common AbstractFrame
interface, he can transform one into the other by
changing just one word in the code.

Figure 3: The default empty frame.

The frame can receive a configurable TopZone and a

BottomZone with a message area, expandable to a full
frame, for looking at the latest messages. In between is
the UserZone that can receive Java Beans and, more
specifically, components for reading and setting
accelerator parameters (Fig.3). The components of the
default TopZone are (from left to right):

Applic+Frame
Applic+Frame

Applic+Frame

Applic+Frame

Applic+Frame Applic

Top Manager

Manager
Dependent

JFrame JInternalFrame

Interface
Abstract
Frame

ExtFrame IntFrame

Internal
or
External
Frame BottomZone

TopZone

Applic

• Freeze/UnFreeze action
• One-shot action
• Show/Select dependent frames action
• Date+Time of latest action or update
• Present beam and cycle
• Beam and cycle trigger selector
• Print the frame action
• Popup html browser with applic help-text action

3 ERROR REPORTING
Class Display has static methods for reporting:

• showMessage(message, source)
• showWarning(message, source)
• showFault(message, exception, source)

Any component or service can call these methods. The
framework tries to display the message in a relevant
place and faults are guaranteed to be displayed. If
object source is in any way associated with a frame, the
message appears in the BottomZone of that frame, else
in the BottomZone of the top manager, else as a
message pane or, if there is no graphical interface, on
the output stream. In addition, faults are logged on a
relational database with JDBC (Java DataBase
Connectivity).

4 APPLICATION ENVIRONMENT

Figure 4: The environment for applics and components

The application environment is shown in Fig.4.
Some of the subsystems are described in [1] and [2].

5 DESIGN TOOLS
A simple text editor is sufficient for maintaining Java

files, but the use of a powerful design tool is more
effective. JBuilder was chosen for the following
reasons:

• It has powerful text editing capabilities.
• It works on Linux and Microsoft Windows.
• Graphical editing produces clear code so that

graphical and text editing can be interleaved.
• It has good debugging facilities.
• It allows to maintain many projects and to

switch from one to the other very quickly.
• Last but not least, it does not lock you in and

you can move to another tool when convenient.

6 DEFERRED INITIALIZATION
Java Beans, dropped into the frame in a graphical

design tool, may come to life in the tool if they are
initialized completely. They may connect to the
accelerator devices and this is not desirable. The Beans
may therefore call a static method deferredInit(). In the
operational environment, an applic is initialized in a
dedicated thread and all deferredInit calls are put on a
stack with the thread as a key. At the end of the
initialization, the AbstractApplic superclass knows all
these Beans, can call them with any parameters
required by their class and may even automatically
interconnect certain pairs of Beans.

7 TEMPLATES
For a new application or project myproject, the

following skeleton files for the main applic can be
generated from templates:
1. Myproject.java: the main applic. This may define

a frame internally or refer to:
2. MyProjectFrame.java: a separate file for doing

graphical design in a tool such as JBuilder.
3. MyprojectHelp.html: that will show when the

Help button of the applic is pushed.
4. Myproject.jpx: defines the project for JBuilder.

(1) and (2) start with a section that should not be user
modified. They can immediately be compiled and run
and then produce a frame like Fig.3 to which you can
add components.

Any time later, skeletons for dependent applics can
be added, like: Mydep.java, MydepFrame.java and
MydepHelp.html.

Directory
service for
accelerator
devices and
parameters

Relational
database
with JDBC

Reference
Parameters
for
accelerator
devices

Accelerators and accelerator devices

Accelerator
device
interface

Timing
and beam
sequence
interface

Subscription and access service in middleware

applics
and
component library

Error
reporting

Frame
services

8 THE PROJECT MANAGER
We need to create new projects, safeguard them in

CVS [3], install them and generate Javadoc. Also, we
wish to work from Linux and Microsoft Windows
interchangeably which produces long file paths for
common visibility through the SAMBA [4] file system.
The Project Manager automates all this.

Figure 5: Select Project page of the project manager.

First, you select a project category and a project

name (see Fig.5). Note that the project manager uses
the framework and that it is used to maintain itself!
When the Goto Project button is pushed, we get the
design page shown in Fig.6. Many file operations are
supported but not editing, for which you need a
separate tool such as JBuilder.

Figure 6: File Operations page (here on Linux).

The CVS operation page is shown in Fig.7. CVS is
implemented on a server that can be addressed both
from Linux and Windows. There is also a Test+Install
page that looks similar to the CVS page and allows
compilation, testing, Javadoc documenting, and
installation as a .jar file.

At any time, you can expand the message zone, on
the bottom of the frame, to view a complete log of your
actions since the beginning of the session.

Figure 7: CVS operations page of the project manager.

9 CONCLUSIONS
With the framework, it is possible to write useful

programs in a short time without necessarily being a
professional programmer. The programmer, using a
large library of proven components, can concentrate on
his goals without being bothered by too many details.

Application programs using an early version of this
framework have been in use for over a year. They
perform satisfactorily as stand-alone Java programs
called from a console manager in C++. This limits their
number to 5 because of the large resources taken by
each JVM. Also, a start-up time of 10-20s is rather
long.

When enough Java programs exist, we should start
them from a console manager in Java, all in the same
JVM. Such a console manager must be able to run for
several days without restarting. Also, the speed must be
sufficient to update several hundred parameters every
second. After recent improvements in the interfaces, the
middleware, and the component library, we have
confidence that we can reach these goals. A console
manager in Java can also start (and to some extent
control) C/C++ programs, but the ultimate goal should
be an homogeneous Java control system.

REFERENCES
[1] A Directory Service for the CERN PS/SL

Application Programming Interface, J.Cuperus et
al, Proceedings Icalepcs99, p581.

[2] Remote Device Access in the New CERN
Accelerator Controls Middleware, V.Baggiolini et
al., this conference.

[3] Open Source Development with CVS, web address
http://www.cvshome.org/ .

[4] http://us1.samba.org/samba/samba.html .

