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ABOUT THE BOOK

This is the first monograph on the geometry of anisotropic spinor spaces and
its applications in modern physics. The main subjects are the theory of grav-
ity and matter fields in spaces provided with off-diagonal metrics and asso-
ciated anholonomic frames and nonlinear connection structures, the algebra
and geometry of distinguished anisotropic Clifford and spinor spaces, their
extension to spaces of higher order anisotropy and the geometry of gravity
and gauge theories with anisotropic spinor variables. The book summarizes
the authors’ results and can be also considered as a pedagogical survey on
the mentioned subjects.
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0.1 Preface

0.1.1 Historical remarks on spinor theory

Spinors and Clifford algebras play a major role in the contemporary physics
and mathematics. In their mathematical form spinors had been discovered
by Elie Cartan in 1913 in his researches on the representation group theory
[43] who showed that spinors furnish a linear representation of the groups of
rotations of a space of arbitrary dimensions. In 1927 the physicists Pauli [126]
and Dirac [54] (respectively, for the three-dimensional and four—-dimensional
space—time) introduced spinors to represent wave functions.

The spinors studied by mathematicians and physicists are connected with
the general theory of Clifford spaces introduced in 1876 [46].

In general relativity theory spinors and the Dirac equations on (pseudo)
Riemannian spaces, were defined in 1929 by H. Weyl [206], V. Fock [60] and
E. Schrodinger [138]. The book [127], by R. Penrose, and volumes 1 and
2 of the R. Penrose and W. Rindler monograph [128, 129] summarize the
spinor and twistor methods in space—time geometry (see additiona references
(65, 33, 119, 91, 154, 42] on Clifford structures and spinor theory).

Spinor variables were introduced in Finsler geometries by Y. Takano in
1983 [152] who considered anisotropic dependencies not only on vectors from
the tangent bundle but on some spinor variables in a spinor bundle on a
space-time manifold. That work was inspired from H. Yukawa’s quantum
theory of non-local fields in 1950 [211]; it was suggested that non-localization
may be in Finsler like manner but on spinor variables. There was also a
similarity with supersymmetric models (see, for instance, references from
[204, 205]), which also used spinor variables. The Y. Takano’s approach
followed standard Finsler ideas and was not concerned with topics relating
supersymmetries of interactions.

This direction of generalized Finsler geometry, with spinor variables, was
developed by T. Ono and Y. Takano in a series of works during 1990-1993
[121, 122, 123, 124]. The next steps were investigations of anisotropic and
deformed geometries with mixtures of spinor and vector variables and ap-
plications in gauge and gravity theories elaborated by P. Stavrinos and his
students S. Koutroubis and P. Manouselis as well as with Professor V. Balan
beginning 1994 [145, 147, 148, 142, 143]. In those works the authors assumed
that some spinor variables may be introduced in a Finsler like manner, they
do not related the Finlser metric to a Clifford structure and restricted the
spinor—gauge Finsler constructions only for antisymmetric spinor metrics on
two—spinor fibers with generalizations four dimensional Dirac spinors.

Isotopic spinors, related with SU(2) internal structural groups, were con-
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sidered in generalized Finsler gravity and gauge theories also by G. Asanov
and S. Ponomarenko [19], in 1988. But in that book, as well in the another
mentioned papers on Finsler geometry with spinor variables the authors had
not investigated the problem if a rigorous mathematical definition of spinors
is possible on spaces with generic local anisotropy.

An alternative approach to spinor differential geometry and generalized
Finsler spaces was elaborated, beginning 1994, in a series of papers and com-
munications by S. Vacaru with participation of S. Ostaf [189, 192, 190, 161].
This direction originates from Clifford algebras and Clifford bundles [83, 154]
and Penrose’s spinor and twistor space-time geometry [127, 128, 129] which
were re—considered for the case of nearly autoparallel maps (generalized con-
formal transforms) in Refs. [156, 157, 158]. In the works [162, 163, 166],
a rigorous definition of spinors for Finsler spaces, and their generalizations,
was given. It was proven that a Finsler, or Lagrange, metric (in a tangent,
or, more generally, in a vector bundle) induces naturally a distinguished Clif-
ford (spinor) structure which is locally adapted to the nonlinear connection
structure. Such spinor spaces could be defined for arbitrary dimensions of
base and fiber subspaces, their spinor metrics are symmetric, antisymmetric
or nonsymmetric (depending on corresponding base and fiber dimensions).
In result it was formulated the spinor differential geometry of generalized
Finsler spaces and developed a number of geometric applications the theory
of gravitational and matter filed interactions with generic local anisotropy.

Further, the geometry of anisotropic spinors and of distinguished by
nonlinear connections Clifford structures was elaborated for higher order
anisotropic spaces spaces [165, 173, 172 and, recently, to Hamilton and La-
grange spaces [198].

Here it would be necessary to emphasize that the theory of anisotropic
spinors may be related not only with generalized Finsler, Lagrange, Car-
tan and Hamilton spaces or their higher order generalizations. Anholo-
nomic frames with associated nonlinear connections appear naturally even in
(pseudo) Riemannian geometry if off-diagonal metrics are considered [176,
177, 179, 182, 183]. In order to construct exact solutions of Einstein equa-
tions in general relativity and extra dimension gravity (for lower dimen-
sions see [175, 196, 197]), it is more convenient to diagonalize space—time
metrics by using some anholonomic transforms. In result one induces lo-
cally anisotropic structures on space-time which are related to anholonomic
(anisotropic) spinor structures.

The main purpose of this book is to present an exhaustive summary and
new results on spinor differential geometry for generalized Finsler spaces and
(pseudo) Riemannian space-times provided with anholonomic frame and as-
sociated nonlinear connection structure, to discuss and compare the existing
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approaches and to consider applications in modern gravity and gauge theo-
ries.

0.1.2 Metric Spaces depending on Spinor Variables and
Gauge Field Theories

An interesting study of differential geometry of spaces whose metric tensor
9w depends on spinor variables § and ¢ (its adjoint) as well as coordinates
z', has been proposed by Y. Takano [152]. Then Y. Takano and T. Ono
[121, 122, 123] had studied the above—mentioned spaces and they gave a
generalization of these spaces in the case of the metric tensor depending on
spinor variables ¢ and € and vector variables 3 as well as coordinates z°.
Such spaces are considered as a generalization of Finsler spaces.

Latter P. Stavrinos and S. Koutroubis studied the Lorents transforma-
tions and the curvature of generalized spaces with metric tensor g,,(z,y,¢,

€) [143]

The gravitational field equations are derived in the framework of these
spaces whose metric tensor depends also on spinor variables ¢ and &. The
attempt is to describe gravity by a tetrad field and the Lorentz connection
coefficients in a more generalized framework than that was developed by P.
Ramond (cf. eg. [134]). An interesting case with generalized conformally
flat spaces with metric g,,(x, &, €) = exp[20(z, &, &)]n,u was studied and the
deviation of geodesic equation in this space was derived.

In Chapter 12 we study the differential structure of a spinor bundle in
spaces with metric tensor g, (7, &, €) of the base manifold. Notions such as:
gauge covariant derivatives of tensors, connections, curvatures, torsions and
Bianchi identitities are presented in the context of a gauge approach due to
the introduction of a Poincaré group and the use of d-connections [109, 116]
in the spinor bundle S@ M. The introduction of basic 1-form fields p, and
spinors (,, (* with values in the Lie algebra of the Poincaré group is also
essential in our study. The gauge field equations are derived. Also we give
the Yang-Mills and the Yang-Mills-Higgs equations in a form sufficiently
generalized for our approach.

Using the Hilbert—Palatini technique for a Utiyama-type Lagrangian den-
sity in the deformed spinor bundle S® M x R, there are determined the ex-
plicit expressions of the field equations, generalizing previous results; also,
the equivalence principle is shown to represent an extension for the corre-
sponding one from S® M.

In this chapter we studied the spinor bundle of order two S (2)(M), which
is a foliation of the structure of the spinor bundle presented in [140, 148].
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In the present approach the generalized tetrads and the spin-tetrads define,
by means of the relations (13.8), a generalized principle of equivalence in
the spinor bundle S 2)(M). Also, employing the Miron - type connections,
we cover all the possibilities for the S - bundle connections, which represent
the gauge potential in physical interpretation. These have, in the framework
of our considerations, the remarkable property of isotopic spin conservation.
The introduction of the internal deformed system (as a fibre) in S® M), is
expected to produce as a natural consequence , for a definite value k, ¢
(where k is a constant and ¢* a scalar field), the Higgs field. This will be
derived within the developed theory, in a forecoming paper.

In chapter 14 the Bianchi equations are determined for a deformed spinor
bundle S M = S@ M x R. Also the Yang-Mills-Higgs equations are derived,
and a geometrical interpretation of the Higgs field is given [141].

1. We study the Bianchi identities choosing a Lagrangian density that
contains the component ¢ of a g-valued spinor gauge field of mass
m € R. Also we derived the Yang-Mills-Higgs equations on S® M x R.
When my € R the gauge symmetry is spontaneous broken which is
connected with Higgs field.

2. The introduction of d-connections in the internal (spinor) structures
on S® M-bundle provides the presentation of parallelism of the spin
components constraints which satisfy by the field strengths.

3. In the metric G (relation (14.1)) of the bundle S® M, the term
gaﬁDfo‘Dﬁg has a physical meaning since it expresses the measure of
the number of particles to same point of the space.

4. The above mentioned approach can be combined with the phase trans-
formations of the fibre U(1) on a bundle S@ M x U(1) in the Higgs
mechanism. This will be the subject of our future study.

In the last part of our monograph we establish the relation between spinor
of SL(2,C group and tensors in the framework of Lagrange spaces is studied.
A geometrical extension to generalized metric tangent bundles is developed
by means of spinor. Also, the spinorial equation of causality for the unique
solution of the null-cone in the Finsler or Lagrange space is given explicitly

[149].
0.1.3 Nonlinear connection geometry and physics

It was namely Elie Cartan, in the 30th years of the previous century, who
additionally to the mentioned first monograph on spinors wrote some funda-
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mental books on the geometry of Riemannian, fibred and Finsler spaces by
developing the moving frame method and the formalism of Pfaff forms for
systems of first order partial differential equations [42, 41, 44]. The first ex-
amples of Finsler metrics and original definitions were given by B. Riemann
[135] in 1854 and in Paul Finsler’s thesis [59] written under the direction of
Caratheodory in 1938. In those works one could found the origins of notions
of locally trivial fiber bundle (which naturally generalize that of the mani-
fold, the theory of these bundles was developed, by 20 years later, especially
by Gh. Ehresmann) and of nonlinear connection (appearing as a set of co-
efficients in the book [41] and in a more explicit form in some papers by A.
Kawaguchi [84]).

The global formulation of nonlinear connection is due to W. Barthel [25];
detailed investigations of nonlinear connection geometry in vector bundles
and higher order tangent bundles, with applications to physics and mechan-
ics, are contained in the monographs and works [108, 109, 106, 107, 110, 113]
summarizing the investigations of Radu Miron school on Finsler and La-
grange geometry and generalizations. The geometry of nonlinear connec-
tions was developed in S. Vacaru’s works and monograph for vector and
higher order [169, 172] superbundles and anisotropic Clifford/spinor fibra-
tions [189, 162, 163, 165, 166], with generalizations and applications in (su-
per) gravity [184, 177, 179, 185, 185, 186, 194, 195] and string theories
[170, 171] and noncommutative gravity [180]). There are a number of results
on nonlinear connections and Finsler geometry, see for instance [136, 24, 96],
with generalizations and applications in mechanics, physics and biology which
can be found in references [5, 7, 8, 9, 12, 14, 16, 19, 27, 29, 37].

Finsler spaces and their generalizations have been also developed with the
aim to propose applications in classical and higher order mechanics, optics,
generalized Kaluza—Klein theories and gauge theories. But for a long period
of time the Finsler geometry was considered as to be very sophisticate and
less compatible with the standard paradigm of modern physics. The first
objection was that on spaces with local anisotropy there are not even local
groups of authomorphisms which made impossible to define local conserva-
tion laws, develop a theory of anisotropic random and kinetic processes and
introduce spinor fields. The second objection was based on a confusion stat-
ing that in Finsler like gravity theories the local Lorentz symmetry is broken
which is not compatible with the modern paradigms of particle physics and
gravity [208]. Nevertheless, it was proven that there are not more concep-
tual problems with definition of local conservation laws than in the usual
theory of gravity on pseudo-Riemannian spaces if Finsler like theories are
formulated with respect to local frames adapted to the nonlinear connection
structure: a variant of definition of conservation laws for locally anisotropic
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gravitational and matter field interactions being proposed by using chains of
nearly autoparallel maps generalizing conformal transforms [164, 191, 193].
As to violations of the local Lorentz symmetries, one should be mentioned
that really there were investigated some classes of such Finsler like metrics
with the aim to revise the special and general theories of relativity (see, for
instance, Refs. [18, 13, 37, 70]), but it is also possible to define Finsler like,
and another type anisotropic, structures, even in the framework of general
relativity theory. Such structures are described by some exact solutions of
the Einstein equations if off-diagonal frames and anholonomic frames are in-
troduced into consideration [176, 177, 179, 182, 183, 185]. We conclude that
there are different classes of generalized Finsler like metrics: some of them
posses broken Lorentz symmetries another ones do not have such properties
and are compatible with the general relativity canons. Here should be em-
phasized that the violation of Lorentz geometry is not already a prohibited
subject in modern physics, for instance, the effects induced by Lorentz viola-
tions are analyzed in brane physics [52] and non—commutative field theories
[118, 40].

The third objection was induced by ”absence” of a mathematical theory
of stochastic processes and diffusion on spaces with generic local anisotropy.
But this problem was also solved in a series of papers: The first results
on diffusion processes on Finsler manifolds were announced in 1992 by P.
Antonelly and T. Zastavniak [10, 11]; their formalism was not yet adapted
to the nonlinear connection structure. In a communication at the lasi Aca-
demic Days (1994, Romania) [159] S. Vacaru suggested to develop the theory
of stochastic differential equations as in the Riemannian spaces but on vec-
tor bundles provided with nonlinear connection structures. In result the
theory of anisotropic processes was in parallel developed on vector bundles
by S. Vacaru [159, 160, 167] (see Chapter 5 in [172] for supersymmetric
anisotropic stochastic processes) and P. Antonelli, T. Zastavniak and D.
Hrimiuc [10, 11, 68, 69, 6] (by the last three authors with a number of appli-
cations in biology and biophysics) following a theory of stochastic differential
equations formulated on bundles provided with anholnomic frames and non-
linear connections. It was also possible to formulate a theory of anisotropic
kinetic processes and thermodynamics [175, 178, 179] which applications in
modern cosmology and astrophysics. So, the third difficulty for anisotropic
physics, connected with the definition of random and kinetic models on spaces
with generic local anisotropy was got over.

As a forth objection on acceptance by ”physical community” of Finsler
spaces was the arguments like ”it is not clear how to supersymmetrize such
theories and how to embed them in a modern string theory because at low
energies from string theories one follows only (pseudo) Riemannian geome-
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tries and their supersymmetric generalizations”. The question on definition
of nonlinear connections in superbundles was solved in a series of preprints
in 1996 [169] with the results included in the paper [171] and monograph
[172]. Tt was formulated a new Finsler supergeometry with generalizations
and applications in (super) gravity and string theories [184]. The works
[170, 171] contained explicit proofs that we can embed in (super) string the-
ories Finsler like geometris if we are dealing with anholonomomic (super)
frame structures, at low energies we obtain anholonomic frames on (pseudo)
Riemannian space—times or, alternatively, different type of Finsler like ge-
ometries.

The monograph [172] summarized the basic results on anisotropic (in gen-
eral, supersymmetric) field interactions, stochastic processes and strings. It
was the first book where the basic directions in modern physics were recon-
sidered on (super) spaces provided with nonlinear connection structure. It
was proven that following the E. Cartan geometrical ideas and methods to
vector bundles, spinors, moving frames, nonlinear connections, Finsler and
(pseudo) Riemannian spaces the modern phyisical theories can be formu-
lated in a unified manner both on spaces with generic local anisotropy and
on locally isotropic spaces if local frames adapted to nonlinear connection
structures are introduced into consideration.

This book covers a more restricted area, comparing with the monograph
[172], connected in the bulk with the spinor geometry and physic, and is
intended to provide the reader with a thorough background for the theory of
anisotropic spinors in generalized Finsler spaces and for the theory of anholo-
nomic spinor structures in (pseudo) Riemannian spaces. The required core
of knowledge is that the reader is familiar to basic concepts from the theory
of bundle spaces, spinor geometry, classical field theory and general relativity
at a standard level for graduate students from mathematics and theoretical
physics. The primary purpose of this book is to introduce the new geomet-
rical ideas in the language of standard fiber bundle geometry and establish
a working familiarity with the modern applications of spinor geometry, an-
holonomic frame method and nonlinear connections formalism in physics.
These techniques are subsequently generalized and applied to gravity and
gauge theories. The secondary purpose is to consider and compare different
approaches which deal with spinors in Finsler like geometries.
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0.1.4 Anholonomic frames and nonlinear connections
in Einstein gravity

Let us consider a (n + m)-dimensional (pseudo) Riemannian spacetime
V(+m) being a paracompact and connected Hausdorff C*-manifold, en-
abled with a nonsigular metric

ds® = gog du® @ du”

with the coeflicients

o gij—i_NiaN]bhab Njehae
Jap = NEhy, hab

parametrized with respect to a local coordinate basis du® = (dz',dy?),
having its dual d/u® = (9/z',0/y*), where the indices of geometrical ob-
jects and local coordinate u® = (x’“, y“) run correspondingly the values: (for
Greek indices)a, 3,... = n + m; for (Latin indices) 4,7, k,... = 1,2,...,n
and a,b,c,... = 1,2,...,m. Such off-diagonal ansatz for metric were consid-
ered, for instance, in Salam—Strathdee—Percacci-Randjbar-Daemi works on
Kaluza—Klein theory [137, 130, 125] as well in four and five dimensional grav-
ity [176, 177, 179, 194, 182, 183, 187, 188, 195, 181].

The metric ansatz can be rewritten equivalently in a block (n x n)+ (m x
m) form

Gog = gij (2", y*) 0
b 0 hab(xkaya)

with respect to a subclass of n+m anholonomic frame basis (for four dimen-
sions one used terms tetrads, or vierbiends) defined

) ) 0 : 0 0
504 (5’” aa) aua (51 axl axl (2 (3;' 9 y ) ayb7 a aya)

and
6P = (di,éa) = 6u’ = (di = dxr', 6" = 6y* = dy" + N} (xj,yb) dxk) ,

called locally anisotropic bases (in brief, anisotropic bases) adapted to the
coefficients VY. The n x n matrix g;; defines the so-called horizontal metric
(in brief, h-metric) and the m X m matrix hg, defines the vertical (v—metric)
with respect to the associated nonlinear connection (N—connection) structure
given by its coefficients N7 (u®), see for instance [109] where the geometry
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of N—connections is studied in detail for generalized Finsler and Lagrange
spaces (the y—coordinates parametrizing fibers in a bundle).

Here we emphasize that a matter of principle we can consider that our
ansatz and N-elongated bases are defined on a (pseudo) Riemannian man-
ifold, and not on a bundle space. In this case we can treat that the x—
coordinates are holonomic ones given with respect to a sub—basis not sub-
jected to any constraints, but the y—coordinates are those defined with re-
speect to an anholonomic (constrained) sub—basis.

An anholonomic frame structure d, on V™ is characterized by its
anholonomy relations

(50155 — 55(5a = w”’aﬁév.

with anholonomy coefficients w?, . The elongation of partial derivatives (by
N—coefficients) in the locally adapted partial derivatives reflects the fact that
on the (pseudo) Riemannian space-time V"™ it is modeled a generic local
anisotropy characterized by some anholonomy relations when the anholon-
omy coefficients are computed as follows

k

_ k k k c
Wy = O,waj—O,wm—O,wab—O,wab—O,
a a b _ bbb b
wh; = —Qij, Wy = —0, N, w’;,, = O, N, ,

where
a a a b a b a
QL = ON% — ;N + NYO,N? — N'8,N;

defines the coefficients of the N—connection curvature, in brief, N—curvature.
On (pseudo) Riemannian space-times this is a characteristic of a chosen
anholonomic system of reference.

For generic off-diagonal metrics we have two alternatives: The first one is
to try to compute the connection coefficients and components of the Einstein
tensor directly with respect to a usual coordinate basis. This is connected to
a cumbersome tensor calculus and off-diagonal systems of partial differential
equations which makes almost impossible to find exact solutions of Einstein
equations. But we may try do diagonalize the metric by some anholonomic
transforms to a suitable N—elongated anholonomic basis. Even this modifies
the low of partial derivation (like in all tetradic theories of gravity) the pro-
cedure of computing the non—trivial components of the Ricci and Einstein
tensor simplifies substantially, and for a very large class of former off-diagonal
ansatz of metric, anholonomically diagonalized, the Einstein equations can
be integrated in general form [176, 177, 179, 194, 182, 183].

So, we conclude that when generic off-diagonal metrics and anholonomic
frames are introduces into consideration on (pseudo) Riemannian spaces the
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space—time geometry may be equivalently modeled as the geometry of moving
anholonomic frames with associated nonlinear connection structure. In this
case the problem of definition of anholonomic (anisotropic) spinor structures
arises even in general relativity theory which points to the fact that the
topic of anisotropic spinor differential geometry is not an exotic subject from
Finsler differential geometry but a physical important problem which must
be solved in order to give a spinor interpretation of space—times provided
with off-diagonal metrics and anholonomic gravitational and matter field
interactions.

0.1.5 The layout of the book

This book is organized in four Parts: the first three Parts each consisting of
three or Chapters, the forth Part consisting from six Chapters.

The Part I has is a geometric introduction into the geometry of anisotropic
spaces as well it outlines original results on the geometry of anholonomic
frames with associated nonlinear connections structures in (pseudo) Rie-
mannian spaces. In the Capter 1 we give the basic definitions from the
theory of generalized Finsler, Lagrange, Cartan and Hamilton spaces on
vector and co—vector (tangent and co-tangent spaces) and their general-
izations for higher order vector—covector bundles following the monographs
[109, 113, 172]. The next two Chapters are devoted to a discussion and ex-
plicit examples when anisotropic (Finsler like and more general ones) struc-
tures can be modeled on pseudo—Riemannian spacetimes and in gravitational
theories. They are based on results of works ellaborated by S. Vacaru and
co—authors [176, 177, 179, 182, 185, 194, 195, 199]

The Part II covers the algebra (Chapter 4) and geometry (Chapter 5)
of Clifford and spinor structures in vector bundles provided with nonlinear
connection structure. A spinor formulation of generalized Finsler gravity
and anisotropic matter field interactions is given in Chapter 6. This Part
originates from S. Vacaru and co—authors works [189, 190, 161, 162, 163, 165].

The Part III is a generalization of results on Clifford and spinor structures
for higher order vector bundles (the Chapters 7-9 extend respectively the
results of Chapters 4-6), which are based on S. Vacaru’s papers [166, 173].

The Part IV (consisting from Chapters 10-15) summarizes the basic re-
sults on various extensions of Finsler like geometries by considering spinor
variables. In the main, this Part originates from Y. Takano and T. Ono pa-
pers [152, 121, 122, 123, 124] and reflects the most important contributions
by P. Stavrinos and co—authors [140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150].
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Summing up, in this monograph we investigate anholonomic (anisotrop-
ic) spinor structures in space—times with generic local anisotropy (i. e. in
generalized Finsler spaces) and in (pseudo) Riemannian spaces provided with
off-diagonal metrics and anholonomic frame bases. It is addressed primar-
ily to researches and other readers in theoretical and mathematical physics
and differential geometry, both at the graduate student and more advances
physicist and mathematical levels.
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0.2 Notation

The reader is advised to refer as and when necessary to the list below where
there are set out the conventions that will be followed in this book with regard
to the presentation of the various physical and mathematical expressions.

(1) Equations. For instance, equation (3.16) is the 16th equation in Chap-
ter 3.

(2) Indices. Tt is impossible to satisfy everybody in matter of choice of
labels of geometrical objects and coordinates. In general, we shall use Greek
superscripts for labels on both vector bundles and superbundles. The reader
will have to consult the first sections in every Chapter in order to understand
the meaning of various types of boldface and/or underlined Greek or Latin
letters for operators, distinguished spinors and tensors.

(3) Differentiation. Ordinary partial differentiation with respect to a
coordinate z* will either be denoted by the operator d; or by subscript ¢ fol-
lowing a comma, for instance, 24- = 9; 4’ = A’ ;. We shall use the denotation
% = ;A" for partial derivations locally adapted to a nonlinear connection
structure.

(4) Summation convention. We shall follow the Einstein summation rule
for spinor and tensor indices.

(5) References.  In the bibliography we cite the scientific journals in
a generally accepted abbreviated form, give the volume, the year and the
first page of the authors’ articles; the monographs and collections of works
are cited completely. For the author’s works and communications, a part of
them been published in not enough accessible issues, or being under consid-
eration, the extended form (with the titles of articles and communications)
is presented. We emphasize that the references are intended to give a sense
of the book’s scopes. We ask kindly the readers they do not feel offended by
any omissions.

(6) Introductions and Conclusions. If it is considered necessary a Chap-
ter starts with an introduction into the subject and ends with concluding
remarks.
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Part 1

Space—Time Anisotropy






Chapter 1

Vector /Covector Bundles and
Nonlinear Connections

In this Chapter the space-time geometry is modeled not only on a (pseudo)
Riemannian manifold V"™ of dimension n + m but it is considered on
a vector bundle (or its dual, covector bundle) being, for simplicity, locally
trivial with a base space M of dimension n and a typical fiber F' (cofiber
F*) of dimension m, or as a higher order extended vector/covector bundle
(we follow the geometric constructions and definitions of monographs [109,
108, 113, 106, 107] which were generalized for vector superbundles in Refs.
[171, 172]). Such fibered space—times (in general, with extra dimensions and
duality relations) are supposed to be provided with compatible structures of
nonlinear and linear connections and (pseudo) Riemannian metric. For the
particular cases when: a) the total space of the vector bundle is substituted
by a pseudo—Riemannian manifold of necessary signature we can model the
usual pseudo-Riemannian space-time from the Einstein gravity theory with
field equations and geometric objects defined with respect to some classes of
moving anholonomic frames with associated nonlinear connection structure;
b) if the dimensions of the base and fiber spaces are identical, n = m, for the
first order anisotropy, we obtain the tangent bundle T'M.

Such both (pseudo) Riemanian spaces and vector/covector (in partic-
ular cases, tangent/cotangent) bundles of metric signature (-,+,...,+) en-
abled with compatible fibered and/or anholonomic structures, the metric
in the total space being a solution of the Einstein equations, will be called
anisotropic space—times. If the anholonomic structure with associated
nonlinear connection is modeled on higher order vector/covector bundles we
shall use the term of higher order anisotropic space—time.

The geometric constructions are outlined as to present the main concepts
and formulas in a unique way for both type of vector and covector structures.
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In this part of the book we usually shall omit proofs which can be found in
the mentioned monographs [108, 109, 106, 107, 113, 172].

1.1 Vector and Covector Bundles

In this Section we introduce the basic definitions and denotations for vec-
tor and tangent (and theirs dual spaces) bundles and higher order vec-
tor/covector bundle geometry.

1.1.1 Vector and tangent bundles

A locally trivial vector bundle, in brief, v—-bundle, & = (E, 7, M,Gr, F)
is introduced as a set of spaces and surjective map with the properties that a
real vector space F' = R™ of dimension m (dim F' = m, R denotes the real
number field) defines the typical fibre, the structural group is chosen to be the
group of automorphisms of R, i. e. Gr = GL(m,R), and7n: E — M is a
differentiable surjection of a differentiable manifold E (total space, dim E =
n+m) to a differentiable manifold M (base space, dim M = n). Local coor-
dinates on £ are denoted u® = (z*, y?) , or in brief u = (z,y) (the Latin indices
1,7, k,... = 1,2, ...,n define coordinates of geometrical objects with respect to
a local frame on base space M; the Latin indices a, b, c, ... =1, 2, ..., m define
fibre coordinates of geometrical objects and the Greek indices «, 3,7, ... are
considered as cumulative ones for coordinates of objects defined on the total
space of a v-bundle).

Coordinate transforms v ¢ =u ® (u ®) on a v-bundle £ are defined as

(x i’ya) - <x v 7ya,>7

where

-/ ! : /

 =xz' (z'), Yy’ =K (2" )y° (1.1)

and matrix K & (z?) € GL(m,R) are functions of necessary smoothness
class.

A local coordinate parametrization of v—bundle £ naturally defines a co-
ordinate basis

0 0
@a—%—(@i—%, @a—a—ya), (12)

and the reciprocal to (1.2) coordinate basis

d* = du® = (d' = da’, d* = dy*) (1.3)
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which is uniquely defined from the equations

d® o 0g = 43,
where d5 is the Kronecher symbol and by ”o” we denote the inner (scalar)
product in the tangent bundle 7€&.

A tangent bundle (in brief, t—bundle) (7'M, 7, M) to a manifold M
can be defined as a particular case of a v—bundle when the dimension of
the base and fiber spaces (the last one considered as the tangent subspace)
are identic, n = m. In this case both type of indices 7, k, ... and a,b, ... take
the same values 1,2,...n. For t—bundles the matrices of fiber coordinates
transforms from (1.1) can be written K ! = 92" /0x".

We shall distinguish the base and fiber indices and values which is neces-
sary for our further geometric and physical applications.

1.1.2 Covector and cotangent bundles

We shall also use the concept of covector bundle, (in brief, cv—bundles)

%

£ = <E,7T*,M, G, F*), which is introduced as a dual vector bundle for

which the typical fiber F'* (cofiber) is considered to be the dual vector space
(covector space) to the vector space F. The fiber coordinates p, of E are dual
to y* in E. The local coordinates on total space E are denoted % = (z,p) =
(2%, pa). The coordinate transform on E,

U= (l‘iupa) - fa/ = (xi/7pa’)7

are written

-/ !

2 =2 (z7), P =K & (2" )pa. (1.4)

a

The coordinate bases on E* are denoted

. o o < 0
p— pr— O — T a pu— 1-
aOl aua (al axz ) a apa> ( 5)
and
d® = du® = <di =da',d, = dpa) . (1.6)

We shall use "breve” symbols in order to distinguish the geometrical objects
on a cv—bundle £* from those on a v—bundle £.

As a particular case with the same dimension of base space and cofiber one
obtains the cotangent bundle (7*M,7*, M) , in brief, ct—bundle, being
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dual to TM. The fibre coordinates p; of T*M are dual to y* in TM. The
coordinate transforms (1.4) on T*M are stated by some matrices K%, (x?) =
ox* /0.

In our further considerations we shall distinguish the base and cofiber
indices.

1.1.3 Higher order vector/covector bundles

The geometry of higher order tangent and cotangent bundles provided with
nonlinear connection structure was elaborated in Refs. [106, 107, 110, 113]
following the aim of geometrization of higher order Lagrange and Hamil-
ton mechanics. In this case we have base spaces and fibers of the same
dimension. In order to develop the approach to modern high energy physics
(in superstring and Kaluza—Klein theories) one had to introduce (in Refs
[165, 173, 172, 171]) the concept of higher order vector bundle with the
fibers consisting from finite 'shells” of vector, or covector, spaces of different
dimensions not obligatory coinciding with the base space dimension.

Definition 1.1. A distinguished vector/covector space, in brief dvc—space,
of type

F = Fv(1),v(2),cv(3), ..., cv(z — 1),v(2)] (1.7)
18 a vector space decomposed into an invariant oriented direct summ
F=Fy@®Fy®Fy®..0F o,
of vector spaces F1y, Fla), ..., Fiy of respective dimensions
dimFy = my, dimFlo) = ma, ..., dimEF;) = m,
and of covector spaces F(*;)), e F(*;_l) of respective dimensions
dimF 5y = mg, ..., dimF[,_;y =m(,_y).

As a particular case we obtain a distinguished vector space, in brief dv—
space (a distinguished covector space, in brief dcv—space), if all components
of the sum are vector (covector) spaces. We note that we have fixed for
simplicity an orientation of vector/covector subspaces like in (1.7); in general
there are possible various type of orientations, number of subspaces and
dimensions of subspaces.

Coordinates on F' are denoted

g = (y(l)a Y2),P@3), "'7p(zfl)7y(z)> = {y<az>} = (yalaya27pa37 <oy Pa,_15 yaz)a
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where indices run corresponding values:
ar=1,2,....m1; an=1,2,....m9, ....,a,=1,2,....,m,

Definition 1.2. A higher order vector/covector bundle (in brief, hvc--bund-
le) of type E = Ew),v(2),cv(3), ...,cv(z — 1),v(2)] is a vector bundle € =
(E p<?> F M) with corresponding total E, and base, M, spaces, surjective
projection p<d> . E — M and typical fibre F.

We define higher order vector (covector) bundles, in brief, hv—bundles (in
brief, hev-bundles), if the typical fibre is a dv—space (dcv—space) as particular
cases of hve—bundles.

A hvce—bundle is constructed as an oriented set of enveloping ’shell by
shell” v—bundles and/or cv—bundles,

p<s> N S EGN E<sfl>

where we use the index < s >=0,1,2, ...,z in order to enumerate the shells,
when E<%> = M. Local coordinates on E<S> are denoted

’

Uy = (ZE, g<8>) = (I', Yy, Y2), P@3)s -+ y(s))
= (xz7yal7ya27p(l37"'7yas)'
If < s >=< z > we obtain a complete coordinate system on € denoted in
brief
u = (x7 g) = aa = ('/I/‘Z - ya07yal7ya27pa37 "'7paz717yaz)‘

We shall use the general commutative indices «, 3, ... for objects on hve—
bundles which are marked by tilde, like @, 4%, ..., E<*~, ...
The coordinate transforms for a hve—bundle &,

U = (l’,g) — U = (xlag/>

are given by recurrent formulas

2 = 2 (3;'1) , rank (aaxx:) = n,;

y“ = Kji(x)y™, Kt € GL(my, R);

yaé = Kgﬁ (ZL‘, y(1))y“2, ngg € GL(m27 R)v

pa’3 - KZS (ZE, Y, y(?))pa37 KZE € GL(m?n R)a
(

3
Yy = Kz, ya). Yo pe)y Kgt € GL(my, R);

P, = KZ/:‘I(:E YW Y@ D) - Y(e=2) Pasy, Ko7~ € GL(me—y, R);

yr = Ka (33' Yy, Y©2), p(3)7"'7y(zf2)7paz_1)yazangz S GL(mzaR)a
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where, for instance. by GL(mz, R) we denoted the group of linear transforms
of a real vector space of dimension m;.
The coordinate bases on £ are denoted

~ d
Ou = T (1.8)
0 0 0 s O .
- (az - axiyacu - %7860 - @78 - apa37"'7aaz - ayaz>
and
= du® (1.9)

= (&' =da' am =y, d = dy, dyy = dpay, 4 = dy™ )

We end this subsection with two examples of higher order tangent / co-
tangent bundles (when the dimensions of fibers/cofibers coincide with the
dimension of bundle space, see Refs. [106, 107, 110, 113]).

Osculator bundle

The k—osculator bundle is identified with the k—tangent bundle
(T*M, p*), M) of a n-dimensional manifold M. We denote the local coordi-
nates

u- = (xiayélﬁ 7yék)> )

where we have identified yél) ~yn yék) ~ y% k = z, in order to to have
similarity with denotations from [113]. The coordinate transforms

,&a’ N ,&a’ (,&a)

preserving the structure of such higher order vector bundles are parametrized

o' = 2" ('), det (%Zi) # 0,
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where the equalities

Wy _ Wern _ My

hold for s =0,....,k — 1 and yéo) = 7'
The natural coordinate frame on (T kM, p®) M ) is defined

(2 o o
o] 33:“ ayzl) RS 3yék)

d, = (dxi, dyfl), e dyfk)) .

These formulas are respectively some particular cases of (1.8) and (1.9).

and the coframe is

The dual bundle of k—osculator bundle

This higher order vector/covector bundle, denoted as (T**M, p*™*, M) , is de-
fined as the dual bundle to the k-tangent bundle (T’“M M ) . The local
coordinates (parametrized as in the previous paragraph) are

u= (xay(l)a “'7y(k:—1)7p) = (xi7y’(il)7 "'7y’(ikfl)7pi) € T*kM

The coordinate transforms on (T**M, p**, M) are

b= (xz) det (8:1:1 ) 20,

ox’

i @xi/ i

Yo = or Y1)

Yor = gp Yo T g, Yo
. oy’ ‘ oyt ‘
i/ _ (k—2) ; (k—1)

(k= Dylp_1y = EEERLO Rt kaysz—m (k—1)>
_ Oa
p’L, - al‘i/p“
where the equalities
Oie) _ Oiorry _ 01y

oxt 8y21) 8yék7178)
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hold for s =0, ...,k — 2 and yfo) =7t
The natural coordinate frame on (T*kM B M ) is defined

G_(2 o o o
« axiv ayél) (RS ayzkil) ) apz

da = (dxi, dyél)a e dyékfl)a dpi) .

These formulas are respectively another particular cases of (1.8) and (1.9).

and the coframe is

1.2 Nonlinear Connections

The concept of nonlinear connection, in brief, N-connection, is fundamen-
tal in the geometry of vector bundles and anisotropic spaces (see a detailed
study and basic references in [108, 109]). A rigorous mathematical definition
is possible by using the formalism of exact sequences of vector bundles.

1.2.1 N-connections in vector bundles

Let £ = = (E,p, M) be a v—bundle with typical fibre R™ and 77 : TE —
T'M being the differential of the map P which is a fibre—preserving morphism
of the tangent bundle TE, 7z, F') — E and of tangent bundle (T'M, 7, M) —
M. The kernel of the vector bundle morphism, denoted as (VE, 1y, F), is
called the vertical subbundle over E, which is a vector subbundle of the
vector bundle (T'E, g, E).

A vector X, tangent to a point u € F is locally written as

(x7 y? X? Y) = (xl7 ya7 XZ? Ya)?
where the coordinates (X* Y?) are defined by the equality
X, = X0 +Y"D,.

We have nl(z,y, X,Y) = (z,X). Thus the submanifold VE contains the
elements which are locally represented as (z,y,0,Y).

Definition 1.3. A nonlinear connection N in a vector bundle € = (E, 7, M)
is the splitting on the left of the exact sequence

0—VE—TE—TE/VE—0
where TE/V E is the factor bundle.
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By definition (1.3) it is defined a morphism of vector bundles C': TE —
V E such the superposition of maps C' o ¢ is the identity on V E, where
1t : VE — VE. The kernel of the morphism C is a vector subbundle of
(TE, g, E') which is the horizontal subbundle, denoted by (HE, 74, E). Con-
sequently, we can prove that in a v-bundle £ a N—connection can be intro-
duced as a distribution

(N: E, — H,E,T,E = H,E & V,E}

for every point u € E defining a global decomposition, as a Whitney sum,
into horizontal, HE , and vertical, V&, subbundles of the tangent bundle T'€

TE = HE @ VE. (1.10)

Locally a N-connection in a v—bundle £ is given by its coefficients
N%( u) = Nf(z,y) with respect to bases (1.2) and (1.3)

N = N,“(u)d' ® 0,.

We note that a linear connection in a v-bundle £ can be considered
as a particular case of a N—connection when N,%(z,y) = Kg (x)y°, where
functions K?, (x) on the base M are called the Christoffel coefficients.

1.2.2 N-connections in covector bundles:

A nonlinear connection in a cv-bundle £ (in brief a N-connection) can be
introduces in a similar fashion as for v—bundles by reconsidering the corre-
sponding definitions for cv—bundles. For instance, it is stated by a Whitney
sum, into horizontal, H £ , and vertical, VE , subbundles of the tangent bundle
TE :

TE=HEBVE. (1.11)

Hereafter, for the sake of brevity we shall omit details on definition of
geometrical objects on cv—bundles if they are very similar to those for v—
bundles: we shall present only the basic formulas by emphasizing the most
important particularities and differences.

Definition 1.4. A N-connection on & is a differentiable distribution
N: &N, eTE
which 1s suplimentary to the vertical distribution V, 1. e.

T, =N, @ V,,VE.
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The same definition is true for N-connections in ct—bundles, we have to
change in the definition (1.4) the symbol & into T*M.
A N—connection in a cv-bundle £ is given locally by its coefficients

Y

N ;o 1) = Ny (, p) with respect to bases (1.2) and (1.3)
N = NZG(U)dZ X éa'
We emphasize that if a N—connection is introduced in a v—bundle (cv—

bundle) we have to adapt the geometric constructions to the N—connection
structure.

1.2.3 N-—connections in higher order bundles

The concept of N—connection can be defined for higher order vector / covector
bundle in a standard manner like in the usual vector bundles:

Definition 1.5. A nonlinear connection N in hvc-bundle
E=Ew),v(2),cv(3),...,cv(z — 1),v(2)]
is a splitting of the left of the exact sequence
0—-VE—-TE—-TEIVE =0 (1.12)

We can associate sequences of type (1.12) to every mappings of intermedi-
ary subbundles. For simplicity, we present here the Whitney decomposition

TE = HE&® Vv(l)g &5 Vv(g)g &5 ‘/;2(3)5 @....P VC*(Z_DE % V;)(z)é‘

v

Locally a N—connection N in £ is given by its coefficients

ai a2 a
Ni ’ Nz ) N’ia37 ceey N’iazfn Nz Za
a2 a
07 Na1 ) Na1a37 A Nalaz_la Na127
a
07 07 Nagaga seey Nagaz_p Na227 (113)
ceny ceny ceny cery ey ceey
a
07 07 07 ’ Nazfz az—1 Nazj27

=
=
=

]

, Nazflaz’

which are given with respect to the components of bases (1.8) and (1.9) .
We end this subsection with two exemples of N-connections in higher

order vector/covector bundles:
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N-—connection in osculator bundle

Let us consider the second order of osculator bundle (see subsection (1.1.3))
T?M = Osc*M. A N-connection N in Osc*M is associated to a Whitney
summ

TT°M = NT*M & VT°M
which defines in every point @ € T?M a distribution
T.T°M = Ny (@) & Ny (@) & VT*M.
We can parametrize N with respect to natural coordinate bases as

NN,
0. N (1.14)

As a particular case we can consider N§? = 0.

N—connection in dual osculator bundle

In a similar fashion we can take the bundle (T**M, p*2, M) being dual bundle
to the Osc*M (see subsection (1.1.3)). We have

T*M =TM ® T*M.

The local coefficients of a N—connection in (T*2M, p*?, M) are parametrizied
Nz’ “ ) Nia27

0 N, (1.15)

We can choose a particular case when N, ,, = 0.

1.2.4 Anholonomic frames and N—connections

Having defined a N-connection structure in a (vector, covector, or higher
order vector / covenctor) bundle we can adapt to this structure, (by 'N—
elongation’, the operators of partial derivatives and differentials and to con-
sider decompositions of geometrical objects with respect to adapted bases
and cobases.
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Anholonomic frames in v—bundles

In a v—bunde £ provided with a N-connection we can adapt to this structure
the geometric constructions by introducing locally adapted basis (N—frame,
or N—basis):

) ) u 0
(5(1—%— ((2—@—81_]\[@ (u)amaa_ aya) ’ (]‘]‘6)
and its dual N-basis, (N—coframe, or N—cobasis),
§*=ou* = (d' =2’ = da", 6" = oy* + N;* (u) dz') . (1.17)

The anholonomic coefficients, w = {w§, (u)}, of N-frames are de-
fined to satisfy the relations

[50“ 5ﬁ] = 6a5ﬁ — 5ﬁ6a = U)g7 (u) 5a' (118)

A frame bases is holonomic is all anholonomy coefficients vanish (like for
usual coordinate bases (1.3)), or anholonomic if there are nonzero values of
(O

So, we conclude that a N—connection structure splitting conventionally
a v-bundle £ into some horizontal HE and vertical V& subbundles can be
modelled by an anholonomic frame structure with mixed holonomic {x?}
and anholonomic {y*} variables. This case differs from usual, for instance,
tetradic approach in general relativity when tetradic (frame) fields are stated
to have only for holonomic or only for anholonomic variables. By using the
N-connection formalism we can investigate geometrical and physical systems
when some degees of freedoms (variables) are subjected to anholonomic con-
straints, the rest of variables being holonomic.

The operators (1.16) and (1.17) on a v—bundle £ enabled with a N—
connection can be considered as respective equivalents of the operators of
partial derivations and differentials: the existence of a N—connection structure
results in ’elongation’ of partial derivations on z—variables and in ’elongation’
of differentials on y—variables.

The algebra of tensorial distinguished fields DT (£) (d-fields, d—
tensors, d-objects) on & is introduced as the tensor algebra 7 = {7E"} of
the v—bundle

g(d) - (Hg ¥ Vgapda 8) )

where pg: HEGVE — £.



1.2. NONLINEAR CONNECTIONS 15

An element t € 77", d—tensor field of type ( ]; Z ) , can be written in

s’
local form as
t o= £ ()6 ® . ® 0, ® g, ® .. @ D,

R ® ... d1 Q6. .

We shall respectively use the denotations X (€) (or X (M)), AP (£) or
(AP (M)) and F (€) (or F (M)) for the module of d—vector fields on £ (or
M), the exterior algebra of p—forms on £ (or M) and the set of real functions
on & (or M).

Anholonomic frames in cv—bundles

The anholnomic frames adapted to the N—connection structure are intro-
duced similarly to (1.16) and (1.17):
the locally adapted basis (N-basis, or N-frame):

.4 L
=0 (5= — o+ N, (i), = , 1.1
b= ((x — =0+ Nia (1) 0,0 ) (1.19)

and its dual (N—cobasis, or N-coframe) :

v

5% = du® = (di =02t = da', 5, = p, = dp, — Nja (1) dxi) i (1.20)

We note that for the signes of N-elongations are inverse to those for
N-elongations.

The anholonomic coefficients, W = {w§, (1)}, of N-frames are de-
fined by the relations

[Sa, Sﬁ} = Bady — Dgba = 03, (1) 6. (1.21)

The algebra of tensorial distinguished fields DT <§> (d-fields, d—

tensors, d-objects) on & is introduced as the tensor algebra 7 = {’]U;Z’”} of
the cv—bundle

= (HEOVE 50, €)

where py : HEBVE = E.
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An element t € ’]u:f;’",

d—tensor field of type ( 2 Z ) , can be written in
local form as

Vil...’ip(n Gy

bty (@) 63y @ ... ® 05, @ Oy @ ... ® Oy,
R ® ... d @ ... @ s

We shall respectively use the denotations X <E> (or X (M)), AP <<‘j> or
(AP (M)) and F (E) (or F (M)) for the module of d-vector fields on & (or

M), the exterior algebra of p—forms on & (or M) and the set of real functions
on & (or M).

Anholonomic frames in hvc—bundles

The anholnomic frames adapted to a N—connection in hve—bundle € are de-
fined by the set of coefficients (1.13); having restricted the constructions to
a vector (covector) shell we obtain some generalizations of the formulas for
corresponding N(or N)-connection elongations of partial derivatives defined
by (1.16) (or (1.19)) and (1.17) (or (1.20)).

We introduce the adapted partial derivatives (anholonomic N—frames, or
N-bases) in € by applying the coefficients (1.13)

5 = :(%@M%j%mj%aag,

5
ou”
where

;= 0; — N, 0, — N,%20,, + Njg,0% — ... + Nyy. 0% — N, %0, _,
(5@1 = aa1 - Na;mam + ]\[(11(135(13 — ...+ NalazfléaZ7l - Nafza‘l

Oay = Oay + Napay 0" — ...+ Naga. 0%+ — N,%0,_,
5% = 5% — N“Q,, — .+ N% %=t — N =g,

z)

51 — §r=—1 _ N a1z
Ou. = 0/0y*=.

These formulas can be written in the matrix form:

5, = N(u) x 0,

(1.22)
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where
0; O
6(11 a(ll
5(12 aaz
o, = | o= |, 4, =| o= |, (1.23)
Jas—1 Ha=—1
Oa. Oa.
and
1 —-N*" —N,** Ny, —N"" .. Ny, —N*
0 1 _Na;m Nalas _Na;M Nalaz—l _Nafz
0 0 1 Nazas _Na;M Na2az—1 _Nagz
N =100 0 1 — Neaa as N e
0 0 0 0 0 o1 — N @=—10z
0 0 0 0 0 .. 0 1

The adapted differentials (anholonomic N-coframes, or N-cobases) in &
are introduced in the symplest form by using matrix formalism: The respec-
tive dual matrices to (1.23)

3 = (= (d 6m % 5y . e, %),
d* = {0°y=(d dv d= d, .. d,. , d*)
are related via a matrix relation
5* = d°M (1.24)

which defines the formulAas for anholonomic N—coframes. The matrix ﬁ from
(1.24) is the inverse to N, i. e. satisfies the condition

M x N =1. (1.25)

The anholonomic coefficients, w = {w§ ()}, on hev—bundle £ are

expressed via coefficients of the matrix N and their partial derivatives fol-
lowing the relations

[Sa, Sﬁ} = Bads — Dg0n = @3, (T0) 3. (1.26)
We omit the explicit formulas on shells.

A d-tensor formalism can be also developed on the space €. In this case
the indices have to be stipulated for every shell separately, like for v—bunles
or cv—bundles.

Let us consider some examples for particular cases of hcv—bundles:
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Anholonomic frames in osculator bundle

For the osculator bundle T?M = Osc*M from subsection (1.2.3) the formulas
(1.22) and (1.24) are written respectively in the form

5 <i 0 i)
oxt’ 5«@21)7 ay&) ’

where
o 0 i 0 i 0
ot Or @i 8yél) ¢ 8y22)’
6o 0 ;0
Wy Oy P oy
and
6 = (dxi,(;yél),c;yém) , (1.27)
where

Oyt = dyfyy + Myde?,
with the dual coefficients M{,); and M,); (see (1.25)) expressed via primary

coeflicients N(il) i and N(iQ)j as

My = Nz Miz); = Negyj + Ny Ny ™

Anholonomic frames in dual osculator bundle

Following the definitions for dual osculator bundle (T*2M,p*3, M) in sub-
section (1.2.3) the formulas (1.22) and (1.24) are written respectively in the

form
5o 1) 1) 0
“ dxt’ 5yé1)’ Ipeyi |’
where
) 0 .0 0
- = — — N, '—— + Nyy;im——,
St ox' (1)i ayél) (2)ig 8p(2)j
0 0
— = — + Ny, 7
0Y (1) W) B Opa);
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and
0 = (dIi, 5921)7 5p(2)z‘) ) (1.28)
where
Oyt = dypy + Niy;da’,
0p@y = dpe) — Neyijda?,

with the dual coefficients M(il)j and M(iQ)j (see (1.25)) were expressed via
N{yy; and Nfy; like in Ref. [113].

1.3 Distinguished connections and metrics

In general, distinguished objects (d—objects) on a v—bundle £ (or cv—bundle
g’) are introduced as geometric objects with various group and coordinate
transforms coordinated with the N—connection structure on £ (or g’) For
example, a distinguished connection (in brief, d—connection) D on & (or &)
is defined as a linear connection D on E (or E) conserving under a parallelism
the global decomposition (1.10) (or (1.11)) into horizontal and vertical sub-
bundles of TE (or TE). A covariant derivation associated to a d-connection
becomes d-covariant. We shall give necessary formulas for cv—bundles in
round backets.

1.3.1 D-connections
D—connections in v—bundles (cv—bundles)

A N-connection in a v-bundle £ (cv-bundle 5’) induces a corresponding
decomposition of d-tensors into sums of horizontal and vertical parts, for

example, for every d-vector X € X () (X € X <Ej) ) and 1-form A € A (€)
(Ae A <5’>) we have respectively

X = hX+vX and A=hA+vA, (1.29)
(X = hX+0vX and A=hA+0vA4)
where
hX = X0, 0X = X9, (hX = X'6;,0X = X,0%)
and

hA = A;6',vA = A,d® (hA = A;6°,vA = A%d,).
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In consequence, we can associate to every d-covariant derivation along
the d-vector (1.29), Dx = X oD (Dy = X o D) two new operators of h- and
v—covariant derivations

DVPY = DuxY and DVY =D,Y, VY €X(€)
(DPY = DV and DYV =D Y, W ex (£))
for which the following conditions hold:
Dyy = DWy 4+pVy (1.30)

DYf = (hX)f and DPf=(@X)f. X.YEX(£).feF (M)
DYy = (WX)f and DYf=(@X)f, X, Vex (5) ,f € F(M)).
The components I'g~ ( r 4,)of a d-connection D, = (64 0 D), locally

adapted to the N-—connection structure with respect to the frames (1.16)
and (1.17) ((1.19) and (1.20)), are defined by the equations

Da5ﬁ = Flﬂav (Da 8 = flﬁgv )7
from which one immediately follows
T, (u) = (Dadg) 08 (I, () = (Daaﬁ) 0 87). (1.31)
The coefficients of operators of h- and v—covariant derivations,
h 7 a v % a

Dl(c )= {ij;a Ly, } and D.(; ) = {Cjka Cy.}

(R Fi 7 M (v)e i ¢ A be
(D = {Ljy, Lo} and DU = {77, C,"Y)

(see (1.30)), are introduced as corresponding h- and v—parametrizations of
(1.31)

Ly = (Dydj)od', Ly = (Didy)od" (1.32)
(B = (Did))od, L= (D) od)
and
Ci, = (D) od, C&=(D.)o0d" (1.33)
(Cp = (D) od, = (D) od).
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A set of components (1.32) and (1.33)

Flﬁ = [L;'ka Lgk, C

je

%

Cl()lc] <f’gzﬂ = [E;Iw za?ﬁ’ Cv’ijc7 Cabc]>

completely defines the local action of a d—connection D in £ (D in £ ).

v

For instance, having taken on &€ (£) a d—tensor field of type ( 1 1 ) ;

t = 1 Rdhod 0,
t = 16,00 0d 4,

and a d-vector X (X) we obtain

Dxt = DPt+DYt = (X* e, + Xt ) 6@ d, 0 d @8,

v

jalk
where the h—covariant derivative is written

ia _ ia i jha a yic
S = Owtiy + Lty + Loty

7ib _ % yib i Yhb 7 bfic
(tja\k: - 6ktja + Lhk:tja + Lcktja

and the v-covariant derivative is written

¥ H(h) T H(v) T vk i v piblc) ¥ Na j N
(Dyt = D;)t+D§()t:(X’“t.b +Xctj;i>5i®a R d @ )

h jia c yia
- ij:thb - Lbktjc

T h fib ¥ bfic
- ijtha - Lcktja)

t;’%Lc = act;% + Oizwtgll()l + Cgct;db - thctﬁzab - Obdct;ad (134)

(e = R R O,

J “ja a

— Gt — Ottty (1.35)

For a scalar function f € F (&) (f e F <é>) we have

m _ Of _ 0  a9f we_ 9F
D = Sxk  Oxk Ni oy® and DS = oy©
y 5f of of y of
thy _ % _ Y] Yy (e p _
(Dy oxk  Oxk + Nea Opa and DS 8pc)'

D—connections in hvc—bundles

The theory of connections in higher order anisotropic vector superbundles

and vector bundles was elaborated in Refs.

(171, 173, 172]. Here we re—

formulate that formalism for the case when some shells of higher order
anisotropy could be covector spaces by stating the general rules of covari-
ant derivation compatible with the N—connection structure in hve-bundle £

and omit details and combersome formulas.
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For a hve-bundle of type £ = E[v(1),v(2), cv(3), ...,cv(z — 1),v(2)] a d-
connection fg 5 has the next shell decomposition of components (on induction
being on the p-th shell, considered as the base space, which in this case a
hvc—bundle, we introduce in a usual manner, like a vector or covector fibre,

the (p + 1)-th shell)

F’Oyt/@ - {Flllﬁl - [L‘Zjllkl’ Lgflﬁ’ CJZ;CN 01?1161]’
FZ&ZﬁQ = [L?zkz’ ngkz’ CJZ;CQ’ 01?2202]’
fzézﬂs - [zzzks’ [U/az?;fs’ éijscg’ éasscg]’
....................... e A
Fzzzill/ngl = [L}iillszl’ Lﬂzizifz—l’ CZ;;—lchA’ Cagz—_llcz_l]’
s =ik Ly O, Gy 1)

These coefficients determine the rules of a covariant derivation D on &.
For example, let us consider a d—tensor t of type

11y, 1, Is .. 1,

1 1; 1y 13 ... 1,
with corresponding tensor product of components of anholonomic N—frames
(1.22) and (1.24)

E _ i‘ia1a2b3...bz—1az5i ® aal ® dj ® 5b1 ® aaZ ® 5b2 ® 5(13 ® SbS’

jb1b2as...az—1b,

e ® 0% ® Oy @ By, @ O

The d—covariant derivation D of t is to be performed separately for every
shall according the rule (1.34) if a shell is defined by a vector subspace, or
according the rule (1.35) if the shell is defined by a covector subspace.

1.3.2 Metric structure

D-—metrics in v—bundles

We define a metric structure G in the total space E of a v—bundle & =
(E,p, M) over a connected and paracompact base M as a symmetric covari-
ant tensor field of type (0, 2),

G = Gupdu® @ du”

being non degenerate and of constant signature on E.
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Nonlinear connection N and metric G structures on £ are mutually com-
patible it there are satisfied the conditions:

G (6;,0,) = 0, or equivalently, Giq (1) — NP () hap (1) = 0, (1.36)
where hg, = G (04, 0) and Gy = G (0;,0,) , which gives
N? (u) = h (u) Giq () (1.37)

( the matrix h? is inverse to he). In consequence one obtains the following
decomposition of metric:

G(X,Y)=hG(X,Y) +vG(X,Y), (1.38)
where the d-tensor hG(X,Y)= G(hX,hY) is of type ( g 8 ) and the

d-tensor vG(X,Y) = G(vX,vY) is of type 8 (2)
holonomic basis (1.16) the d—metric (1.38) is written

. With respect to an-

G = 0us (1) 0*®6° = g;; (W) d' @ d + hay (u) 5" @ 8, (1.39)

where 9ij = G (5“ 5J) .

A metric structure of type (1.38) (equivalently, of type (1.39)) or a metric
on E with components satisfying constraints (1.36), (equivalently (1.37))
defines an adapted to the given N—connection inner (d-scalar) product on
the tangent bundle 7&. R

We shall say that a d-connection Dy is compatible with the d-scalar
product on 7€ (i. e. it is a standard d—connection) if

~

Dx (X Y) = (BXY) Z+Y (f)Xz) VX, Y, ZEX (E).

An arbitrary d-connection Dy differs from the standard one D x by an oper-
ator Px (u) = {X*P]; (u)}, called the deformation d-tensor with respect to

D, which is just a d-linear transform of £,, V u € £. The explicit form of Py
can be found by using the corresponding axiom defining linear connections

[91]
<DX_BX> fZ:f<DX_ﬁX> Z,

written with respect to N—elongated bases (1.16) and (1.17). From the last
expression we obtain

Px () = |(Dx = Dx)d, ()] 8° (u),
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therefore
DxZ =DxZ +PxZ. (1.40)
A d—connection Dy is metric (or compatible with metric G) on & if
DxG =0,YXeX (&).
With respect to anholonomic frames these conditions are written
Dogsy =0, (1.41)

where by gg, we denote the coefficients in the block form (1.39).

D-metrics in cv— and hvc—bundles

The presented considerations on self-consisten definition of N—connection,
d—connection and metric structures in v—bundles can reformulated in a sim-
ilar fashion for another types of anisotropic space-times, on cv—bundles and
on shells of hve—bundles. For symplicity, we give here only the anagolous
formulas for the metric d-tensor (1.39):

e On cv-bundle £ we write

G = Jup (1) 0° ® 6° = gy (@) d' @ d + h® (1) 0y @ Oy, (1.42)
where §;; = G <(§Z,c§j) and h? = G (5“,5”) and the N-coframes are
given by formulas (1.20).

For simplicity, we shall consider that the metricity conditions are sat-

isfied, D, ga3 = 0.

e On hve-bundle £ we write

G = ga,@ (u) 0" ® Sﬁ = gij (11) dz ® dj + Ba1b1 (ﬂ) 0" ® 6b1 (143)
Hhap, (@) 6% @ 6% + h™ (@) day @ Oy, + ..
Rl (7 I R N N (1) R

where gij = G <SZ7SJ) and Balln = G (aaualn)v Bazbz - G (aagaabz)a

hesbs = G <5a3,5b3) ,.... and the N—coframes are given by formulas
(1.24).

The metricity conditions are Dvgaﬁ = 0.
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e On osculator bundle T?M = Osc*M we have a particular case of (1.43)
when

G = §oplt)o*®0" (1.44)
= ij () d'ed + hij (@) 5yz(1) ® 5?JZ(1) + hij (@) 5?JZ(2) ® 5?JZ(2)
where the N—coframes are given by (1.27).

e On dual osculator bundle (T*?M, p*?, M) we have another particular
case of (1.43) when

G = Gug(@)o*®d° 1.45
&)

= G (@) d' ® & + hy; (@) Syl © Syl + b (@) p°) @ op.”

where the N—coframes are given by (1.28).

1.3.3 Some remarkable d—connections

We emphasize that the geometry of connections in a v—bundle £ is very reach.
If a triple of fundamental geometric objects (N{* (u), I3 (1), gap (w)) is fixed
on &, a multi—connection structure (with corresponding different rules of co-
variant derivation, which are, or not, mutually compatible and with the same,
or not, induced d-scalar products in 7€) is defined on this v—bundle. We can
give a priority to a connection structure following some physical arguments,
like the reduction to the Christoffel symbols in the holonomic case, mutual
compatibility between metric and N—connection and d—connection structures
and so on.

In this subsection we enumerate some of the connections and covariant
derivations in v—bundle &, cv—bundle &€ and in some hve-bundles which can
present interest in investigation of locally anisotropic gravitational and mat-
ter field interactions :

1. Every N—connection in £ with coefficients N (x, y) being differentiable
on y—variables, induces a structure of linear connection Ng , where
ON}
oyb

For some Y (u) = Y* (u) 9;+ Y* (u) 9, and B (u) = B®(u) d, one intro-
duces a covariant derivation as

Ny = and Ny, (z,y) = 0. (1.46)

(M) i (0B a pb py0B*| 0
Dy’'B=1|Y -+ N;:B Y?— .
' { (W o ) oy | oy
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2. The d-connection of Berwald type [32] on v-bundle &€ (cv-bundle &)

[e% 1 aNa a
r}ﬁ’ — (ij, a—yf,o, (ch) : (1.47)

(B _ i aNka % be
(Fﬂ'y - <ij7_a—pb7070a >)

where
L (o) = %gir ((jsi]: + f;iff - (j;ijf) , (1.48)
o - (B )
(L (z,p) = %é" (iij: + ii’“f - i%f) ’

1. [0ORY  9hed  9hbe
C.be = ~h, + - :
() I ( Op.  Opy  Opqg >>

which is hv—metric, i.e. there are satisfied the conditions D,iB) gi; =0
and D" g, = 0 (D{”gi; = 0 and DEReb = 0).

3. The canonical d-connection I'© (or I'©)) on a v-bundle (or cv-bundle)
is associated to a metric G (or G) of type (1.39) (or (1.42)),

v

c)a c)i c)a c)i c)a I c)i c).b Ao c c) be
TG = (L Ly O ] (T = (L L, O e, L ™)

with coefficients

Lﬁ)i = L?‘jkv Cé?“ = (Lge)Z = szk, C (c) be — é’ ), (see (1.48)
ON® 1 dhye ONY
L(‘?)a — ? Z o C . ih .
b ayb T3 (51" b )
T Nq 1V Shbe (9NZ v 8NZ v
pon = SO Ly (R ONdgae | ONuja )
' apb ozt Opy p.
O(-C)Z _ ik YIjk C (e)i ¢ _ L =ikYYj ' 1.49
7 27 oye ( 29 "ap. ) (1.49)

This is a metric d—connection which satisfies conditions

D9 = 0,0 =0, D hay = 0, Db, = 0
(D](:)g]k — O’ lv)(C)Cu _ 0 D hbc _ 0, D(C)C;Lab _ O)
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In physical applications we shall use the canonical connection and for
symplicity we chall omit the index (c). The coefficients (1.49) are to be
extended to higher order if we are dealing with derivations of geomet-
rical objects with "shell” indices. In this case the fiber indices are to
be stipulated for every type of shell into consideration.

4. We can consider the N—-adapted Christoffel d—symbols
~Ot 1 aT
Fﬁfy = ég (5797',6 + 6,@97’7 - 6gﬁ“/) ) (150)

which have the components of d—connection fgv = (Lz 50 0,0, Cﬁc) , with
L%, and Cf, as in (1.48) if gap is taken in the form (1.39).

Arbitrary linear connections on a v-bundle £ can be also characterized
by theirs deformation tensors (see (1.40)) with respect, for instance, to the
d-connection (1.50):

(B)a _ Ta (B)a q(o)a _ Tra ()
Up =15, + Py Ty =15, + P

or, in general,
Iy = gy + Pay,

where Pﬂ(f)a, Pﬁ(fy)a and Pg are respectively the deformation d-tensors of d-
connections (1.47), (1.49) or of a general one. Similar deformation d—tensors
can be introduced for d—connections on cv-bundles and hve-bundles. We
omit explicit formulas.

1.3.4 Amost Hermitian anisotropic spaces

The are possible very interesting particular constructions [108, 109, 113] on
t—bundle T'M provided with N—connection which defines a N—adapted frame
structure &, = (6;,;) (for the same formulas (1.16) and (1.17) but with
identified fiber and base indices). We are using the ’dot’ symbol in order to
distinguish the horizontal and vertical operators because on t-bundles the
indices could take the same values both for the base and fiber objects. This
allow us to define an almost complex structure J = {.J ®} on TM as follows

J(6;) = =95, 3(0,) = 6. (1.51)

It is obvious that J is well-defined and J? = —1I.
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For d—metrics of type (1.39), on TM, we can consider the case when
9ij (2, y) = hap(z,y), 1. €.

Gy = gij(x, y)dx' @ d’ + gi;(, y)oy' @ 0y, (1.52)

where the index (¢) denotes that we have geometrical object defined on tan-
gent space.

An almost complex structure J ? is compatible with a d-metric of type
(1.52) and a d—connection D on tangent bundle T'M if the conditions

J T 955 = gay and DoJ7; =0

are satisfied.

The pair (G, J) is an almost Hermitian structure on 7M.

One can introduce an almost sympletic 2—form associated to the almost
Hermitian structure (G, J),

0 = gij(z,y)dy" A da’. (1.53)

If the 2-form (1.53), defined by the coefficients g,;, is closed, we obtain
an almost Kahlerian structure in 7°M.

Deﬁniti0n~1.6. An almost Kdhler metric connection 1s a linear connection
D) on TM = TM \ {0} with the properties:

1. DY) preserve by parallelism the vertical distribution defined by the N—-
connection structure;

2. DU s compatible with the almost Kdhler structure (G, J), i e

pMg=0, D=0, vX € X <TM) .

By straightforward calculation we can prove that a d—connection DI' =
(L, Liy, Ch., C4,) with the coefficients defined by

jor

Dz(sf{)‘;j - L;’k:éiv Dgl)éj = Li’k:a.iv (1.54)

J

H 7 H) 4 A
Dz(SZ )53 = jk6i7 Dz(51 )aﬂ = Ojkai’

where L}, and Cg — C%,, on TM are defined by the formulas (1.48), define
a torsionless (see the next section on torsion structures) metric d-connection
which satisfy the compatibility conditions (1.41).

Almost complex structures and almost Kéahler models of Finsler, La-
grange, Hamilton and Cartan geometries (of first an higher orders) are in-

vestigated in details in Refs. [106, 107, 113, 172].
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1.4 Torsions and Curvatures

In this section we outline the basic definitions and formulas for the torsion
and curvature structures in v—bundles and cv-bundles provided with N—
connection structure.

1.4.1 N-connection curvature

1. The curvature 2 of a nonlinear connection N in a v—bundle £ can be
defined in local form as [108, 109]:

1 a Ji j
Q=_ud \d ®a,
where

Qf = 6N —N; (1.55)
= O;N{ — O;N} + N/ Ny, — NNy,

N{ being that from (1.46).

2. For the curvature €2, of a nonlinear connection N in a cv—bundle & we

introduce
o 1o ; ) 0
2 = -Qjad N &0,
where
Qija - _SjNia + SiNja (156)

= —aij + &-Nja + Niija b_ ijN b
N- b= 5ija:8]\7ja/3pb.

3. Curvatures 0 of different type of nonlinear connections N in higher
order anisotropic bundles were analyzed for different type of higher
order tangent/dual tangent bundles and higher order prolongations of
generalized Finsler, Lagrange and Hamiloton spaces in Refs. [106, 107,
113] and for higher order anisotropic superspaces and spinor bundles in
Refs. [172, 165, 173, 171]: For every higher order anisotropy shell we
shall define the coefficients (1.55) or (1.56) in dependence of the fact
with type of subfiber we are considering (a vector or covector fiber).
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1.4.2 d—Torsions in v- and cv—bundles

The torsion T of a d—connection D in v—bundle £ (cv-bundle £ ) is defined
by the equation
T(X,Y)=XY.T=DxY-DyX — [X,Y]. (1.57)
One holds the following h- and v—decompositions
T(X,Y)=T (hX,hY)+ T (hX,vY)+ T (vX,hY)+ T (vX,vY).
We consider the projections:
hT (X,Y),vT (hX,hY),hT (hX,hY),...

and say that, for instance, hT (hX,hY) is the h(hh)-torsion of D ,
vT (hX,hY) is the v(hh)-torsion of D and so on.
The torsion (1.57) in v-bundle is locally determined by five d—tensor fields,

torsions, defined as

Ti, = hT(6:,8;) -d', T =vT (6,6;) 6% (1.58)
Pj, hT (9, 6;) - d', P = vT (0, 0;) - 6%,

Sy, = VT (0., 0p) 0%
Using formulas (1.16), (1.17), (1.55) and (1.57) we can computer [108, 109]
in explicit form the components of torsions (1.58) for a d—connection of type
(1.32) and (1.33):

Th = Tp=Lj— Ly, Tj,=ClThy=—Cla, (1.59)
T = 0, Th=S5%=Ch—Ca,
T?] = 5sz'a - 5]-]\7]‘-1, Ty = Py = abNia - Lflbja 15, = —Py;.
Formulas similar to (1.58) and (1.59) hold for cv—bundles:
T = BT (6,6;) - d', Tjra= VT (0k: ;) - o, (1.60)
Pl b = T (3.5)-d, P, '=vT (@) 5.
S, = VI ()b
and
T = T =L —Ly, T"“=C"T%=-C" (1.61)
sz Y Te—Ghe— (b (e
Tija = —5]'Nia + 5ija, Tabi = Pabi = —5bNia - Eabia Tajb = _pajb'

The formulas for torsion can be generalized for hve—bundles (on every
shell we must write (1.59) or (1.61) in dependence of the type of shell, vector
or co-vector one, we are dealing).
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1.4.3 d—Curvatures in v- and cv—bundles

The curvature R of a d—connection in v—bundle £ is defined by the equation
R(X’ Y) Z = XY;’R. Z == Dny Z - DyDXz - D[ny}Z.
One holds the next properties for the h- and v—decompositions of curvature:

VR (X,Y)hZ = 0, hR(X,Y)vZ =0, (1.62)
R(X,Y)Z = hR(X,Y)hZ+ VR (X,Y)vZ

From (1.62) and the equation R (X,Y) = —-R(Y,X) we get that the
curvature of a d—connection D in £ is completely determined by the following
six d-tensor fields:

RfZ]k = dz ‘R (5k7 5]) 5h7 Rba]k = 0% R((Sk, (5]) 6,,, (163)
P]ch = d'-R(0,,0)6;, P%.= 0" R(0.,0) 0,

Sie = d'-R(0e, ) 05, Sitq = 6" R (0a,0c) Op-
By a direct computation, using (1.16),(1.17),(1.32),(1.33) and (1.63) we get:

R'hi.jk = (ShL?hj — 8; L0, + L%’Lizk - L%Lfm + C.ihaRfljlm (1.64)

Rty = orL%y; — 0;L%, + L% L%, — LG LS, + CG.Roy,

P j.ika = aaL?‘jk - (6k0.ig'a + L?‘lkzo.lja - L{jkzc.ila - L.Cakzc.ijc) + C.ijbp.?cav

Ba = 0aLy, — (0605, + L5yChy — LyCh — L%.C%) + CuPl,,
]I'%bc = acC.ijb - abC.ijc + CﬁjbC?hc - O.];'CO;LM

Shea = 0aCl%e — 0:Clhy + C4.CL; — ChaCh..

We note that d—torsions (1.59) and d—curvatures (1.64) are computed in
explicit form by particular cases of d—connections (1.47), (1.49) and (1.50).

For cv—bundles we have

R}Z]k = dl . R((ska(sj) 5h7 Rba.jk = 5“ ’ R(5k75]) 51)7 (165)
Pio¢ = d-R(0°,0:)6;, P 5=
S g R ()5, S — 6, R (D,0F) .
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R}f.jk = ShL?hj — 0 LY + L%‘Link - LZLLkL;L;VLj + C4 R ajn, (1.66)
R.bdjk = 5kchj — ;L% + chb'L.aCk: - Llc)k:La?j + CabCRc-jkv
PRt = 0Ly, — (5/€O.Zja + L.Zlko.lja - L{jko.ll *— L .ch) + C "Py
Put = 0Ly — (hC + LG O — Ly, C.0),
—Lg, “CM) + CMBy,c,
Gibe . Jefvib _ Gbovi ey Shobvio e Sthoevib
Sfb cd  _ 5dé bc 300 bd + C« bcC« ed CY de‘f ec

The formulas for curvature can be also generalized for hve—bundles (on
every shell we must write (1.59) or (1.60) in dependence of the type of shell,
vector or co-vector one, we are dealing).

1.5 Generalizations of Finsler Spaces

We outline the basic definitions and formulas for Finsler, Lagrange and gen-
eralized Lagrange spaces (constructed on tangent bundle) and for Cartan,
Hamilton and generalized Hamilton spaces (constructed on cotangent bun-
dle). The original results are given in details in monographs [108, 109, 113]

1.5.1 Finsler Spaces
The Finsler geometry is modeled on tangent bundle T'M.

Definition 1.7. A Finsler space (manifold) is a pair F" = (M, F(z,y))
where M is a real n—dimensional differentiable manifold and F : TM — R
is a scalar function which satisfy the following conditions:

1. F is a differentiable function on the manifold TM = TM\{0} and F
is continous on the null section of the projection w : T M — M,

2. F is a positive function, homogeneous on the fibers of the T'M, 1. e.

F(z, \y) = A\F(z,y),\ € R;
3. The Hessian of F? with elements

) g y) = L 92 F?
S, y) = - ———
gz] 7y 2 aylay]

(1.67)

is positively defined on TM.
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The function F(z,y) and g;;(z,y) are called respectively the fundamental
function and the fundamental (or metric) tensor of the Finsler space F.
One considers ”anisotropic” (depending on directions y*) Christoffel sym-

bols, for simplicity we write gg) = Gij,

i L (09, 095 Oy
V(T y) = 59 (axj + ax]k - agjr ,

which are used for definition of the Cartan N—connection,

10

Ny 3 = 555 [1'e(@:9)y"y] (1.68)

This N—connection can be used for definition of an almost complex structure
like in (1.51) and to define on T'M a d-metric

Gr) = gij(z,y)dz’ ® da’ + g;;(x, y)dy' @ 5y, (1.69)

with g¢;;(z,y) taken as (1.67).

Using the Cartan N-connection (1.68) and Finsler metric tensor (1.67)
(or, equivalently, the d-metric (1.69)) we can introduce the canonical d-
connection

DT (Niy) = Ts, = (Liey ji Cloy jr)

with the coefficients computed like in (1.54) and (1.48) with hq, — g¢;;. The
d—connection DI’ (N(C)) has the unique property that it is torsionless and
satisfies the metricity conditions both for the horizontal and vertical compo-
nents, i. e. D,gz, = 0.

The d—curvatures

Rhi.jk = {R}f.jka Pj.ik 17 Sé)j.kl}

on a Finsler space provided with Cartan N—connection and Finsler metric
structures are computed following the formulas (1.64) when the a, b, c... in-
dices are identified with ¢, 7, k, ... indices. It should be emphasized that in this
case all values gij,F?‘c) By and R'(i‘) 56 BTE defined by a fundamental function
F(z,y).

In general, we can consider that a Finsler space is provided with a metric
gij = 0*°F?/20y'dy’, but the N—connection and d-connection are be defined
in a different manner, even not be determined by F.
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1.5.2 Lagrange and Generalized Lagrange Spaces

The notion of Finsler spaces was extended by J. Kern [86] and R. Miron [99].
It is widely developed in monographs [108, 109] and exteded to superspaces
by S. Vacaru [169, 171, 172].

The idea of extension was to consider instead of the homogeneous funda-
mental function F(z,y) in a Finsler space a more general one, a Lagrangian
L (z,y), defined as a differentiable mapping L : (x,y) € TM — L(x,y) € R,
of class C® on manifold TM and continous on the null section 0 : M — T'M
of the projection w : TM — M. A Lagrangian is regular if it is differentiable
and the Hessian
L 1 9*L*

(1.70)

is of rank n on M.

Definition 1.8. A Lagrange space is a pair L™ = (M, L(z,y)) where M
is a smooth real n—dimensional manifold provided with reqular Lagrangian
L(x,y) structure L : TM — R for which g;;(x,y) from (1.70) has a constant

signature over the manifold T M .

The fundamental Lagrange function L(z,y) defines a canonical N—con-

nection
. 10 4 0212 oL
N = ik h
L7 20y {g (Qu’“ayhy 333’“)}

as well a d-metric

G = gij(z,y)da' @ da? + gi;(z,y)0y’ @ 6y, (1.71)

with g;;(z,y) taken as (1.70). As well we can introduce an almost Kéhlerian
structure and an almost Hermitian model of L™, denoted as H?" as in the
case of Finsler spaces but with a proper fundamental Lagange function and
metric tensor g;;. The canonical metric d—connection DI’ (N(CL)) = F?CL) 5y =

(Lch) ik Clery jk> is to computed by the same formulas (1.54) and (1.48)

with hg — gZ(jL), for N{.py ;- The d-torsions (1.59) and d-curvatures (1.64)
are defined, in this case, by Lch) jx and CEC L jk- We also note that instead of

(3 a . n_ . . .
Niry and .1, One can consider on a L"—space arbitrary N—connections

N ij, d-connections I', which are not defined only by L(z,y) and gZ(jL) but
can be metric, or non-metric with respect to the Lagrange metric.

The next step of generalization is to consider an arbitrary metric g;; (z,y)
on T'M instead of (1.70) which is the second derivative of ”anisotropic” co-
ordinates y* of a Lagrangian [99, 100].
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Definition 1.9. A generalized Lagrange space is a pair GL™ = (M, g;;(x,y))
where g;;(x,y) is a covariant, symmetric d-tensor field, of rank n and of

constant signature on T'M.

One can consider different classes of N— and d—connections on T'M, which
are compatible (metric) or non compatible with (1.71) for arbitrary g;;(x,y).
We can apply all formulas for d—connections, N-curvatures, d-torsions and
d-curvatures as in a v—bundle £, but reconsidering them on 7'M, by changing
hay — ij(z,y) and N — NE.

1.5.3 Cartan Spaces

The theory of Cartan spaces (see, for instance, [136, 85]) was formulated in
a new fashion in R. Miron’s works [101, 102] by considering them as duals
to the Finsler spaces (see details and references in [113]). Roughly, a Cartan
space is constructed on a cotangent bundle T*M like a Finsler space on the
corresponding tangent bundle 7T'M.

Consider a real smooth manifold M, the cotangent bundle (7% M, 7*, M)

and the manifold 7*M = T*M\{0}.

Definition 1.10. A Cartan space is a pair C" = (M, K(x,p)) such that
K :T*M — R is a scalar function which satisfy the following conditions:

1. K is a differentiable function on the manifold T*M = T*M\{0} and
continous on the null section of the projection 7 : T*M — M,

2. K is a positive function, homogeneous on the fibers of the T*M, 1i. e.
K(xz,A\p) = AF(z,p), A € R;

3. The Hessian of K? with elements

1 *K*?
2 8pi8pj

(1.72)

P

15 positively defined on T* M.

The function K (z,y) and G (z, p) are called respectively the fundamental
function and the fundamental (or metric) tensor of the Cartan space C™. We
use symbols like 7 §” as to emphasize that the geometrical objects are defined
on a dual space.



36 CHAPTER 1. VECTOR BUNDLES AND N-CONNECTIONS

One considers ”anisotropic” (depending on directions, momenta, p;)

Christoffel symbols, for symplicty, we write the inverse to (1.72) as gi(JK) Gij»

i 1 i (00 0Gjr  OGjk
Vel p) = 59 (Ehﬂ +'852 - a;r ,

which are used for definition of the canonical N—connection,

. 1 < < 0

_ xk k [ an - n o
Nij = 7ipx = 57 prp 0" Gig, 0 = (1.73)
This N—connection can be used for definition of an almost complex structure
like in (1.51) and to define on 7*M a d-metric

Gy = gij(z, p)da’ ® da? + § (z, p)ép; ® Op;, (1.74)

with §%(z, p) taken as (1.72).

Using the canonical N—connection (1.73) and Finsler metric tensor (1.72)
(or, equivalently, the d-metric (1.74) we can introduce the canonical d-
connection

DI (

<

P i L
wﬂzrmm:<HWM‘%ﬂ)
with the coefficients are computed

ag ~ir

Hpy e = 29 (0jGrk + Okdiir — Ordijn) »

S ol
C(k)]i = gisasgjk:
The d—connection DT’ (N(k)) has the unique property that it is torsionless
and satisfies the metricity conditions both for the horizontal and vertical
components, i. e. D,gsz, = 0.
The d—curvatures

.0 _ .4 K Okl
RG6.45 = ARy jrs Piyjems S5}

on a Finsler space provided with Cartan N—connection and Finsler metric
structures are computed following the formulas (1.66) when the a, b, c... in-
dices are identified with ¢, 7, k, ... indices. It should be emphasized that in this

case all values gij,F?k) 5y and R'(%‘) 56 ATE defined by a fundamental function
K (z,p).

In general, we can consider that a Cartan space is provided with a met-
ric g = 0*K?/20p;0p;, but the N—connection and d-connection could be
defined in a different manner, even not be determined by K.



1.5. GENERALIZATIONS OF FINSLER SPACES 37

1.5.4 Generalized Hamilton and Hamilton Spaces

The geometry of Hamilton spaces was defined and investigated by R. Miron
in the papers [105, 104, 103] (see details and references in [113]). It was
developed on the cotangent bundel as a dual geometry to the geometry of
Lagrange spaces. Here we start with the definition of generalized Hamilton
spaces and then consider the particular case.

Definition 1.11. A generalized Hamilton space is a pair

GH" = (M, g (x,p)) where M is a real n—dimensional manifold and G (x, p)
1 a contravariant, symmetric, nondegenerate of rank n and of constant sig-
nature on m

The value §¥(x,p) is called the fundamental (or metric) tensor of the
space GH™. One can define such values for every paracompact manifold M.
In general, a N-connection on GH" is not determined by §¥. Therefore we
can consider arbitrary coefficients Nj; (x,p) and define on T*M a d-metric
like (1.42)

G = oy ()8 0 =g, (W) d @d +¢7 ()58, (175

This N-coefficients N;; (x,p) and d-metric structure (1.75) allow to define an
almost Kéhler model of generalized Hamilton spaces and to define canonical
d—connections, d-torsions and d-curvatures (see respectively the formulas
(1.48), (1.49), (1.61) and (1.64) with the fiber coefficients redefined for the
cotangent bundle T*M ).

A generalized Hamilton space GH" = (M, §”(x,p)) is called reducible to
a Hamilton one if there exists a Hamilton function H (x,p) on T*M such
that

1 0*H
2 8pi8pj ’

97(x,p) = (1.76)

Definition 1.12. A Hamilton space is a pair H" = (M, H(x,p)) such that
H :T*M — R is a scalar function which satisfy the following conditions:

1. H is a differentiable function on the manifold T*M = T*M\{0} and
continous on the null section of the projection ©* : T*M — M,

2. The Hessian of H with elements (1.76) is positively defined on T*M and
G (x,p) is nondegenerate matriz of rank n and of constant signature.
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For Hamilton spaces the canonical N-connection (defined by H and its
Hessian) exists,

- 1 1 0*H 0*H
Ny = ~{a, HY — = ( 6 44, )
/ 4{9] } 2 (gkapkc?xﬂ +g]k8pk8xl>

where the Poisson brackets, for arbitrary functions f and g on T*M, act as

of dg  dg Op

The canonical d—connection DI’ (N(C)) = f?‘c)ﬁv = <ET i C jk)is de-
fined by the coefficients

i s (3. 5.0 5o

Hiyy ig (5jgsk + 0kJjs — 5sgjkr) ’
- . ]- o N« S

Cot = —giudd™

In result we can compute the d—torsions and d—curvatures like on cv—bundle
or on Cartan spaces. On Hamilton spaces all such objects are defined by the
Hamilton function H(x,p) and indeces have to be reconsidered for co—fibers
of the co-tangent bundle.

1.6 Gravity on Vector Bundles

The components of the Ricci d—tensor

Raﬁ = 'oz-ﬂf

with respect to a locally adapted frame (1.17) are as follows:

Rij = R’ijk7 Ri, = _2pi = _Pz".lza, (177)
Ry = 'Pui=Ply Ra =5

We point out that because, in general, ' P,; # 2P, the Ricci d-tensor is non
symmetric.

Having defined a d-metric of type in £ we can introduce the scalar cur-
vature of d—connection D:

R =GRos = R+ 5, (1.78)

where R = gV R;; and S = h®S,.
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For our further considerations it will be also useful to use an alternative
way of definition torsion (1.57) and curvature (1.62) by using the commutator

Ao =Va V3~ VaVa=2VVg-

For components of d—torsion we have

Aa/@f = Tlﬁ Vv /

for every scalar function f on £. Curvature can be introduced as an operator
acting on arbitrary d-vector V? :

(Aus — T.ZlﬁVv)Vé = Ri.a,@'vﬂY (1.79)

(we note that in this section we shall follow conventions of Miron and Anas-
tasiei [108, 109] on d-tensors; we can obtain corresponding Penrose and
Rindler abstract index formulas [128, 129] just for a trivial N-connection
structure and by changing denotations for components of torsion and curva-
ture in this manner: 7" ; — Taﬁ‘7 and R 5 — R,5 °). '

Here we also note that torsion and curvature of a d-connection on &
satisfy generalized for locally anisotropic spaces Ricci and Bianchi identities
[108, 109] which in terms of components (1.79) are written respectively as

0 0 v 6
R [v.00] + v[aTﬂv] + T-[aﬂT =0 (1'80)

Alv

and
Vil + TRl 15 = 0. (1.81)

Identities (1.80) and (1.81) can be proved similarly as in [128] by taking into
account that indices play a distinguished character.

We can also consider a la-generalization of the so-called conformal Weyl
tensor (see, for instance, [128]) which can be written as a d-tensor in this
form:

4

o v [y 4]
o = Bag— 3B 09 g (1.82)
2 - 5
R 67,60
+(n+m—1)(n+m—2) o ™ A

This object is conformally invariant on locally anisotropic spaces provided
with d-connection generated by d-metric structures.

The Einstein equations and conservation laws on v-bundles provided with
N-connection structures are studied in detail in [108, 109, 2, 3]. In Ref. [186]
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we proved that the locally anisotropic gravity can be formulated in a gauge
like manner and analyzed the conditions when the Einstein locally anisotropic
gravitational field equations are equivalent to a corresponding form of Yang-
Mills equations. In this subsection we write the locally anisotropic gravita-
tional field equations in a form more convenient for theirs equivalent refor-
mulation in locally anisotropic spinor variables.

We define d-tensor @,z as to satisfy conditions

1
R gas (1.83)

—2®,5 = Rop —
n

which is the torsionless part of the Ricci tensor for locally isotropic spaces
[128, 129], i.e. _,* = 0. The Einstein equations on locally anisotropic spaces

Eag + )\gag = /*iEag, (1.84)
where
1
ﬁaﬁ = Rag — iﬁgag (185)

is the Einstein d-tensor, A and k are correspondingly the cosmological and
gravitational constants and by E,z is denoted the locally anisotropic energy-
momentum d-tensor [108, 109], can be rewritten in equivalent form:

K

ap = _i(Eaﬁ Cn4m

E. gag)- (1.86)

Because the locally anisotropic spaces generally have nonzero torsions we
shall add to (1.86) (equivalently to (1.84)) a system of algebraic d-field equa-
tions with the source 5%, being the locally anisotropic spin density of matter
(if we consider a variant of locally anisotropic Einstein-Cartan theory):

T+ 200, T = kS, (1.87)

From (1.80) and (1.87) one follows the conservation law of locally anisotropic
spin matter:

V’YS’Yaﬁ — T%WS’Y 3= E,@a — Eag.

«,

Finally, in this section, we remark that all presented geometric construc-
tions contain those elaborated for generalized Lagrange spaces [108, 109] (for
which a tangent bundle T'M is considered instead of a v-bundle £ ). We
also note that the Lagrange (Finsler) geometry is characterized by a metric

with components parametized as g;; = %% <gij = % a‘zig;j) and h;; = gij,
where £ =L (z,y) (A=A (z,y)) is a Lagrangian (Finsler metric) on TM

(see details in [108, 109, 96, 27]).



Chapter 2

Anholonomic Einstein and
Gauge Gravity

We analyze local anisotropies induced by anholonomic frames and associated
nonlinear connections in general relativity and extensions to affine-Poincaré
and de Sitter gauge gravity and different types of Kaluza—Klein theories. We
construct some new classes of cosmological solutions of gravitational field
equations describing Friedmann—-Robertson—Walker like universes with rota-
tion (ellongated and flattened) ellipsoidal or torus symmetry [185].

2.1 Introduction

The search for exact solutions with generic local anisotropy in general rela-
tivity, gauge gravity and non—Riemannian extensions has its motivation from
low energy limits in modern string and Kaluza—Klein theories. Such classes
of solutions constructed by using moving anholonomic frame fields (tetrads,
or vierbeins; we shall use the term frames for higher dimensions) reflect a new
type of constrained dynamics and locally anisotropic interactions of gravita-
tional and matter fields [177].

What are the requirements of such constructions and their physical treat-
ment? We believe that such solutions should have the properties: (i) they
satisfy the Einstein equations in general relativity and are locally anisotropic
generalizations of some known solutions in isotropic limits with a well posed
Cauchy problem; (ii) the corresponding geometrical and physical values are
defined, as a rule, with respect to an anholonomic system of reference which
reflects the imposed constraints and supposed symmetry of locally anisotropic
interactions; the reformulation of results for a coordinate frame is also pos-
sible; (iii) by applying the method of moving frames of reference, we can

41
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generalize the solutions to some analogous in metric-affine and/or gauge
gravity, in higher dimension and string theories.

Comparing with the previos results [163, 170, 173, 172, 186] on definition
of self-consistent field theories incorporating various possible anisotropic,
inhomogeneous and stochastic manifestations of classical and quantum in-
teractions on locally anisotropic and higher order anisotropic spaces, we em-
phasize that, in this Chapter, we shall be interested not in some extensions of
the well known gravity theories with locally isotropic space-times ((pseudo)
Riemannian or Riemanian—Cartan—Weyl ones, in brief, RCW space-times)
to Finsler geometry and its generalizations. We shall present a proof that
locally anisotropic structures (Finsler, Lagrange and higher order develop-
ments [59, 41, 136, 96, 14, 109, 106, 27, 70]) could be induced by anholonomic
frames on locally isotropic spaces, even in general relativity and its metric—
affine and gauge like modifications [63, 153, 132, 133, 98, 53, 186, 131, 202].

To evolve some new (frame anholonomy) features of locally isotropic grav-
ity theories we shall apply the methods of the geometry of anholonomic
frames and associated nonlinear connection (in brief, N—connection) struc-
tures elaborated in details for bundle spaces and generalized Finsler spaces in
monographs [109, 106, 27] with further developments for spinor differential
geometry, superspaces and stochastic calculus in [163, 171, 173, 172]. The
first rigorous global definition of N—connections is due to W. Barthel [25]
but the idea and some rough constructions could be found in the E. Cartan’s
works [41]. We note that the point of this paper is to emphasize the generic lo-
cally anisotropic geometry and physics and apply the N—connection method
for ‘non—Finslerian"(pseudo) Riemannian and RCW spacetimes. Here, it
should be mentioned that anholonomic frames are considered in detail, for in-
stance, in monographs [56, 117, 128, 129] and with respect to geometrization
of gauge theories in [98, 131] but not concerning the topic on associated N—
connection structures which grounds our geometric approach to anisotropies
in physical theories and developing of a new method of integrating gravita-
tional field equations.

2.2  Anholonomic Frames on (Pseudo) Rie-
mannian Spaces

For definiteness, we consider a (n + m)-dimensional (pseudo) Riemannian
spacetime V(™) being a paracompact and connected Hausdorff C°*°-mani-
fold, enabled with a nonsigular metric

ds® = Gop du® @ du”
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with the coefficients

~ gij"_Niaijhab Njehae
0= N ha (2.1)
parametrized with respect to a local coordinate basis du® = (dz‘,dy?),
having its dual d/u® = (9/z',0/y*), where the indices of geometrical ob-
jects and local coordinate u® = (xk, y“) run correspondingly the values: (for
Greek indices)a, 3, ... = n + m; for (Latin indices) 4, j, k,... = 1,2,...,n and
a,b,c,...=1,2,...,m . We shall use 'tilds’ if would be necessary to emphasize
that a value is defined with respect to a coordinate basis.
The metric (2.1) can be rewritten in a block (n x n) + (m x m) form

Gy = ( gz‘j(x(’)“,ya) hab(xok,ya) ) (2.2)

with respect to a subclass of n+ m anholonomic frame basis (for four dimen-
sions one used terms tetrads, or vierbiends) defined

_ N N N A S P
O = (0,0a) = ou® (6Z Ot Or Ny () 8yb’aa N 8y“)

and
68 = (di,éa) = ouf = (di =da2', 6" = 0y* = dy* + N} (xj,yb) dxk) . (24)

called the locally anisotropic bases (in brief, la-bases) adapted to the coef-
ficients Nf. The n x n matrix g;; defines the so—called horizontal metric (in
brief, h—metric) and the m x m matrix hg, defines the vertical (v—metric)
with respect to the associated nonlinear connection (N—connection) struc-
ture given by its coefficients N¢ (u®) from (2.3) and (2.4). The geometry
of N—connections is studied in detail in [25, 109]; here we shall consider its
applications with respect to anholonomic frames in general relativity and its
locally isotropic generalizations.

A frame structure d, (2.3) on V"™ is characterized by its anholonomy
relations

5a6g — 6g6a = w”aﬁéw. (25)

with anholonomy coefficients w“..The elongation of partial derivatives (by
N-coefficients) in the locally adapted partial derivatives (2.3) reflects the fact
that on the (pseudo) Riemannian space-time V(™+™ it is modeled a generic
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local anisotropy characterized by the anholonomy relations (2.5) when the
anholonomy coefficients are computed as follows

k _ k. _ ko _ ko _ c
L O’waj_07wia_07wab_07wab_07
a a b _ bbb b
w ’L] — _QZ]7 w aj —_— aaNZ ,U} ia aaNZ 3

where
a a a b a b a
Slij = @Nj — O;N;' + N; (9ij — NjabNZ-

defines the coefficients of the N—connection curvature, in brief, N—curvature.
On (pseudo) Riemannian space-times this is a characteristic of a chosen
anholonomic system of reference.

A N—connection N defines a global decomposition,

N ytm — g gy m)

of spacetime V™™ into a n-dimensional horizontal subspace H®™ (with
holonomic z-coordinates) and into a m-dimensional vertical subspace V(™
(with anisotropic, anholonomic, y—coordinates). This form of parametriza-
tions of sets of mixt holonomic—anholonomic frames is very useful for in-
vestigation, for instance, of kinetic and thermodynamic systems in general
relativity, spinor and gauge field interactions in curved space—times and for
definition of non—trivial reductions from higher dimension to lower dimension
ones in Kaluza—Klein theories. In the last case the N—connection could be
treated as a ’splitting’ field into base’s and extra dimensions with the an-
holonomic (equivalently, anisotropic) structure defined from some prescribed
types of symmetries and constraints (imposed on a physical system) or, for
a different class of theories, with some dynamical field equations following in
the low energy limit of string theories [170, 171] or from Einstein equations
on a higher dimension space.

The locally anisotropic spacetimes, anisoropic spacetimes, to be investi-
gated in this section are considered to be some (pseudo) Riemannian man-
ifolds V(™) enabled with a frame, in general, anholonomic structures of
basis vector fields, 6% = (&%, %) and theirs duals §, = (8;,d,) (equivalently to
an associated N—connection structure), adapted to a symmetric metric field
Jap (2.2) of necessary signature and to a linear, in general nonsymmetric,
connection I'*; - defining the covariant derivation D, satisfying the metricity
conditions D,gs, = 0. The term anisotropic points to a prescribed type of
anholonomy structure. As a matter of principle, on a (pseudo) Riemannian
space—time, we can always, at least locally, remove our considerations with
respect to a coordinate basis. In this case the geometric anisotopy is mod-
elled by metrics of type (2.1). Such ansatz for metrics are largely applied
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in modern Kaluza-Klein theory [125] where the N-conection structures have
been not pointed out because in the simplest approximation on topological
compactification of extra dimensions the N—connection geometry is trivial.
A rigorous analysis of systems with mixed holonomic—anholonomic variables
was not yet provided for general relativity, extra dimension and gauge like
gravity theories..

A n + m anholonomic structure distinguishes (d) the geometrical objects
into h— and v—components. Such objects are briefly called d-tensors, d-
metrics and/or d—connections. Their components are defined with respect to
a locally anisotropic basis of type (2.3), its dual (2.4), or their tensor products
(d-linear or d-affine transforms of such frames could also be considered). For
instance, a covariant and contravariant d—tensor Z, is expressed

Z=2%.®8"=2"6d + 26 &6+ Z2°0, 0 & + Z°,0, ® 6.
A linear d—connection D on locally anisotropic space-time V™47

D&,aﬁ - a[@fy (l‘7 y) 6047

is parametrized by non-trivial h-v—components,
Faﬁy = (Lijka abkvcijca abc) . (2-6)
A metric on V"™ with (m x m) + (n x n) block coefficients (2.2) is

written in distinguished form, as a metric d—tensor (in brief, d—metric), with
respect to a locally anisotropic base (2.4)

652 = gop (1) 0 @ 0° = gy, y)da'dz? + hay(, y)oy oy’ (2.7)

Some d—connection and d-metric structures are compatible if there are

satisfied the conditions
Dagﬁ'y = 0
For instance, a canonical compatible d—connection
CFaﬁ’y — (CLijlmC Lablmc Oijmc abc)

is defined by the coefficients of d-metric (2.7), g;; (z,y) and hg, (z,y), and
by the N—coefficients,

crt 1 in

L', = 59 (0kGnj + 0;Gnk — OnGijk) , (2.8)
1

L'y = ONg+gh™ (8khbe — hacOp N — hapO-N{)

cr 1 ik
Cjc = 59 0eGijk

1
‘Y. = Qhad (Ochay + Ovhae — Oalie)
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The coefficients of the canonical d—connection generalize for locally anisotrop-
ic space—times the well known Christoffel symbols; on a (pseudo) Rieman-
nian spacetime with a fixed anholonomic frame the d—connection coefficients
transform exactly into the metric connection coefficients.

For a d—connection (2.6) the components of torsion,

T (5% 5ﬁ) T,@75ou
B =T%, —T%s +w,

are expressed via d—torsions

0 _ T T 7 7 z 7

Tjk - _Tkj - ij - ij7 C]aa C]aa
] _ a __ Qa __ /a a

Tab - 07 Tbc be T Mbe T Vb (29)
a _ a _ a a a __ a

Tij - ngv .bi - asz‘ - Ly ab — T b

We note that for symmetric linear connections the d-torsions are induced as
a pure anholonomic effect. They vanish with respect to a coordinate frame
of reference.

In a similar manner, putting non—vanishing coefficients (2.6) into the
formula for curvature,

R(8,,0,) 05 = Ry, 0,

we can compute the components of d—curvatures
Rhi.jk = 6kL?h] 8;L "‘th mk .TZkanj —C% S
Rity, = 0xL%; — 0;L%, + LG L%, — Loy L% — C4825,
P]Zka = 0Ly + C.ZijlI)m - (5kC.Zja + L.Zlkc.l Ll_]k y - L5,.CY),
PiSa = 0aL% + CoT % — (0:C5 + Ly Cha — L3 C% — L%.C5%),
Sipe = accgb 0yC’ 4+ CyChe C_’;cc,ib,
Sptea = 04C%. — 0:C%; + C4.C%; — C4Cl%e

The Ricci tensor

Rﬁ’Y = Rﬂa'ya
has the d—components
Rij = Rzkgka Ria = _2pia = _PZ",IZG, (210)
Rai = lpal = azb? Rab = S('zc.bc'
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We point out that because, in general, ' B,; # 2P;,, the Ricci d-tensor is non
symmetric.

Having defined a d-metric of type (2.7) in V("™ we can compute the
scalar curvature

? = gﬁvRﬂv
of a d-connection D,
R=R+5, (2.11)

where R = g% R;j and S = h®S,.
Now, by introducing the values (2.10) and (2.11) into the Einstein’s equa-
tions
1 <
Ry — 5967 R =kYg,,
we can write down the system of field equations for locally anisotropic gravity
with anholonomic (N-connection) structure:

1/~
1 /7~
Sab - 5 <R + S) hab = kTabu
1paz' = kTai:
QPi = _kTiaa

where T;;, Top, To; and Tj, are the components of the energy-momentum
d-tensor field Y3, (which includes possible cosmological constants, contri-
butions of anholonomy d-torsions (2.9) and matter) and k is the coupling
constant.

The h- v- decomposition of gravitational field equations (2.12) was in-
troduced by Miron and Anastasiei [109] in their N—connection approach to
generalized Finsler and Lagrange spaces. It holds true as well on (pseudo)
Riemannian spaces, in general gravity; in this case we obtain the usual form
of Einstein equations if we transfer considerations with respect to coordinate
frames. If the N—coefficients are prescribed by fixing the anholonomic frame
of reference, different classes of solutions are to be constructed by finding the
h— and v—components, g;; and hg, of metric (2.1), or its equivalent (2.2). A
more general approach is to consider the N—connection as ’free’ but subjected
to the condition that its coefficients along with the d—metric components are
chosen to solve the Einsten equations in the form (2.12) for some suggested
symmetries, configurations of horizons and type of singularities and well de-
fined Cauchy problem. This way one can construct new classes of metrics
with generic local anisotropy (see [177]).
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2.3 Higher Order Anisotropic Structures

Miron and Atanasiu [110, 106, 107] developed the higher order Lagrange
and Finsler geometry with applications in mechanics in order to geometrize
the concepts of classical mechanics on higher order tangent bundles. The
work [171] was a proof that higher order anisotropies (in brief, one writes
abbreviations like ha—, ha—superspace, ha—spacetime, ha—geometry and so
on) can be induced alternatively in low energy limits of (super) string theo-
ries and a higher order superbundle N—connection formalism was proposed.
There were developed the theory of spinors [173], proposed models of ha—
(super)gravity and matter interactions on ha-spaces and defined the super-
symmetric stochastic calculus in ha—superspaces which were summarized in
the monograph [172] containing a local (super) geometric approach to so
called ha-superstring and generalized Finsler-Kaluza—Klein (super) gravi-
ties.

The aim of this section is to proof that higher order anisotropic (ha—
structures) are induced by respective anholonomic frames in higher dimension
Einstein gravity, to present the basic geometric background for a such moving
frame formalism and associated N—connections and to deduce the system of
gravitational field equations with respect to ha—frames.

2.3.1 Ha—frames and corresponding N—connections

Let us consider a (pseudo) Riemannian spacetime V™ = V™4™ where the
anisotropic dimension 77 is split into z sub-dimensions m,, (p = 1,2, ..., 2),
i. e m = my + mg + ... + m,. The local coordinates on a such higher
dimension curved space-time will be denoted as to take into account the
m~—decomposition,

u = {u” =u* = (2 Yy, Ly, y ™)),
u o= (2 Y™yt y™) = (T y™).
The la—constructions from the previous Section are considered to describe
anholonomic structures of first order; for 2 = 1 we put u® = (z',y") =
u® = (2°,y™). The higher order anisotropies are defined inductively, shell
by shell’, starting from the first order to the higher order, z—anisotropy. In
order to distinguish the components of geometrical objects with respect to
a p-shell we provide both Greek and Latin indices with a corresponding
subindex like o, = (-1, 0a,), and a, = (1,2,...,m,), i. e. one holds a shell

parametrization for coordinates,

ap mp

Y7 = (Y =¥ Uy = U Y = Y™)
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We shall overline some indices, for instance, @ and @, if would be necessary
to point that it could be split into shell components and omit the p—shell
mark (p) if this does not lead to misunderstanding. Such decompositions
of indices and geometrical and physical values are introduced with the aim
for a further modelling of (in general, dynamical) spllittings of higher di-
mension spacetimes, step by step, with 'interior’ subspaces being of different
dimension, to lower dimensions, with nontrival topology and anholonomic
(anisotropy) structures in generalized Kaluza—Klein theories.
The coordinate frames are denoted

Oz = 0/u™ = (8/2",0/y™, ...,0/y™)
with the dual ones
4 = du® = (da', dy™, ..., dy*)
when
Oy = Ofu’ = (8/2",0/y™, ..., 0/y"")
and
d*r = du® = (da’, dy™, ..., dy™)

if considerations are limited to the p-th shell.
With respect to a coordinate frame a nonsigular metric

d82 = g&ﬁ dua X duﬁ
with coefficients g5 defined on induction,

g _ i gij—i_Mz‘alMgl?lhalbl M](‘ilhalel
i M? hblel halbl ’

(2.13)

i a b e
= o181 T Mai—lMﬂi—lh%bp Mﬂiﬂh%ez’ ] )

Gouy =
QpPp I M257 1 hbpep hapbp
i bZ z
Gas = G, = | Jeeaer T MG MG R M e,
aﬁ Olz,Bz I M2271 hbzez hasz 9

where indices are split as oy = (i1,a1), ag = (aq,a2), oy = (p_1,a,); p =
1,2, ...z
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The metric (2.13) on V™ splits into symmetric blocks of matrices of
dimensions

(nxn)®(mi xm)®...0 (m; xm.),

n 4+ m form

P (2.14)
0 0 . hay

with respect to an anholonomic frame basis defined on induction
0oy = (00 1,0a,) = (0i0ays -, 0ap 1 Oay) (2.15)

o o 0 0 0
= = = — N —
Oour ((9@4%1 OQucr—1 ap-1 () oybr’ 6yap)

and
& = (d',6") = (d',6™,...,8% ", 5%) (2.16)
= our = (di = dx', 8% = fy™ = dy™ + Mg;ll (u) duap‘1> ,

where @, = (a1, a9, ...,a,), are called the locally anisotropic bases (in brief
la-bases) adapted respectively to the N—coefficients

ap ap ap ap ap
N _{Ni N ...,Nap_Q,Nap_l}

a?
and M-—coefficients

Mo = {Mf”,M“P o M2 M };

Qp—1 ay? ) ap—1

the coefficients Ma?_, are related via some algebraic relations with Na?_, in
order to be satisfied the locally anisotropic basis duality conditions

50‘? ® 5ﬁp = 5(627

where 55;; is the Kronecker symbol, for every shell.

The geometric structure of N— and M—coefficients of a higher order non-
linear connection becomes more explicit if we write the relations (2.15) and
(2.16) in matrix form, respectively,

8o = N (u) x 0,
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and
0*=d* x M (u),
where
0; 5/ ox’ 0; 0/ ox’
day 6/0y™ Oay 9/0y™
50 = 5& = 5(12 = 5/aya2 7(90 = a& = aaz = a/ayag 5
Oa, d/0y* O, 0/0y*
0* = ( dxt Sy dy® ... Sy ), d* = ( det dy™ dy® ... dy*: ) ,
and
1 N —N{2 — N/~
R R R\
N = 0 0 1 —Ngz ,
0 0 0 1
1 MM™ M2 ... M
0 L Mg ... Mg
M = 0 0 1 Mgz
0 0 0o ... 1

The n x n matrix g;; defines the horizontal metric (in brief, h-metric)
and the m,, X m, matrices hq,, defines the vertical, v,~metrics with respect
to the associated nonlinear connection (N—connection) structure given by its
coefficients Na?_, from (2.15). The geometry of N-connections on higher
order tangent bundles is studied in detail in [110, 106, 107], for vector (su-
per)bundles there it was proposed the approach from [171, 172]; the approach
and denotations elaborated in this work is adapted to further applications in
higher dimension Einstein gravity and its non-Riemannian locally anisotropic
extensions.

A ha-basis &5 (2.4) on V™ is characterized by its anholonomy relations
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with anholonomy coefficients uﬂa,. The anholonomy coefficients are com-

B
puted
k ok ek ok ()€ —0
Wiy = O’wapj_o’wiap_O’wapbp_o’wgpbp_o’
a a b b b b
wy = —wy = —0q, N; "5 w tay = 0a, IN; 7
k c c c
opy = 0w =0,f<pwi, =0f<puw,, =0/[f<p
a a
w cpfdS = _Qc;dsa (f: 5 < p);
b b e _ b .
prCf = _5ach;7f<p7w€fap _5ach;7f<p7
where
b b
Qi = OiN;” — O;N;" + N;" 0y, N;* — N6y, N;", (2.18)
a - a b a b
Qaz;ﬁs - aafNﬁ: - (955]\73; + Napf(spr,@f - Nﬂf(sprg;’

for 1 < s, f < p, are the coefficients of higher order N—connection curvature
(N—curvature).
A higher order N—connection N defines a global decomposition

N: VR =g gym) gyme) g g yim)

of space-time V(™ into a n-dimensional horizontal subspace H™ (with holo-
nomic z—components) and into m,—dimensional vertical subspaces V(me)
(with anisotropic, anholonomic, y,)—components).

2.3.2 Distinguished linear connections

In this section we consider fibered (pseudo) Riemannian manifolds V(™ en-
abled with anholonomic frame structures of basis vector fields,
6% = (6%,6%) and theirs duals 65 = (0;, ) with associated N—connection
structure, adapted to a symmetric metric field g3 (2.14) and to a linear, in
general nonsymmetric, connection FO‘E7 defining the covariant derivation Dg
satistying the metricity conditions Dggg- = 0. Such space—times are provided
with anholonomic higher order anisotropic structures and, in brief, are called
ha—-spacetimes.

A higher order N—connection distinguishes (d) the geometrical objects
into h— and v,~components (d-tensors, d-metrics and/or d-connections).

D Tioe. Ty o T

For instance, a d-tensor field of type
Sp .. Sy

) 1s written in
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local form as
M M ) ) () ()

i1...ipa1 el @y Oy 0 G

. . 1 J
F IO S S A AR G )0y ®..®0,@d"®..0d" @

5 ) ® .. ® 0 q ®5b() 28 @ . ®6<p>® ®6<p>® .®

t

P 50 ® . @8, @ 8%
A linear d—connection D on ha—spacetime V(ﬁ),

is defined by its non—trivial h—v—components,

re <L’]ka L% . CL C% K%Y K bscf,Qbfcp), (2.19)

for f < p,s.
A metric with block coefficients (2.14) is written as a d—metric, with
respect to a la—base (2.16)

§s? = a5 (1) 0% @ 5 = gij(u)da'da? + hqp, (u)dy* 5y, (2.20)

where p=1,2,..., 2.
A d—connection and a d-metric structure are compatible if there are sat-
isfied the conditions

The canonical d—connection ‘T% is defined by the coefficients of d-metric
(2.20), and by the higher order N— coefﬁaents

L'y = 59 (0kGnj + 6j9nk — OnGjk) 5 (2.21)
_ 1 _ _
L = BNg+5h™ (lea — ha 05 Ng — ’%%Nﬁ) :
CCZjE = 59 k(SEgjka
1 -
C% = Fh™ (Gehgs + d5ha: — ahwe)
cKap — 1 apep (§ 5 5
bpep T ig ( Cpgepbp + bpgepcp - epgbpcp) )
a 1
‘K bpsef = (SbSNgfp + §hapcp (aefhbscp — hdp 555 — hd5b55 pNng> ,

C 1 are
Q% bpep §h 000, hi ey

where f < p,s. They transform into usual Christoffel symbols with respect
to a coordinate base.
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2.3.3 Ha—torsions and ha—curvatures

For a higher order anisotropic d—connection (2.19) the components of torsion,

T (57, 55) - Ta— 6@,

are expressed via d—torsions

L
g, =1 -1t u,
ngk = _T.Zéj = L;‘k - LZjv T;a = _Taij = ("
T, o= 0 TL=SL=CL-C%
Ty = g, T, =T = 6N - L%j’
TZ;Cf = _TZ;bf = K.CILJJ;Cf - K.(Zcbf?
T((lzf,bs = 0, Tz;ap = _T(tlzl;bf = Qflbltfap?
.Zz;bf = _Qiffbfv T.Z:af = _T.Zl;bs = 0, N7 —

(2.22)

We note that for symmetric linear connections the d-torsion is induced
as a pure anholonomic effect.

In a similar manner, putting non—vanishing coefficients (2.6) into the
formula for curvature,

R ((5?, 57) 5? - Rﬁa

5&7

~F

a _spa s pe P pa _ PP @ a
Ry =000 — &1+ T7 1%, — T T+ 17w

we can compute the components of d—curvatures

51€L?‘hj — &; L', + L%’Lfnk - L%chnj - .ihaQ.ajkv

Ok LTy = 05 L%, + LG Ly — Ly Lz — CRf

gk

)

~

(2.23)

akLZ]k + CZ]I_)TII)CE - (5kCZJE + Lllkclja — Ll]kczla — L.Eﬁkcfja),
4 ¢ d T ¢t ~d 1 e 7 e
0aL ), + Cgllha — (0kC + L350 — L5.C% — LaCh),

5.0y — 6075 + Ch Ol — Ch O

Je b

67C% — 6:C% + C° CL — CC%

.ec’
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Wb';l.fcjcef = 5 K(Zj:wf 6 K(Zj;ef —"_beCfKZfEf
beef Zfo - Q brap a(:fef7
I;?ifef = 5 K‘chf 5 K(Zpef +Kb sCf cpef
_K‘;)P efLacz;ch - K(;)ZCPQ.Cgfef7
Zl')(;l.t(:fef - a K(Zszf—i_Qbfpr%}ep
(6CfQ brep thfQ bep befQ hyep KCeI;CfO.(ZJ;cp)7
I;(T:S?Cfep - 5 chs cy chs dfT(‘j:fep
_(60 chse K(zlstfCifep det Cfocdstep Kit CfO.Cbidt)7

af —
Y;Jf.cpep - 56;7@ brep 5017@ brep + Qbfch drep Qbfedefcp

where f < p,s,r,t.

2.3.4 Einstein equations with respect to ha—frames

The Ricci tensor

Rs = R

i B8 v
has the d—components
Rj = Ry, Ra=—"Pa= P (2.24)
Rai = 'Pu=P;, Rg=57
= — 2 _ .af
Rbfcf o be cray? Repbf - beel) - _be.afep7

1 €s
RbrCf - Pbr(/‘f Zbr

cres’
The Ricci d-tensor is non symmetric.

If a higher order d-metric of type (2.20) is defined in V™), we can compute
the scalar curvature
of a d-connection D,

R=R+35, (2.25)

where R = g R;; and S = h™S_;.



56 CHAPTER 2. ANHOLONOMIC EINSTEIN AND GAUGE GRAVITY

The h-v parametrization of the gravitational field equations in ha—spaceti-
mes is obtained by introducing the values (2.24) and (2.25) into the Einstein’s
equations

1
Rgsy — 59571 = K155,
and written
1
ij 5 i = ij .
R R +S)g kY (2.26)

1
S (R + S) hs = kT,
1Pﬁi - kTa’h lpapbf = kTapbf
2-P’LE - _kTiﬁa 2Pasbf - _kTafbpa

ab>
momentum d-tensor field Y5, (which includes possible cosmological con-

stants, contributions of anholonomy d-torsions (2.22) and matter) and k is
the coupling constant.

We note that, in general, the ha—torsions are not vanishing. Nevetheless,
for a (pseudo)—-Riemannian spacetime with induced anholonomic anisotropies
it is not necessary to consider an additional to (2.26) system of equations for
torsion becouse in this case the torsion structure is an anholonomic effect
wich becames trivial with respect to holonomic frames of reference.

If a ha—spacetime structure is associated to a generic nonzero torsion, we
could consider additionally, for instance, as in [186], a system of algebraic
d-field equations with a source S%W for a locally anisotropic spin density of

where Ti;, Yo, Tai, Tia, Yapbs> Yasp, are the h-v—components of the energy—

matter (if we construct a variant of higher order anisotropic Einstein—Cartan
theory):

T +25V T_-_HSVEE

In a more general case we have to introduce some new constraints and/or
dynamical equations for torsions and nonlinear connections which are induced
from (super) string theory and/ or higher order anisotropic supergravity
[170, 171]. Two variants of gauge dynamical field equations with both frame
like and torsion variables will be considered in the Section 5 and 6 of this

paper.

2.4 Gauge Fields on Ha—Spaces

This section is devoted to gauge field theories on spacetimes provided with
higher order anisotropic anholonomic frame structures.
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2.4.1 Bundles on ha—spaces

Let us consider a principal bundle (P, 7, Gr, V(ﬁ)) over a ha-spacetime V(™
(P and V™ are called respectively the base and total spaces) with the struc-
tural group Gr and surjective map © : P — V™ (on geometry of bundle
spaces see, for instance, [35, 109, 132]). At every point u = (z,yq), .- ,Y(»))
€ V™ there is a vicinity 4 € V™ u € U, with trivializing P diffeomor-
phisms f and ¢ :

fu: T (U) — UG, f(p)
oy T (U) — Groelpg) =9 (p)g

(m(p), ¥ (p)),

for every group element ¢ € Gr and point p € P. We remark that in the
general case for two open regions

UV v UnY £0, fu, # fv,, evenpeU Ny,
Transition functions gy are defined

guv  UNY =Gr, guy (1) = @y (p) (ov (0)71) 7 (p) = u.

Hereafter we shall omit, for simplicity, the specification of trivializing
regions of maps and denote, for example, f = fi, p = vy, S = Sy, if this will
not give rise to ambiguities.

Let € be the canonical left invariant 1-form on Gr with values in algebra
Lie G of group Gr uniquely defined from the relation 6 (¢) = ¢, for every
q € G, and consider a 1-form w on U C V™ with values in G. Using # and
w, we can locally define the connection form © in P as a 1-form:

O =0+ Ad ot (1*w) (2.27)

where ¢*f and m*w are, respectively, 1-forms induced on 7=! (i) and P by
maps ¢ and 7 and w = s*O. The adjoint action on a form A\ with values in
G is defined as

(Ad go_lA)p = (Ad @1 (p)) Ap

where A, is the value of form A at point p € P.
Introducing a basis {Az} in G (index @ enumerates the generators making
up this basis), we write the 1-form w on V@™ as

a

(u) 6uP (2.28)

AN

w= A (u), W (u) =w
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where du” = (dz’,dy®) and the Einstein summation rule on indices @ and 7 is
used. Functions wg (u) from (2.28) are called the components of Yang-Mills
fields on ha-spacetime V(™. Gauge transforms of w can be interpreted as
transition relations for wy; and wy, when u e U NV,

(wua)y = (Gip0), + Ad gy (W)™ (wy), - (2.29)

To relate wg with a covariant derivation we shall consider a vector bun-
dle = associated to P. Let p : Gr — GL(R?®) and p/ : G — End (E®) be,
respectively, linear representations of group Gr and Lie algebra G (where
R is the real number field). Map p defines a left action on Gr and asso-
ciated vector bundle 2 = P x R*/Gr, 7 : E — V™, Introducing the
standard basis & = {&1,&,...,&} in R®, we can define the right action on
Px R ((p,&)q=(pg,p(g ) &), q € Gr), the map induced from P

p:R =g (u), (p(&) = (pg)Gr.éeRm(p)=u)

and a basis of local sections e; : U — 7" (U), ¢; (u) = s (u) &;. Every section
¢ : V@™ — = can be written locally as ¢ = ¢e;,¢" € C®(U). To every
vector field X on V™ and Yang-Mills field w® on P we associate operators
of covariant derivations:

VxC = e [ XC 4+ B(X)S ¢, B(X) = (0 X);0" (X). (2.30)

The transform (2.29) and operators (2.30) are inter-related by these transi-
tion transforms for values e;, (%, and By :

eV (u) = lpav Wi e, G (w) = gy (W G, (2.31)
B]ﬁ} (u) = [pguy (U)]_15ﬁ [pguy (w)] + [pguy (u )] ( ) [pguy (w)]
where BY (u) = B* (§/du’) (u).

Usmg (2.31), we can verify that the operator /%, acting on sections of
Tz @ = (™ according to definition (2.30), satisfies the properties

Vixiny = HVx+LRVE V(O =Fv%C+ (X)),
Vg{(C - VKC? uEL{ﬁV,fl,fQEC'OO(U).
So, we can conclude that the Yang-Mills connection in the vector bundle
7= : = — V™ is not a general one, but is induced from the principal bundle

7P — V® with structural group Gr.
The curvature K of connection © from (2.27) is defined as

K=DO, D=Hod (2.32)
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where d is the operator of exterior derivation acting on G-valued forms as
d(As ©X") = Aa @ dx*

and H is the horizontal projecting operator acting, for example, on the 1-
form A\ as <ﬁ/\> (X,) = A\, (HpX,), where H, projects on the horizontal
P

subspace
H, € P,[X, € H, is equivalent to O, (X,) = 0].
We can express (2.32) locally as
K = Ad ;' (7" Ky) (2.33)
where
Ky = dwy + % [wis, wy] - (2.34)
The exterior product of G-valued form (2.34) is defined as
[2a 0N, a50 " =[5, 09) @ AT \ €

where the anti-symmetric tensorial product is denoted A% A 56 = /\afz—fz/\a.
Introducing structural coefficients f@e @ of G satisfying

(2, 8] = fie "Aa

we can rewrite (2.34) in a form more convenient for local considerations:

Ky = 0g @ Kiou” [\ ou” (2.35)

Iz

where

1 R R .
+ 3 fiz @ (wgwg — wlw

i &ug (5w%

T OuRE ouP

This subsection ends by considering the problem of reduction of the lo-
cal anisotropic gauge symmetries and gauge fields to isotropic ones. For
local trivial considerations we can consider that with respect to holonomic

frames the higher order anisotropic Yang-Mills fields reduce to usual ones on
(pseudo) Riemannian spaces.

=0
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2.4.2 Yang-Mills equations on ha-spaces

Interior gauge symmetries are associated to semisimple structural groups.
On the principal bundle (73, m, Gr, V(ﬁ)) with nondegenerate Killing form for
semisimple group Gr we can define the generalized bundle metric

hp (Xp,Yp) = G (drpXp, dnpYp) + K (Op (Xp), Op (Xp)),  (2.36)

where drp is the differential of map 7 : P — V@, Gr(p) is locally generated

as the ha-metric (2.20), and K is the Killing form on G :
K (86, 2) = f7 “faz * = K,

Using the metric g,z on V@ (respectively, hp (Xp,Yp) on P) we can
introduce operators x5 and gg acting in the space of forms on V™ (x5 and

S acting on forms on P)). Let e; be an orthonormalized frame on U CV(™),
locally adapted to the N—connection structure, i. .e. being related via some
local distinguisherd linear transforms to a ha—frame (2.15) and e be the
adjoint coframe. Locally

G=> n(@e e,
I

where nzz; = n () = £1, 7 = 1,2, ..., 7, and the Hodge operator *¢ can be
defined as ¢ : A’ (V™) — A" (V™) | or, in explicit form, as

*e <eﬁ1 A-- /\eﬁr) — 0 (7)) ) (Trs) X (2.37)

. 1 2 ... r r+1 ... n 71 o
sign | _— _ _ e I AN
Next, we define the operator
wgh =1 (1) . (@) (1) xg

and introduce the scalar product on forms 3y, (2, ... C A" (V(ﬁ)) with compact
carrier:

(B, B2) =n (1) ..n (np) /51 N\ #cBa-

The operator ZS\G is defined as the adjoint to d associated to the scalar product
for forms, specified for r-forms as

o = (—1)" %5 od o x¢. (2.38)



2.4. GAUGE FIELDS ON HA-SPACES 61

We remark that operators gy and gy acting in the total space of P can
be defined similarly to (2.37) and (2.38), but by using metric (2.36). Both
these operators also act in the space of G-valued forms:

(A ® %) = Ag ® (x¢"),

5 (A ® %) = A ® (5%).

The form A on P with values in G is called horizontal if HA = A and
equivariant if R* (¢) A\ = Ad ¢ 'y, Vg € Gr, R(q) being the right shift on P.
We can verify that equivariant and horizontal forms also satisfy the conditions

A=Ad o (7)), M= SiA

W)y = Ad (guv ()™ (M), -

Now, we can define the field equations for curvature (2.33) and connection
(2.27):

AK =0, (2.39)

vK =0, (2.40)

where A = H o 8. Equations (2.39) are similar to the well-known Maxwell
equations and for non-Abelian gauge fields are called Yang-Mills equations.
The structural equations (2.40) are called the Bianchi identities.

The field equations (2.39) do not have a physical meaning because they
are written in the total space of the bundle = and not on the base anisotropic
spacetime V™. But this difficulty may be obviated by projecting the men-
tioned equations on the base. The 1-form AK is horizontal by definition and
its equivariance follows from the right invariance of metric (2.36). So, there
is a unique form (AK)y satisfying

AK =Ad o' (AK)y.

The projection of (2.39) on the base can be written as (AK), = 0. To
calculate (AK)y, we use the equality [35, 133]

d (Ad ng;lA) = Ad @&1 d\ — [gaz*ﬁ, Ad gp&l)\]
where )\ is a form on P with values in G. For r-forms we have

5 (Ad @' X\) = Ad @i 0N — (= 1) sz { [0, ¥ Ad 0yt \]
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and, as a consequence,

oK = Ad (,O&I{S\HW*ICU + w7 [T wu, xum Ky} — =5 [0, Ad o' =y (7°K)] .
(2.41)

By using straightforward calculations in the adapted dual basis on 7! (i)
we can verify the equalities

[0, Ad i} 4 (7Ku)] = 0, Hoy (7°Ky) = 7 (@c) , (2.42)

s [T wus k(7 Ky)] = 7 (G [wu, e Kul}-
From (2.41) and (2.42) one follows that
(AK)y, = 06Ky + %" [wu, *aKul (2.43)

Taking into account (2.43) and (2.38), we prove that projection on the
base of equations (2.39) and (2.40) can be expressed respectively as

*51 odo *GICU + *51 [u)u, *GICZ/{] = 0. (244)

dlCy + [wu, ’Cu] =0.
Equations (2.44) (see (2.43)) are gauge—invariant because
(AK),, = Ad gy, (AK),, .
By using formulas (2.35)-(2.38) we can rewrite (2.44) in coordinate form
DA ja a oA b _

D <G K Xﬁ) + 1 PPl = 0, (2.45)
where Dy is a compatible with metric covariant derivation on ha-spacetime
(2.45).

We point out that for our bundles with semisimple structural groups the

Yang-Mills equations (2.39) (and, as a consequence, their horizontal projec-
tions (2.44), or (2.45)) can be obtained by variation of the action

a b vpa,vB /2 5 1 ng 1 m 1 ms
I = //C WK aBGH g ﬁKaﬂg&E’ dz”...dx 5y(1)...5y(1)1...6y(z)...6y(z).
(2.46)
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Equations for extremals of (2.46) have the form
K?ngagEﬁDalch . Kaggmg;ﬂf;f awlﬁlcbag — O7

which are equivalent to "pure” geometric equations (2.45) (or (2.44)) due to
nondegeneration of the Killing form K for semisimple groups.

To take into account gauge interactions with matter fields (sections of
vector bundle Z on V™) we have to introduce a source 1-form 7 in equations
(2.39) and to write them

AK=J (2.47)

Explicit constructions of J require concrete definitions of the bundle =;
for example, for spinor fields an invariant formulation of the Dirac equations
on ha-spaces is necessary. We omit spinor considerations in this paper (see
[163, 173]).

2.5 Gauge Ha-gravity

A considerable body of work on the formulation of gauge gravitational models
on isotropic spaces is based on application of nonsemisimple groups, for ex-
ample, of Poincare and affine groups, as structural gauge groups (see critical
analysis and original results in [53, 186, 98, 63, 202, 153, 131]). The main im-
pediment to developing such models is caused by the degeneration of Killing
forms for nonsemisimple groups, which make it impossible to construct con-
sistent variational gauge field theories (functional (2.46) and extremal equa-
tions are degenerate in these cases). There are at least two possibilities to get
around the mentioned difficulty. The first is to realize a minimal extension
of the nonsemisimple group to a semisimple one, similar to the extension of
the Poincare group to the de Sitter group considered in [132, 133, 153]. The
second possibility is to introduce into consideration the bundle of adapted
affine frames on locally anisotropic space V™ to use an auxiliary nonde-
generate bilinear form a; instead of the degenerate Killing form K; and to
consider a ”"pure” geometric method, illustrated in the previous section, of
definition of gauge field equations. Projecting on the base V™ we shall ob-
tain gauge gravitational field equations on a ha—space having a form similar
to Yang-Mills equations.

The goal of this section is to prove that a specific parametrization of
components of the Cartan connection in the bundle of adapted affine frames
on V(™ establishes an equivalence between Yang-Mills equations (2.47) and
Einstein equations (2.26) on ha-spaces.
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2.5.1 Bundles of linear ha—frames

Let (X7), = (Xi, Xg), = (X4, X4y, ..., Xa.), be a frame locally adapted to
the N-connection structure at a point v € V™. We consider a local right
distinguished action of matrices

_ B, .. 0
Aa/ ¢ = “ C GLH -
0 0 B, *

GL(n,R)®GL(m,R)® ... GL(m,,R).

Nondegenerate matrices A, * and B v 7, respectively, transform linearly X;,
into Xy, = Ay iXZ-‘u and Xagju Into Xorpy = Ba,p w aplus Where Xgr, =
A, “Xz is also an adapted frame at the same point v € V@™ We denote
by La (V™) the set of all adapted frames Xz at all points of V™ and
consider the surjective map 7 from La (V™) to V™ transforming every
adapted frame Xz, and point u into the point u. Every X/, has a unique

representation as Xy = A_, aXéO), where Xéo) is a fixed distinguished basis
in tangent space T (V™) . It is obvious that 7=! (i) ,U C V™, is bijective
to U x GLz (R). We can transform La (V™) in a differentiable manifold
taking <uﬁ, A a) as a local coordinate system on 7= (i) . Now, it is easy
to verify that

La(V®) = (La(V™), V® GL(R))

is a principal bundle. We call La(V™) the bundle of linear adapted frames
on V@™,

The next step is to identify the components of, for simplicity, compatible
d-connection F% on V™ with the connection in La (V™)

6 =w' = {u =TS ). (2.48)
Introducing (2.48) in (2.43), we calculate the local 1-form

(ARM), = Ags, ® (9 DxR™ . + f“ﬁmgﬁw“ VRIE)oum,  (2.49)

where
Ag; 0 0
ANap = " .a'l.gl "
0 0 A
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is the standard distinguished basis in the Lie algebra of matrices Gl (R)
with (Asz)ji = 0450, and (Aapgp)b & = Oa,b,0c,q, defining the standard bases
in Gl (R™). We have denoted the curvature of connection (2.48), considered
n (2.49), as

Ry = Aaa, ® R¥LX7 \ X7,

where RO‘O‘LM = Rz, @ 5 (see curvatures (2.23)).

2.5.2 Bundles of affine ha—frames and Einstein equa-
tions

Besides the bundles La (V(ﬁ)) on ha-spacetime V™ there is another bun-
dle, the bundle of adapted affine frames with structural group Af,,. (R) =
GL,, (V(ﬁ)) ®R™, which can be naturally related to the gravity models on
(pseudo) Riemannian spaces. Because as a linear space the Lie Algebra
afm (R) is a direct sum of Gl (R) and R™, we can write forms on Aa (V™)
as ® = (®y, D), where @y is the Gl (R) component and P, is the R™ com-
ponent of the form ®. The connection (2.48), © in La (V™) induces the
Cartan connection © in Aa (V™) ; see the isotropic case in [132, 133, 35].
There is only one connection on Aa (V(ﬁ)) represented as i*© = (O, Y),
where x is the shifting form and ¢ : Aa — La is the trivial reduction of
bundles. If SZ(;) is a local adapted frame in La (V(ﬁ)) , then EZ(/?) =105y 1S a
local section in Aa (V™) and

(Ou) = 5u® = (Ou, xu) , (2.50)

where y = ea®xaﬁXﬁ, 955 = X%Xﬁ 3ap (77&5 is diagonal with 7z = £1)is a
frame decomposition of metric (2.20) on V™ ¢4 is the standard distinguished

basis on R, and the projection of torsion , T}, on the base V™ is defined
as

TZ/{_dXM+QM/\XM+XM/\QM_€a®ZTa X”/\XV (2.51)

wv

For a fixed locally adapted basis on i C V™ we can identify components T%_ "

of torsion (2.51) with components of torsion (2.22) on V™ ie. T%, =T7,.
By straightforward calculation we obtain

(Aﬁ)u = [(AR(F))W (RT)L{ + (Ri)u]a (2.52)
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where
(Rr)y = 36T+ 36 Qs x6Tul . (Rily = 5" e waRY|

Form (Ri),, from (2.52) is locally constructed by using components of the
Ricci tensor (see (2.24)) as follows from decomposition on the local adapted
basis X# = du” :

(Ri), = ea @ (—1)™* nygaxéuﬁ.

We remark that for isotropic torsionless pseudo-Riemannian spaces the
requirement that (Aﬁ)u = 0, i.e., imposing the connection (2.48) to sat-
isfy Yang-Mills equations (2.39) (equivalently (2.44) or (2.45)) we obtain
[132, 133] the equivalence of the mentioned gauge gravitational equations
with the vacuum Einstein equations R;; = 0. In the case of ha-spaces with
arbitrary given torsion, even considering vacuum gravitational fields, we have
to introduce a source for gauge gravitational equations in order to compensate
for the contribution of torsion and to obtain equivalence with the Einstein
equations.

Considerations presented in this section constitute the proof of the fol-
lowing result:

Theorem 2.1. The FEinstein equations (2.26) for ha—gravity are equivalent
to the Yang-Mills equations

(AR) =T (2.53)

for the induced Cartan connection © (see (2.48) and (2.50)) in the bundle of
locally adapted affine frames Aa (V(ﬁ)) with the source Jy constructed locally
by using the same formulas (2.52) for (Aﬁ), but where Ryz is changed by
the matter source Eqgg — %gaﬁE with Eg5 = kY55 — Agap-

We note that this theorem is an extension for higher order anisotropic
spacetimes of the Popov and Daikhin result [133] with respect to a possible
gauge like treatment of the Einstein gravity. Similar theorems have been
proved for locally anisotropic gauge gravity [186] and in the framework of
some variants of locally (and higher order) anisotropic supergravity [172].

2.6 Nonlinear De Sitter Gauge Ha—Gravity

The equivalent reexpression of the Einstein theory as a gauge like theory im-
plies, for both locally isotropic and anisotropic space—times, the nonsemisim-
plicity of the gauge group, which leads to a nonvariational theory in the total
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space of the bundle of locally adapted affine frames. A variational gauge grav-
itational theory can be formulated by using a minimal extension of the affine
structural group Af (R) to the de Sitter gauge group S; = SO (7) acting
on distinguished R™*! space.

2.6.1 Nonlinear gauge theories of de Sitter group

Let us consider the de Sitter space Y™ as a hypersurface given by the equa-
tions napuu?® = —I? in the flat (7 + 1)-dimensional space enabled with
diagonal metric 745,144 = £1 (in this subsection A, B,C,... = 1,2, ..., +
1),(m = n+my + ... +m,), where {u?} are global Cartesian coordinates
in R":1 > 0 is the curvature of de Sitter space. The de Sitter group
Sy = SO (M+1) is defined as the isometry group of ¥"-space with
2 (m+ 1) generators of Lie algebra so(, (7 + 1) satisfying the commutation
relations

(Mag, Mcp] = nacMpp —npcMap — napMpe + nppMac. (2.54)

Decomposing indices A, B, ... as A= (a,n+1),B = <B,ﬁ+ 1) , ..., the

metric Nap as Nap = <77a37 n(ﬁﬂ)(ﬁﬂ)) , and operators Mg as Maﬁ = Fa,@
and P; = 7'M 41 5, we can write (2.54) as

[7:@@ 7‘}3] = NanF 55 — gyl as + N3Faq — Nass s

[Pa, PB] = —I°F;, [Pa,}"ﬁa} = 03Py — s Py,
where we have indicated the possibility to decompose so(, (7 + 1) into a
direct sum, so(,) (w4 1) = so(,) (7)) ®vr, where vy is the vector space stretched
on vectors P;. We remark that X" = S,)/L,), where L) = SO, (7). For
nag = diag (1,—1,—1,—1) and S;p = SO (1,4), Lg = SO (1, 3) is the group
of Lorentz rotations.

Let W (5 SR S0 P) be the vector bundle associated with the prin-
cipal bundle P (S(n),é’) on ha-spacetime vy, where S, is taken to be the
structural group and by £ it is denoted the total space. The action of the
structural group S, on £ can be realized by using m X 7 matrices with a
parametrization distinguishing subgroup L, :

B =bB;, (2.55)
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where

L 0
BL - ( O 1 ) )
L € L, is the de Sitter bust matrix transforming the vector (0,0, ...,p) €

R™! into the point (v',v?,...,0™*") € X7 C R™! for which

vavt = —p2,UA = tAp.

Matrix b can be expressed

The de Sitter gauge field is associated with a linear connection in W, i.e.,
with a so(, (7 + 1)-valued connection 1-form on V™ :

. (waAéa>
o= .7 , (2.56)
03 0
where w® 5€ 50(T0) () 0% € R",0; € 7]3&55‘.

Because S(;)-transforms mix w® 5 and 07 fields in (2.56) (the introduced
parametrization is invariant on action on SO, (%) group we cannot identify
w® 5 and éa, respectively, with the connection I‘%ﬁ and the fundamental
form x® in V® (as we have for (2.48) and (2.50)). To avoid this difficulty
we consider [153, 131] a nonlinear gauge realization of the de Sitter group
S by introducing the nonlinear gauge field

_ 18 -1 _ Paﬁ 0
O=0b"'0b+b"db= : (2.57)
v 0

where

a @ R R o YT n+1
" =w E—(tD% g;n)/0+t ),

@:ﬁ“ﬁ+Dﬁ—ﬁQﬁ“+%ﬁ%ﬁLﬂmﬁ,

Dﬁ:dﬁ+waﬁ@
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The action of the group S (n) is nonlinear, yielding transforms
= LT (L) "+ LdL) ", 0= Lo,

where the nonlinear matrix-valued function L' = L' (t*, b, Br) is defined from
By, =V By (see the parametrization (2.55)).
Now, we can identify components of (2.57) with components of F%ﬁ

and x% on V(™ and induce in a consistent manner on the base of bundle
W(E,R™*, S, P) the ha—geometry.

2.6.2 Dynamics of the nonlinear de Sitter ha—gravity

Instead of the gravitational potential (2.48), we introduce the gravitational
connection (similar to (2.57))

F&A l_l a
r=|( -5 "X (2.58)
where
re 5= Fa (5u“
& _.a B ra & a
r m— X aX BF 37+X 07X 3

Y& =x® s0uP, and g5 = & X’ 3lap> and 1,5 is parametrized as

. 0 MNaqd 0
Ll I I
nazbz
ni; = (1,—1,...,=1),..;m; = (£1 +1),...,lo is a dimensional constant.
The curvature of (2.58), R = dF + I'A F can be written as
5t ly 17r°1 g™
RI) — , 2.59
z e 0 (259)

where
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and

(e

o B, apa
= Xg Xa f

B.nv

(see (2.23) for components of d-curvatures). The de Sitter gauge group is
semisimple and we are able to construct a variational gauge gravitational
locally anisotropic theory (bundle metric (2.36) is nondegenerate). The La-
grangian of the theory is postulated as

L= L)+ Lm)

where the gauge gravitational Lagrangian is defined as

1 _
L) = ETT (R(F) /\ *GR(F)) = L) \g\lﬂ 0"u,

1

a w ., 1 5a pow_ (g
g@:ﬂgiﬂéﬂ+§R2%Raﬂ—ﬁ@um—mg,(mm
T = D A v (the gravitational constant I* in (2.60) satisfies the rela-

tions I = 2[2\, \; = —3/ly], T'r denotes the trace on @, 3 indices, and the
matter field Lagrangian is defined as

1 _
Ly = §TT <F/\ *GI) = Lm) |g|1/2 0" u,

1 a2 - o
S AL T
B «

Lumy =5

(2.61)

s

The matter field source Z is obtained as a variational derivation of L,y on

I' and is parametrized as
Se [t
7= B 2.62
( —lotﬁ 0 ) ( 0 )

with t& = ¢® zou and S 5= a Eﬁéuﬁ being respectively the canonical
tensors of energy-momentum and spin density. Because of the contraction of
the ”interior” indices @, § in (2.60) and (2.61) we used the Hodge operator
¢ instead of xg (hereafter we consider xg = *).

Varying the action

S:/WW%WM&®+£WD
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on the I'-variables (2.58), we obtain the gauge-gravitational field equations:
d(+RD) +T \ (+RD) — (+RD) AT = -\ (+I). (2.63)

Specifying the variations on I'® 3 and [%-variables, we rewrite (2.63) as

D (*R™) + QZ_;\ (15 (xm) + X/\ (*T7) — (+T) /\ XT) =-A(x5), (2.64)

~ ~ 1 5 B .
T = {Ts = 51", T = ST7 ou” [\ ou"},

X' ={xa=npx’, X' =x" pouf},  D=d+T

(f acts as I'? 4z o0 indices 7, g, ...and as '™ 7 00 indices 7, 0, ...). In (2.65),
7 defines the energy-momentum tensor of the S(,;—gauge gravitational field
I:

N1 -
7 (T) = ST (RWRa - Znﬁﬁnaﬁgw) . (2.66)

Equations (2.63) (or, equivalently, (2.64) and (2.65)) make up the com-
plete system of variational field equations for nonlinear de Sitter gauge grav-
ity with higher order anisotropy. They can be interpreted as a variant of
gauge like equations for ha—gravity [186] when the (pseudo) Riemannian base
frames and torsions are considered to be induced by an anholonomic frame
structure with associated N—connection

A. Tseytlin [153] presented a quantum analysis of the isotropic version
of equations (2.64) and (2.65). Of course, the problem of quantizing gravi-
tational interactions is unsolved for both variants of locally anisotropic and
isotropic gauge de Sitter gravitational theories, but we think that the general-
ized Lagrange version of S,)-gravity is more adequate for studying quantum
radiational and statistical gravitational processes. This is a matter for further
investigations.
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Finally, we remark that we can obtain a nonvariational Poincare gauge
gravitational theory on ha—spaces if we consider the contraction of the gauge
potential (2.58) to a potential with values in the Poincare Lie algebra

a -1, a a -1, @&
ro Flﬁ ly X T— r 3 ly X '
ly'xzg 0 0 0

[sotropic Poincare gauge gravitational theories are studied in a number of
papers (see, for example, [202, 153, 131]). In a manner similar to consider-
ations presented in this work, we can generalize Poincare gauge models for
spaces with local anisotropy.

2.7 An Ansatz for 4D d—Metrics

We consider a 4D space-time V3V provided with a d-metric (1.39) when
gi = gi(2¥) and h, = h,(2¥, 2) for y* = (2, y*). The N—connection coefficients
are some functions on three coordinates (2, 2),

NY = q(',2), N§ = (', 2), (2.67)
N} = ni(2",2), Ny =ny(a', 2).
For simplicity, we shall use brief denotations of partial derivatives, like
@ = 0da/Or' a = da)0x?,

a* = 0a/0zd' = 8%a/0x' 027,
a* = 0%a/020z.

The non-trivial components of the Ricci d-tensor (2.10), for the men-
tioned type of d—metrics depending on three variables, are
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1 " 1 1
Ri=Ri=——[~(g, + o)+ = (62 +gidh) + =— (g} * + 14P68
1 29192[ (91 92) 2 (92 9192) 2, (91 glgi)l] )
1
3 _ g4 h** + h h*h
53 S4 h3h [ 4 2h ( 4) 2h 4]
Py =L hs\* hy o hi h§h4]
2N by hs = 2h2  2hshy
1 ;L4 ; h3
S P A 2.
oo, gl (2.69)
Py = () B M By
27 2N by hy  2h2  2hshy
1w, B!
o _ h/ * 3 h* .
T 2y, T gy il
hy 1 hy
41 2h3 1 4h3(h3 3 4)”17 ( 70)
h4 1 h4
Py — — = p¥* *Y 0%
42 thnz + 4h3(h3h3 3hins

The curvature scalar R (2.11) is defined by the sum of two non-trivial
components R = 2R} and S = 253.
The system of Einstein equations (2.12) transforms into

Rl = —kY3 = —kT}, (2.71)
Sy = —kY} = —kT3, (2.72)
Py = rYs, (2.73)
Py = rYy, (2.74)

where the values of R}, S5 P, are taken respectively from (2.68), (2.68),
(2.69), (2.70).

By using the equations (2.73) and (2.74) we can define the N—coefficients
(2.67), q;(z*, z) and n;(x*, 2), if the functions g;(z¥) and h;(«*, z) are known
as respective solutions of the equations (2.71) and (2.72). Let consider an
ansatz for a 4D d—metric of type

65° = g1(2")(dz")* + (dz®)* + ha(a', ) (6¢)* + ha(2',t) (5y*)?,

where the z—parameter is considered to be the time like coordinate and the
energy momentum d—tensor is taken

(2.75)

Tg = [p17p27 —&, P4 = p]
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The aim of this section is to analyze the system of partial differential equa-
tions following from the Einsteni field equations for these d-metric and
energy—momentum d-tensor.

2.7.1 The h—equations

The Einstein equations (2.71), with the Ricci h—tensor (2.68), for the d-
metric (2.75) transform into

P g 1 (0g1\”
e 20 (—) + 2kegy = 0. (2.76)

Ox!
By introducing the coordinates x* = z'/+/ke and the variable

qa=9/9, (2.77)

where by 'prime’ in this Section is considered the partial derivative 9/x?, the
equation (2.76) transforms into

q2
q + >+ 2¢ =0, (2.78)

where the vacuum case should be parametrized for € = 0 with y* = 2* and
e = —1 for a matter state with e = —p.

The integral curve of (2.78), intersecting a point <X%o)a q(0)> , considered

as a differential equation on x? is defined by the functions [82]

q(0)

q p , e =0; (2.79)
L+ 52 (32 = xo)
q() — 2 tan <X2 — X?o))

q = p , e < 0. (2.80)
1+ % tan <X2 — X%o))

Because the function ¢ depends also parametrically on variable y! we can
consider functions X(20) = X(20) (x') and g0y = qo) (x*) . We elucidate the non—
vacuum case with € < 0. The general formula for the non-trivial component
of h—metric is to be obtained after integration on ' of (2.77) by using the
solution (2.80)

. 2 2
g1 (X", x%) = 910) (x') {Smw = X{oy (x')] + arctan q0) (") } ’



2.7. AN ANSATZ FOR 4D D-METRICS I0)

for g (x') # 0, and
91 (X' X)) = 910 (x") cos?[x* = x{o) (X')] (2.81)

for g)(x') = 0, where gy (Xl),X(QO)(Xl) and g (x") are some functions
of necessary smoothness class on variable y!. For simplicity, in our further
considerations we shall apply the solution (2.81).

2.7.2 The v—equations

For the ansatz (2.75) the Einstein equations (2.72) with the Ricci h-tensor
(2.68) transforms into

82h4 1 8h4 2 1 8h3 8h4 K
—— =) —=— | = )| =) —=Tihshs =0
ot? 2h4(8t) 2h3(at ot g 1
(here we write down the partial derivatives on ¢ in explicit form) which relates

some first and second order partial on z derivatives of diagonal components
ha(x%,t) of a v—metric with a source

Tl(xi, z) = /@T% = /ﬁTg =pL =P

in the h-subspace. We can consider as unknown the function hs(z t) (or,
inversely, h4(z°,t)) for some compatible values of hy(z*,t) (or hs(z*,t)) and
source T1(z', t). By introducing a new variable 8 = hj/hy the equation (2.7.2)
transforms into

Phs

2h3 — 2/4)T1h3 =0 (282)

* 1 2
B+ iﬂ -
which relates two functions 3 (z%,t) and hs (z*,t) . There are two possibilities:
1) to define 3 (i. e. hy) when kY and hs are prescribed and, inversely 2) to
find hs for given k1 and hy (i. e. (); in both cases one considers only ”*”
derivatives on t-variable with coordinates x’ treated as parameters.

1. In the first case the explicit solutions of (2.82) have to be constructed
by using the integral varieties of the general Riccati equation [82] which
by a corresponding redefinition of variables; t — t (<) and 3 (t) — n (<)
(for simplicity, we omit dependencies on x') could be written in the
canonical form

In

L 4?40 ()=0
o Tt (<)
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where U vanishes for vacuum gravitational fields. In vacuum cases the
Riccati equation reduces to a Bernoulli equation which (we can use the
former variables) for s(t) = 37! transforms into a linear differential (on
t) equation,

h; 1

—-=0. 2.
s =5 =0 (2.83)

s* 4+

2. In the second (inverse) case when hg is to be found for some prescribed
kY and (3 the equation (2.82) is to be treated as a Bernoulli type
equation,

4xT 20"
= —— 1<h3>2+(ﬁ

g B

which can be solved by standard methods. In the vacuum case the
squared on hg term vanishes and we obtain a linear differential (on ¢)
equation.

+ ﬁ) hs (2.84)

Finally, in this Section we conclude that the system of equations (2.72)
is satisfied by arbitrary functions

hs = ag(Xi) and hy = a4(Xi).

If v—metrics depending on three coordinates are introduced, h, = hq(X*, 1),
the v—components of the Einstein equations transforms into (2.7.2) which
reduces to (2.82) for prescribed values of h3(x’,t), and, inversely, to (2.84)
if hy(x',t) is prescribed.

2.7.3 H-v equations

For the ansatz (2.75) with hy = hy(2') and a diagonal energy-momentum
d-tensor the h-v—components of Einstein equations (2.73) and (2.74) are
written respectively as

Ohs 2 02hs

qi
P, [(E) o

~ 2%

| =0, (2.85)

and

h4 8nz 8h3 h4 827@
7 4(hg)? Ot Ot 2hs OF 0 (2:86)
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The equations (2.85) are satisfied by arbitrary coefficients ¢;(x*,t) if the d-
metric coefficient hs is a solution of

(8h3)2 d%hy

ot or?

and the g—coefficients must vanish if this condition is not satisfied. In the

last case we obtain a 3 + 1 anisotropy. The general solution of equations
(2.86) are written in the form

ns = 10 (%) / (e, D]t +n® (a4)

=0 (2.87)

where ZZ(O) (z%) and ngo) (2*) are arbitrary functions on z*¥ which have to be
defined by some boundary conditions.

2.8 Anisotropic Cosmological Solutions

The aim of this section is to construct two classes of solutions of Einstein
equations describing Friedman-Robertson-Walker (FRW) like universes with
corresponding symmetries or rotational ellipsoid (elongated and flattened)
and torus.

2.8.1 Rotation ellipsoid FRW universes

We proof that there are cosmological solutions constructed as locally aniso-
tropic deformations of the FRW spherical symmetric solution to the rotation
ellipsoid configuration. There are two types of rotation ellipsoids, elongated
and flattened ones. We examine both cases of such horizon configurations.

Rotation elongated ellipsoid configuration

An elongated rotation ellipsoid hypersurface is given by the formula [89]

.1'2 +y2 22
e e R 0, (2.88)

where 0 > 1, z,y, z are Cartezian coordinates and p is similar to the radial
coordinate in the spherical symmetric case. The 3D special coordinate system
is defined

xr = psinhusinvcosy, y = psinhusinwvsin p,

= p coshwucoswv,
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where 0 = coshu, (0 <u < oo, 0 <v<m 0<p <2r). The hypersurface
metric (2.88) is
Guw = Goo = p° (sinh2 u + sin? v) , (2.89)
Jop = p? sinh? u sin® v.
Let us introduce a d—metric of class (2.75)
0s% = gi(u, v)du® + dv? + hs (u,v,7) (67) 4 hy (u, v) (0p)*, (2.90)
where 2! = u, 2% = v, y* = ¢, y® = 7 is the time like cosmological coordinate

and 07 and dp are N—elongated differentials. As a particular solution of
(2.90) for the h-metric we choose (see (2.81)) the coefficient

g1(u,v) = cos®v (2.91)

and set for the v—metric components

1
p2(7)(sinh® u + sin? v)

hs(u,v,7) = — (2.92)

and

sinh? u sin® v
(sinh?® u + sin?v)’
The set of coefficients (2.91),(2.92), and (2.93), for the d-metric (2.90, and
of ¢ = 0 and n; being solutions of (2.87), for the N—connection, defines
a solution of the Einstein equations (2.12). The physical treatment of the

obtained solutions follows from the locally isotropic limit of a conformal
transform of this d-metric: Multiplying (2.90) on

hy(u, v, 1) = (2.93)

p?(7)(sinh? u + sin? v),

2

and considering cos*v ~ 1 and n; ~= 0 for locally isotropic spacetimes we

get the interval
ds* = —dr? + p*(7)[(sinh® u 4 sin? v)(du® + dv?) + sinh® usin® vdp?]
for ellipsoidal coordinates on hypersurface (2.89);
= —dr? + p*(7)[dx* + dy* + dz*] for Cartezian coordinates,

which defines just the Robertson-Walker metric. So, the d-metric (2.90), the
coefficients of N—connection being solutions of (2.73) and (2.74), describes a
4D cosmological solution of the Einstein equations when instead of a spher-
ical symmetry one has a locally anisotropic deformation to the symmetry
of rotation elongated ellipsoid. The explicit dependence on time 7 of the
cosmological factor p must be constructed by using additionally the matter
state equations for a cosmological model with local anisotropy.
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Flattened rotation ellipsoid coordinates

In a similar fashion we can construct a locally anisotropic deformation of
the FRW metric with the symmetry of flattened rotation ellipsoid . The
parametric equation for a such hypersurface is [89]

$2+92+Z_2_ 2
1+ o2 02_p’

where ¢ > 0 and ¢ = sinhu. The proper for ellipsoid 3D space coordinate
system is defined

xr = pcoshusinvcosp,y = pcoshusinvsin g

z = psinhwucosv,
where 0 < u < o0, 0 <wv <7, 0<p <27 The hypersurface metric is

Juu = Guv = P2 (Sinh2 u + COS2 U) ,
9pp = p°sinh®wucos®v.
In the rest the cosmological la—solution is described by the same formulas as

in the previous subsection but with respect to new canonical coordinates for
flattened rotation ellipsoid.

2.8.2 Toroidal FRW universes

Let us construct a cosmological solution of the Einstein equations with toro-
idal symmetry. The hypersurface formula of a torus is [89]

2
(x/xQ +y2—0p ctanha) + 22 = P

2

sinh?c’
The 3D space coordinate system is defined
psinh a cos ¢ psinosin
€T = —_— = s
cosh a — cos o cosha — coso
psinh o
z =

coshT —coso’
(—m<o<m0<a<o0,0< @ <2n).

The hypersurface metric is

2 2 2

p p*sin® o

9oo = Jaa = , g = . 2.94
(cosha —coso)?" """ (cosha — coso)? (2:94)
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The d-metric of class (2.75) is chosen
5% = gi(a)do? + do® + hs (0, a, 7) (67)° + hy (0) (5)°, (2.95)

where 2! = 0, 2% = a, y* = ¢, y® = 7 is the time like cosmological coordinate
and 07 and dp are N—elongated differentials. As a particular solution of
(2.94) for the h—metric we choose (see (2.81)) the coefficient

g1(a) = cos® a (2.96)
and set for the v—metric components

(cosha — coso)?
p*(7)
hy(c) = sin’o. (2.97)

h3(07 a, T) =

Multiplying (2.95) on

pA(7)
(cosh o — cos )

and considering cosa ~ 1 and n; ~= 0 in the locally isotropic limit we get
the interval

p*(7)

ds® = —dr? +
(cosha — cos o)

s[(do? + da? + sin® odp?]

where the space part is just the torus hypersurface metric (2.94). So, the
set of coefficients (2.96) and (2.97), for the d—metric (2.95, and of ¢; = 0
and n; being solutions of (2.87), for the N—connection, defines a cosmological
solution of the Einstein equations (2.12) with the torus symmetry, when
the explicit form of the function p(7) is to be defined by considering some
additional equations for the matter state (for instance, with a scalar field
defining the torus inflation).

2.9 Concluding Remarks

In this Chapter we have developed the method of anholonomic frames on
(pseudo) Riemannian spacetimes by considering associated nonlinear con-
nection (N—connection) strucutres. We provided a rigorous geometric back-
ground for description of gravitational systems with mixed holonomic and
anholonomic (anisotropic) degrees of freedom by considering first and higher
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order anisotropies induced by anholonomic constraints and corresponding
frame bases.

The first key result of this paper is the proof that generic anisotropic
structures of different order are contained in the Einstein theory. We re-
formulated the tensor and linear connection formalism for (pseudo) Rieman-
nian spaces enables with N-connections and computed the horizonal-vertical
splitting, with respect to anholonomic frames with associated N—connections,
of the Einstein equations. The (pseudo) Riemannian spaces enabled with
compatible anholonomic frame and associated N—connection structures and
the metric being a solution of the Einstein equations were called as locally
anisotropic spacetimes (in brief, anisotropic spaces). The next step was the
definition of gauge field interactions on such spacetimes. We have applied the
bundle formalism and extended it to the case of locally anisotropic bases and
considered a 'pure’ geometric method of deriving the Yang—Mills equations
for generic locally anisotropic gauge interactions, by genalizing the absolut
differential calculus and dual forms symmetries for anisotropic spaces.

The second key result was the proof by geometric methods that the Yang—
Mills equations for a correspondingly defined Cartan connection in the bun-
dle of affine frames on locally anisotropic spacetimes are equivalent to the
Einstein equations with anholonomic (N—connection) structures (the original
Popov-Daikhin papers [132, 133] were for the locally isotropic spaces). The
result was obtained by applying an auxiliary bilinear form on the typical fiber
because of degeneration of the Killing form for the affine groups. After pro-
jection on base spacetimes the dependence on auxiliar values is eliminated.
We analyzed also a variant of variational gauge locally anisotropic gauge the-
ory by considering a minimal extension of the affine structural group to the
de Sitter one, with a nonlinear realization for the gauge group as one was
performed in a locally isotropic version in Tseytlin’s paper [153]. If some
former our works [186, 172] where devoted to extensions of some models of
gauge gravity to generalized Lagrange and Finsler spaces, in this paper we
demonstrated which manner we could manage with anisotropies arrising in
locally isotropic, but with anholonomic structures, variants of gauge gravity.
Here it should be emphasized that anisotropies of different type (Finsler like,
or more general ones) could be induced in all variants of gravity theories
dealing with frame (tetrad, vierbiend, in four dimensions) fields and decom-
pisitions of geometrical and physical objects in comonents with respect to
such frames and associated N—connections. In a similar fashion anisotropies
could arise under nontrivial reductions from higher to lower dimensions in
Kaluza—Klein theories; in this case the N—connection should be treated as
a splitting field modeling the anholonomic (anisotropic) character of some
degrees of freedom.
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The third basic result is the construction of a new class of solutions,
with generic local anisotropy, of the Einstein equations. For simplicity, we
defined these solutions in the framework of general relativity, but they can
be removed to various variants of gauge and spinor gravity by using corre-
sponding decompositions of the metric into the frame fields. We note that
the obtained class of solutions also holds true for the gauge models of grav-
ity which, in this paper, were constructed to b e equivalent to the Einstein
theory. In explicit form we considered the metric ansatz

ds® = gap du®du”
when g¢,3 are parametrized by matrices of type

g1+ @1*hs +ni*hy qugehs +ninghy qrhy nahy
Q1q2hs + ninshy  go + @2%hs + n2’hy  qohy nohy

qihs q@2hs3 hs 0 (2.98)
nihyg nohy 0 hy
with coefficients being some functions of necessary smooth class
9i = gi(7), s = (7, 1), n; = ni(27 ), hg = ha(27,t).
Latin indices run respectively ¢, 5, k,... = 1,2 and a,b,c,... = 3,4 and the

local coordinates are denoted u® = (z¢,y3 = t,y*), where t is treated as a
time like coordinate. A metric (2.98) can be diagonalized,

§5% = gi(2?) (da')’ + ha(27, ) (657, (2.99)

with respect to anholonomic frames (2.3) and (2.4), here we write down only
the ’elongated’ differentials

5t = dz + q;(27, t)da', dy* = dy* 4+ ny(2?, t)da’".

The ansatz (2.98) was formally introduced in [177] in order to construct
locally anisotropic black hole solutions; in this paper we applied it to cosmo-
logical locally anisotropic space—times. In result, we get new metrics which
describe locally anisotropic Friedman—-Robertson-Walker like universes with
the spherical symmetry deformed to that of rotation (elongated and/or flat-
tened) ellipsoid and torus. Such solutions are contained in general relativity:
in the simplest diagonal form they are parametrized by distinguished met-
rics of type (2.99), given with respect to anholonomic bases, but could be
also described equivalently with respect to a coordinate base by matrices of
type (2.98). The topic of construction of cosmological models with generic



2.9. CONCLUDING REMARKS 83

spacetime and matter field distribution and fluctuation anisotropies is under
consideration.

Now, we point the item of definition of reference frames in gravity the-
ories: The form of basic field equations and fundamental laws in general
relativity do not depend on choosing of coordinate systems and frame bases.
Nevertheless, the problem of fixing of an adequate system of reference is also a
very important physical task which is not solved by any dynamical equations
but following some arguments on measuring of physical observables, imposed
symmetry of interactions, types of horizons and singularities, and by taken
into consideration the posed Cauchy problem. Having fixed a class of frame
variables, the frame coefficients being presented in the Einstein equations, the
type of constructed solution depends on the chosen holonomic or anholonomic
frame structure. As a result one could model various forms of anisotropies
in the framework of the Einsten theory (roughly, on (pseudo) Riemannian
spacetimes with corresponding anholonomic frame structures it is possible to
model Finsler like metrics, or more general ones with anisotropies). Finally, it
should be noted that such questions on stability of obtained solutions, anal-
ysis of energy—momentum conditions should be performed in the simplest
form with respect to the chosen class of anholonomic frames.
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Chapter 3

Anisotropic Taub NUT — Dirac
Spaces

The aim of this chapter is to outline the theory of gravity on vector bundles
provided with nonlinear connection structures [108, 109] and to proof that
anholonomic frames with associated nonlinear connection structures can be
introduced in general relativity and in low dimensional and extra dimension
models of gravity on (pseudo) Riemannian space-times [177, 179].

3.1 Anholonomic Frames and Nonlinear Con-
nections in General Relativity

The geometry of nonlinear connections on vector and higher order vector
bundles can be reformulated for anholonomic frames given on a (pseudo)
Riemannian spacetime of dimension n 4+ m, or n +mq + ms + ... + m., and
provided with a d-metric structure which induces on space-time a canonical
d—connection structure (1.49). In this case we can consider a formal splitting
of indices with respect to some holonomic and anholonomic frame basis vec-
tors. This approach was developed in references [177, 179] with the aim to
construct exact solutions with generic local anisotropy in general relativity
and its low and extra dimension modifications. For simplicity, in the further
sections of this chapter we shall restrict our constructions only to first order
anisotropic structures.

Recently one has proposed a new method of construction of exact solu-
tions of the Einstein equations on (pseudo) Riemannian spaces of three, four
and extra dimensions (in brief, 3D, 4D,...), by applying the formalism of an-
holonomic moving frames [195]. There were constructed static solutions for
black holes / tori, soliton—dilaton systems and wormhole / flux tube configu-

85
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rations and for anisotropic generalizations of the Taub NUT metric [194]; all
such solutions being, in general, with generic local anisotropy. The method
was elaborated following the geometry of anholonomic frame (super) bundles
and associated nonlinear connections (in brief, N—connection) [180] which
has a number of applications in generalized Finsler and Lagrange geometry,
anholonomic spinor geometry, (super) gravity and strings with anisotropic
(anholonomic) frame structures.

In this chapter we restrict our considerations for the 5D Einstein grav-
ity. In this case the N—connection coefficients are defined by some partic-
ular parametrizations of funfbein, or pentadic, coefficients defining a frame
structure on (pseudo) Riemannian spacetime and describing a gravitational
and matter field dynamics with mixed holonomic (unconstrained) and an-
holonomic (constrained) variables. We emphasize that the Einstein gravity
theory in arbitrary dimensions can be equivalently formulated with respect
to both holonomic (coordinate) and anholonomic frames. In the anholonomic
cases the rules of partial and covariant derivation are modified by some pen-
tad transforms. The point is to find such values of the anholonomic frame
(and associated N—connection) coefficients when the metric is diagonalized
and the Einstein equations are written in a simplified form admitting exact
solutions.

The class of new exact solutions of vacuum Einstein equations describing
anisotropic Taub NUT like spacetimes [199] is defined by off-diagonal metrics
if they are given with respect to usual coordinate bases. Such metrics can be
anholonomically transformed into diagonal ones with coefficients being very
similar to the coefficients of the isotropic Taub NUT solution but having
additional dependencies on the 5th coordinate and angular parameters.

We shall use the term locally anisotropic (spacetime) space (in brief,
anisotropic space) for a (pseudo) Riemannian space provided with an an-
holonomic frame structure induced by a procedure of anholonomic diagonal-
ization of a off-diagonal metric.

The Hawking’s [62] suggestion that the Euclidean Taub-NUT metric
might give rise to the gravitational analogue of the Yang—Mills instanton
holds true on anisotropic spaces but in this case both the metric and instan-
ton have some anisotropically renormalized parameters being of higher di-
mension gravitational vacuum polarization origin. The anisotropic Euclidean
Taub-NUT metric also satisfies the vacuum Einstein’s equations with zero
cosmological constant when the spherical symmetry is deformed, for instance,
into ellipsoidal or even toroidal configuration. Such anisotropic Taub-NUT
metrics can be used for generation of deformations of the space part of the line
element defining an anisotropic modification of the Kaluza-Klein monopole
solutions proposed by Gross and Perry [76] and Sorkin [139].



3.1. N-CONNECTIONS IN GENERAL RELATIVITY 87

In the long-distance limit, neglecting radiation, the relative motion of
two such anisotropic monopoles can be also described by geodesic motions,
like in Ref. [94, 95, 22], but these motions are some anholonomic ones with
associated nonlinear connection structure and effective torsion induced by
the anholonomy of the systems of reference used for modeling anisotropies.
The torsion and N—connection corrections vanish if the geometrical objects
are transferred with respect to holonomic (coordinate) frames.

From the mathematical point of view, the new anholonomic geometry of
anisotropic Taub-NUT spaces is also very interesting. In the locally isotropic
Taub-NUT geometry there are four Killing-Yano tensors [72]. Three of them
form a complex structure realizing the quaternionic algebra and the Taub-
NUT manifold is hyper-Kahler. In addition to such three vector-like Killing-
Yano tensors, there is a scalar one which exists by virtue of the metric being
of class D, according to Petrov’s classification. Anisotropic deformations of
metrics to off-diagonal components introduce substantial changes in the ge-
ometrical picture. Nevertheless, working with respect to anholonomic frames
with associated nonlinear connection structure the basic properties and re-
lations, even being anisotropically modified, are preserved and transformed
to similar ones for deformed symmetries [199].

The Schrodinger quantum modes in the Euclidean Taub-NUT geometry
were analyzed using algebraic and analytical methods [72, 73, 58, 48, 71,
49, 67]. The Dirac equation was studied in such locally isotropic curved
backgrounds [57, 88, 23]. One of the aims of this paper is to prove that this
approach can be developed as to include into consideration anisotropic Taub-
NUT backgrounds in the context of the standard relativistic gauge-invariant
theory [203, 34] of the Dirac field.

The purpose of the present work is to develop a general SO(4, 1) gauge-
invariant theory of the Dirac fermions [93] which can be considered for locally
anisotropic spaces, for instance, in the external field of the Kaluza-Klein
monopole [57, 88, 23] which is anisotropically deformed.

Our goal is also to point out new features of the Einstein theory in higher
dimension spacetime when the locally anisotropic properties, induced by an-
holonomic constraints and extra dimension gravity, are emphasized. We
shall analyze such effects by constructing new classes of exact solutions of
the Einstein—Dirac equations defining 3D soliton—spinor configurations prop-
agating self-consistently in an anisotropic 5D Taub NUT spacetime.

We note that in this paper the 5D spacetime is modeled as a direct time
extension of a 4D Riemannian space provided with a corresponding spinor
structure, i. e. our spinor constructions are not defined by some Clifford al-
gebra associated to a 5D bilinear form but, for simplicity, they are considered
to be extended from a spinor geometry defined for a 4D Riemannian space.
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3.1.1 Anholonomic Einstein—Dirac Equations

In this Section we introduce an ansatz for pseudo Riemannian off-diagonal
metrics and consider the anholonomic transforms diagonalizing such met-
rics. The system of field Einstein equations with the spinor matter energy—
momentum tensor and of Dirac equations are formulated on 5D pseudo—
Riemannian spacetimes constructed as a trivial extension by the time vari-
able of a 4D Riemannian space (an anisotropic deformation of the Taub NUT
instanton [199]).

Ansatz for metrics

We consider a 5D pseudo-Riemannian spacetime of signature (+,—, —, —,
—), with local coordinates

u® = (2',y%) = (2° = t,2' = r,2® = 0,y° = s,y" = p),

— or more compactly u = (x,y) — where the Greek indices are conventionally
split into two subsets ¢ and y® labeled respectively by Latin indices of type
i,7,k,...=0,1,2 and a,b, ... = 3,4. The 5D (pseduo) Riemannian metric

ds? = gogdu®du” (3.1)
is given by a metric ansatz parametrized in the form

1 0 0 0 0
0 g1 + U}12h3 + n12h4 w1w2h3 + n1n2h4 w1h3 n1h4
Gap = 0 w2w1h3 + n1n2h4 [ + w22h3 + n22h4 U)th n2h4 s (32)
0 w1h3 w2h3 hg 0
0 n1h4 n2h4 0 h4

where the coefficients are some functions of type
gi2 = 91,2(1’17372)7 h3,4 = h3,4($1, 51327 5)7 (3-3)
Wi2 = w1,2($1, $27 8),n1p = n1,2($17$27 s).

Both the inverse matrix (metric) as well the metric (3.2) is off-diagonal with

respect to the coordinate basis

R R BN
On=qos = 0= 75.00= 70 (3.4)

and, its dual basis,

d* = du® = (d' = da*, d* = dy*). (3.5)
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The metric (3.1) with coefficients (3.2) can be equivalently rewritten in
the diagonal form

§s* = dt* + g1 (x) (do')* + go (2) (d2?)? (3.6)
+h (2, 5) (0y°)° + ha (2, 5) (0y")?,

if instead the coordinate bases (3.4) and (3.5) we introduce the anholonomic
frames (anisotropic bases)

_ 0 e b _ 0
5(1 = % = (5Z == az N’L (U) ab,aa = dya) (37)
and
6% = ou” = (6" = da’, 6 = dy® + N (u) dz¥) (3.8)

where the N—coefficients are parametrized
a 3 4
NO = O, NLQ = W12 and NLQ =MNi2

and define the associated nonlinear connection (N—connection) structure, see
details in Refs [195, 199, 180].

Einstein equations with anholonomic variables

The metric (3.1) with coefficients (3.2) (equivalently, the d—metric (3.6)) is
assumed to solve the 5D Einstein equations

1
Rag — aga/gR = liTag, (39)

where x and Y, are respectively the coupling constant and the energy-
momentum tensor.

The nontrivial components of the Ricci tensor for the metric (3.1) with
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coefficients (3.2) (equivalently, the d-metric (3.6)) are

1 gty () 0 g9 (g))?
R! — R2_—_ oo 9192 92) 9192 g1 L (3.10
! 2 29192 [92 201 292 h 292 201 ] ( )
3 4 B
_ _ 11
RS R4 2h3h47 (3 )
B o
R — a7 3.12
31 w1y 2h, 2h4’ ( )
_ B Q2
Rz = —wy 2h, 2h4’
hy
Ry = ST [n7* + yni], (3.13)
h4 .
Ry = 3 h3 ["2 + 7”2] )

where, for simplicity, the partial derivatives are denoted h® = Oh/0x!, f' =
Of /0x? and f* = 0f/0s.

The scalar curvature is computed
R=2(R +RY).

In result of the obtained equalities for some Ricci and Einstein tensor
components, we conclude that for the metric ansatz (3.2) the Einstein equa-
tions with matter sources are compatible if the coefficients of the energy—
momentum d-tensor give with respect to anholonomic bases satisfy the con-
ditions

P S S R B e ¢ o o (3.14)

and could be written in the form

Rl = —k7Ys3, (3.15)
Ry = —kTy, (3.16)
R?; = liT?;, (3.17)
Ry = kY, (3.18)

where 7 = 1,2 and the left parts are given by the components of the Ricci
tensor (3.10)-(3.13).
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The Einstein equations (3.9), equivalently (3.15)—(3.18), reduce to this
system of second order partial derivation equations:

w 99 ()P, s g9 (9)?

_ 212 2/ _ A% M 94,6, 3.19
2 201 292 T 292 201 919223, ( )
(hy)?  hihs

hir — — = —2h3h,YT 2
L oh, 2hy shaln,  (3.20)
Ow; +a; = —2hyrT3;, (3.21)
2h
et +nt = —=kTy, (3.22)
Iy
where
h% (hSY  h$
= -2 (2+4 3.23
h* (R, R
= n'-2(2+4 3.24
(h3)?  hih;
= hf— — 3.25
3hy*  hs”
= —— - = 3.26
v She e (3.26)

and the partial derivatives are denoted, for instance,
g3 = 0ga/0x' = Dga/Or, g, = D1 /02 = Dg1 /0,
hi = O0hs/0s = Ohs/dp (or Ohs/dy*, for s = y*).

Dirac equations in anisotropic space—times

The problem of definition of spinors in locally anisotropic spaces and in spaces
with higher order anisotropy was solved in Refs. [180]. In this paper we
consider locally anisotropic Dirac spinors given with respect to anholonomic
frames with associated N-connection structure on a 5D (pseudo) Riemannian
space V(122 constructed by a direct time extension of a 4D Riemannian
space with two holonomic and two anholonomic variables.

Having an anisotropic d—metric

gap(w) = (gij(w), hap(w)) = (1, g;(u), ha(w)),

~

i = 1,2i=0,1,2a=3,4,

defined with respect to an anholonomic basis (1.16) we can easily define the
funtbein (pentad) fields

fﬁ = fﬁéuz{fzzfzéivfg:f;aa}v (3'27)
fE= R =S = Rl f = 207
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satisfying the conditions

9ij = fff;*g_il- and hg, = f2 fbbh ab>
gy = diag[l,—1—1] and hy = diag[—1, —1].

For a diagonal d-metric of type (1.39) we have

fr=/1g:l6¢ and f2 = \/|h,|02,

where 6 and 62 are Kronecker’s symbols.
We can also introduce the corresponding funfbiends which are related
with the off-diagonal metric ansatz (3.2) for gz,

ey = €,0, and e = el or (3.28)
satisfying the conditions

o = e%e%ggﬁ for gop = diag[l, —1,-1, -1, 1],
eath = Oy and ege; = 0.

The Dirac spinor fields on locally anisotropic deformations of Taub NUT
spaces,

W () =[O (u)] = [¢' (u), x7 ()],

where T = 0, 1, are defined with respect to the 4D Euclidean tangent subspace
belonging the tangent space to V' :2?) The 4 x4 dimensional gamma matrices
7Y = [y 4% 43 +¥] are defined as to satisfy the relation

{vg/, ’yﬁ/} =2g27 (3.29)

where {VQ/ vﬁ/} is a symmetric commutator, gglﬁ/ =(—1,-1,—1,—1), which
generates a Clifford algebra distinguished on two holonomic and two anholo-
nomic directions (hereafter the primed indices will run values on the Eu-
clidean and/or Riemannian, 4D component of the 5D pseudo-Riemannian
spacetime). In order to extend the (3.29) relations for unprimed indices
a, (... we conventionally complete the set of primed gamma matrices with a
matrix 72, i. .e. write ¥2 = [72, 41 42 ~2, ’yi] when

{7*, 12} = 2¢°L.
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The coefficients of gamma matrices can be computed with respect to
coordinate bases (1.2) or with respect to anholonomic bases (1.16) by using
respectively the funfbein coefficients (3.27) and (3.28),

7 (1) = ei(w)n® and 7(u) = ()2

were by v*(u) we denote the curved spacetime gamma matrices and by 77 (u)
we denote the gamma matrices adapted to the N—connection structure.

The covariant derivation of Dirac spinor field ¥ (u), v/, ¥, can be defined
with respect to a pentad decomposition of the off-diagonal metric (3.2)

o = |0, + i%@” (1) € (u)r2y7| o, (3.30)

where the coefficients

Casy (u) = (Dyeg) egaez

are called the rotation Ricci coefficients; the covariant derivative D, is defined
by the usual Christoffel symbols for the off-diagonal metric.

We can also define an equivalent covariant derivation of the Dirac spinor
field, 7,¥, by using pentad decompositions of the diagonalized d—metric
(1.39),

— 1 s o
Vol = |00+ 1Caly (w) f3 (u)22| W, (3.31)

where there are introduced N—elongated partial derivatives and the coeffi-
clents

CL, (u) = (DY) fouf)

are transformed into rotation Ricci d—coefficients which together with the
d—covariant derivative D[f} are defined by anholonomic pentads and anholo-
nomic transforms of the Christoffel symbols.

For diagonal d—metrics the funfbein coefficients can be taken in their turn
in diagonal form and the corresponding gamma matrix ¥* (u) for anisotropic
curved spaces are proportional to the usual gamma matrix in flat spaces
~2. The Dirac equations for locally anisotropic spacetimes are written in the
simplest form with respect to anholonomic frames,

(A" (1) Va — p)¥ =0, (3.32)
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where p is the mass constant of the Dirac field. The Dirac equations are the
Euler equations for the Lagrangian

L2 () = V/]g{[¥" ()7 (u) Ta¥ (v) (3.33)
—(vﬂ* (u))7* (U) U (u)] = p¥ (u) ¥ (u)},
where by W' (u) we denote the complex conjugation and transposition of the
column W (u) .

Varying £8/2) on d-metric (3.33) we obtain the symmetric energy—mo-
mentum d-tensor

Tap(u) = 4[‘P+( ) Fa () 7Y (u) + U () 35 () Ta¥ ()
~(Ta W™ ()A () ¥ () = (T50F (w))Fa (u) ¥ (u)](3.34)

We choose such spinor field configurations in curved spacetime as to be sat-
isfied the conditions (3.14).

One can introduce similar formulas to (3.32)—(3.34) for spacetimes pro-
vided with off-diagonal metrics with respect to holonomic frames by changing

of operators 7, (u) — v, (u) and Vﬁ — V-

3.1.2 Anisotropic Taub NUT — Dirac Spinor Solutions

By stralghtforward calculations we can verify that because the conditions
fCy = ( are satisfied the Ricci rotation coefficients vanishes,

Cl,, () = 0 and 7o = 5,0,
and the anisotropic Dirac equations (3.32) transform into
(i7" (u) o — p) ¥ = 0. (3.35)
Further simplifications are possible for Dirac fields depending only on

coordinates (t,zt = r,2? = 0), i. e. ¥ = ¥(z*) when the equation (3.35)
transforms into

(4720, + it o1 + in? Oy — p)¥ = 0.

1
\/W Vgl

The equation (3.35) simplifies substantially in (—coordinates

(ta Cl = Cl(ra 9)7 C2 = C2(7°, 0)) )
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defined as to be satisfied the conditions

1 1
0 ! jaal Ly (3.36)

/g o gl

We get
0 .0 .0 Loy
(—Z’Yga + Mige + M2gez ~ w)e(t, ¢, ¢7) =0. (3.37)

The equation (3.37) describes the wave function of a Dirac particle of mass u

propagating in a three dimensional Minkowski flat plane which is imbedded

as an anisotropic distribution into a 5D pseudo—Riemannian spacetime.
The solution ¥ = W(t, (!, (?) of (3.37) can be written

TH() = exp[—i(kot + k(' + kaC?)] 00 (k)
for positive energy;
UENC) = expli(kot + k1¢" + k2C?)]XO(k)

for negative energy,

with the condition that kg is identified with the positive energy and ¢°(k)
and x°(k) are constant bispinors. To satisfy the Klein-Gordon equation we
must have

k2:k(2)—k%—k’§:,u2.
The Dirac equations implies

(0'ki — )" (k) and (0'k; + p)x°(k),

where ¢'(i = 0,1,2) are Pauli matrices corresponding to a realization of
gamma matrices as to a form of splitting to usual Pauli equations for the
bispinors ¢°(k) and x°(k).

In the rest frame for the horizontal plane parametrized by coordinates
¢ = {t, (', ¢*} there are four independent solutions of the Dirac equations,

1 0

0 1
90?1) (M? 0) = 0 9 90?2) (M? 0) = 0 )

0 0

0 0

0 0
X(()l)(,ua O) = 1 ) X(()2) (,ua O) = 0

0 1
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In order to satisfy the conditions (3.14) for compatibility of the equations
(3.19)—(3.22) we must consider wave packets of type (for simplicity, we can
use only superpositions of positive energy solutions)

3
@(H(C) — / d_];#
2 ,LL2 + (k2)2
X Z b(p, [a]) @l (k) exp [—iki('] (3.38)
=1,23
when the coefficients b(p, [@]) define a current (the group velocity)

2

2—
2123/%3W ey

2 +<ks2>

with |p?| ~ p and the energy-momentum d-tensor (3.34) has the next non-
trivial coeflicients

Tg = QT(C17C2> :kO“IIJrP)/O\Ija
T = kUt U Y5 = — kUt (3.39)

where the holonomic coordinates can be reexpressed (' = (*(z'). We must
take two or more waves in the packet and choose such coefficients b(p, [a]),
satisfying corresponding algebraic equations, as to have in (3.39) the equali-
ties

Tl (Cl C ) = (x1,$2), (340)

required by the conditions (3.34).

3.2 Taub NUT Solutions with Generic Local
Anisotropy

The Kaluza-Klein monopole [76, 139] was obtained by embedding the Taub-
NUT gravitational instanton into five-dimensional theory, adding the time
coordinate in a trivial way. There are anisotropic variants of such solutions
[199] when anisotropies are modelled by effective polarizations of the induced
magnetic field. The aim of this Section is to analyze such Taub-NUT solu-
tions for both cases of locally isotropic and locally anisotropic configurations.
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3.2.1 A conformal transform of the Taub NUT metric

We consider the Taub NUT solutions and introduce a conformal transfor-
mation and a such redefinition of variables which will be useful for further
generalizations to anisotropic vacuum solutions.

The Taub NUT solution

This locally isotropic solution of the 5D vacuum Einstein equations is ex-
pressed by the line element

Ulomy = 6t oty (3.41)
d8%4D) = _Vil(dT'Q -+ 7'2d92 + sin2 edSDQ) — V(dlA + Azdxz>2
where

m
Vi=1+ —O,mo = const.
r

The functions A; are static ones associated to the electromagnetic potential,
A, =0,4 =0,A, =4mg (1 —cosb)

resulting into ”pure” magnetic field
- o T
B =rot A=mp—. (3.42)
T

of a Euclidean instanton; 7 is the spherical coordinate’s unity vector. The
spacetime defined by (3.41) has the global symmetry of the group G, =
SO(3) ® Ug(1) ® Ty(1) since the line element is invariant under the global
rotations of the Cartesian space coordinates and y* and ¢ translations of
the Abelian groups Uy(1) and T3(1) respectively. We note that the Uy(1)
symmetry eliminates the so called NUT singularity if 4* has the period 47m.

Conformally transformed Taub NUT metrics

With the aim to construct anisotropic generalizations it is more convenient
to introduce a new 5th coordinate,

y'—o=y' - /u‘l(é’, p)dE(0, ), (3.43)
with the property that

ds + 4mg(1 — cos 0)df = dy* + 4mg(1 — cos 0)dep,
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which holds for

/3 /3
_ A
d€ = (8, p)d(s —y*) = 55d0 + &pdw
when
o o B
50— 4mo(1 — cosO)p, 0o 4mo(1 — cos O)p,

and, for instance,

1= (1—cosf) > expld — ).

The changing of coordinate (3.43) describe a re—orientation of the 5th coor-
dinate in a such way as we could have only one nonvanishing component of
the electromagnetic potential

Ag = 4mg (1 — cos ).
The next step is to perform a conformal transform,

and to consider the 5D metric

ds(25D) = dt* + ds(4D (3.44)
ds(4D = —(dr® +r*dh*) — r*sin® 0de® — V2(d¢ + Agdb)?,

(not being an exact solution of the Einstein equations) which will transform
into some exact solutions after corresponding anholonomic transforms.

Here, we emphasize that we chose the variant of transformation of a lo-
cally isotropic non-Einsteinian metrics into an anisotropic one solving the
vacuum Einstein equations in order to illustrate a more simple procedure
of construction of 5D vacuum metrics with generic local anisotropy. As a
metter of principle we could remove vacuum isotropic solutions into vacuum
anisotropic ones, but the formula in this case would became very comber-
some.. The fact of selection as an isotropic 4D Riemannian background just
the metric from the linear interval dfs\il p) can be treated as a conformal trans-
formation of an instanton solution which is anisotropically deformed and put
trivially (by extension to the time like coordinate) into a 5D metric as to
generate a locally isotropic vacuum gravitational field.
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3.2.2 Anisotropic Taub NUT solutions with magnetic
polarization
We outline two classes of exact solutions of 5D vacuum Einstein equations

with generic anisotropies (see details in Ref. [199]) which will be extended
to configurations with spinor matter field source.

Solutions with angular polarization

The ansatz for a d—metric (1.39), with a distinguished anisotropic dependence
on the angular coordinate p, when s = ¢, is taken in the form

85 = dt* — 53%4,3),
53%417) = —(dr* +r?d6*) — r*sin® 0de® — V2 (r)ni(0, p)ds?,
o0 = ds+ no(0, p)do,

where the values 72(6, ¢) (we use non-negative values 7? not changing the
signature of metrics) and ny(6, ) must be found as to satisfy the vacuum
Einstein equations in the form (3.19)—(3.22). We can verify that the data

= tat=ra? =0, =s=¢,y' =g, (3.45)

g = 1,01 =—1,9o=—r% hg = —r’sin’6,
he = V)0t i, = [L+ @ (r,0)¢], w; = 0;
non = 0;m9 = ngj) (1, 0) +nopy (r,0) /[1 + = (r,0)¢]*.

give an exact solution. If we impose the condition to obtain in the locally
isotropic limit just the metric (3.44), we have to choose the arbitrary func-
tions from the general solution of (3.20) as to have

77(2@) =[1+@(r,0)p)* — 1 for @(r,)p — 0.

For simplicity, we can analyze only angular anisotropies with w = w(#),
when

Nty = 10, 0) = [L+w(0)p]”.

In the locally isotropic limit of the solution for ny (1,6, ¢), when wp — 0,
we could obtain the particular magnetic configuration contained in the metric
(3.44) if we impose the condition that

najo) (7, 0) + nop (1r,0) = Ag = 4mg (1 — cosf) ,
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which defines only one function from two unknown values ng (r,6) and
nop (7,6) . This could have a corresponding physical motivation. From the
usual Kaluza—Klein procedure we induce the 4D gravitational field (met-
ric) and 4D electro-magnetic field (potentials A;), which satisfy the Maxwell
equations in 4D pseudo—Riemannian space-time. For the case of spherical, lo-
cally isotropic, symmetries the Maxwell equations can be written for vacuum
magnetic fields without any polarizations. When we introduce into considera-
tion anholonomic constraints and locally anisotropic gravitational configura-
tions the effective magnetic field could be effectively renormalized by higher
dimension gravitational field. This effect, for some classes of anisotropies,
can be modeled by considering that the constant my is polarized,

mgog —m (Tu ‘97 90) = Molm (Tu ‘97 90)

for the electro-magnetic potential and resulting magnetic field. For ”pure”
angular anisotropies we write that

ne (0,¢) = N2[0] (0) + N (@) /[1 + W(Q)‘P]Q
= 4dmony, (0,¢) (1 — cosb),

for

0t (0,0) =10 (0) + 0oy (0) /11 + w(0)¢]”.

This could result in a constant angular renormalization even w(f)p — 0.

Solutions with extra—dimension induced polarization

Another class of solutions is constructed if we consider a d—metric of the type
(1.39), when s = ¢, with anisotropic dependence on the 5th coordinate ¢,
53%41)) = —(dr* +r%df?) — r?sin® 0dy® — V2(7“)77(2§) (0,¢)d¢?,
o0 = ds+ ws(6,¢)do,
where, for simplicity, we omit possible anisotropies on variable r, i. e. we

state that 7)) and w, are not functions on r.
The data for a such solution are

= tat=ra? =0, =s=¢y' =0, (3.46)

g = 1,01=—1,90=—r hy = —r’sin*6,
hs = V*(r) 77(2c)7 77(2c) = 77(2§) (r,0,¢),m01 = 0;
woy = 0,wy = dmgny, (0,<) (1 —cosf),ng =0,

na = naap) (1 0) + nop (1,0) / e (r: 0, 6)ds,
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where the function 7y = () (r, 6, <) is an arbitrary one as follow for the case
h} = 0, for angular polarizations we state, for simplicity, that 7.) does not
depend on 7, i. e. 7 = 1)(f,<). We chose the coefficient

wg = 4monm (0,) (1 — cos )

as to have compatibility with the locally isotropic limit when wy ~ Ay with
a "polarization” effect modeled by 7, (0,<), which could have a constant
component 7, ~ Ny = const for small anisotropies. In the simplest cases
we can fix the conditions nq ojo 1) (r,¢) = 0. All functions 77(20, N and nq 200,1]
can be treated as some possible induced higher dimensional polarizations.

3.3 Anisotropic Taub NUT—-Dirac Fields

In this Section we construct two new classes of solutions of the 5D Einstein—
Dirac fields in a manner as to extend the locally anisotropic Taub NUT
metrics defined by data (3.45) and (3.46) as to be solutions of the Einstein
equations (3.19)—(3.22) with a nonvanishing diagonal energy momentum d-
tensor

5 =12Y(r,0),Y(r,0),Y(r,0),0,0}

for a Dirac wave packet satisfying the conditions (3.39) and (3.40).

3.3.1 Dirac fields and angular polarizations

In order to generate from the data (3.45) a new solution with Dirac spinor
matter field we consider instead of a linear dependence of polarization,

M) ~ L+ @ (r,0) &,
an arbitrary function n (1,6, ) for which
hy = VQ(T)T,(ng) (7'7 0, SD)

is an exact solution of the equation (3.20) with Ty = T (r,6). With respect
to the variable 7](2 ) (r,0, ) this component of the Einstein equations becomes
linear

gy + 177 sin® 0T, = 0 (3.47)

which is a second order linear differential equation on variable ¢ with para-
metric dependencies of the coefficient 72sin? Y on coordinates (r,6). The
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solution of equation (3.47) is to be found following the method outlined in
Ref. [82]:

Ny = Ci(r,0)coshiprsind\/|Y (r,0)| + Cs(r,0)],

T (r,0) < 0; (3.48)
= C1(r,0)+Cy(r,0) 0, T (r,0) =0; (3.49)
= Cy(r,0) coslprsin 0/ (r,0) + Cy (r,0)],

Y (r,6) >0, (3.50)

where C 5 (r,6) are some functions to be defined from some boundary con-
ditions. The first solution (3.48), for negative densities of energy should be
excluded as unphysical, the second solution (3.49) is just that from (3.45)
for the vacuum case. A new interesting physical situation is described by
the solution (3.50) when we obtain a Taub NUT anisotropic metric with pe-
riodic anisotropic dependencies on the angle ¢ where the periodicity could
variate on coordinates (r, #) as it is defined by the energy density Y (r, ) . For
simplicity, we can consider a package of spinor waves with constant value of
T = Ty and fix some boundary and coordinate conditions when C; = C| 5
are constant. This type of anisotropic Taub NUT solutions are described by
a d-metric coefficient

hy = VQ(T)C’IQ[O} cos?[prsin @/ Yo + Cog)- (3.51)

Putting this value into the formulas (3.23), (3.24) and (3.25) for coefficients
in equations (3.21) we can express a9 = a1 2[hs, ha, To| and 5 = [[hs, ha, T
(we omit these rather simple but cumbersome formulas) and in consequence
we can define the values w; 5 by solving linear algebraic equations:

w1,2 (’I“, ‘97 90) = 01172 (Tu ‘97 90) /ﬁ (Tu ‘97 90) .

Having defined the values (3.51) it is a simple task of two integrations on
¢ in order to define

1+ cosk 1 n 1
1—cosk 1—cosk 1-—sink
—H”Lgm (7“, 9) , (352)

ny = ngp (r,0) |In

were

k= rsinfy/To + Cy,

najo,1) (1, 0) are some arbitrary functions to be defined by boundary condi-
tions. We put ng; = 0 to obtain in the vacuum limit the solution (3.45).



3.3. ANISOTROPIC TAUB NUT-DIRAC FIELDS 103

Finally, we can summarize the data defining an exact solution for an
anisotropic (on angle ¢) Dirac wave packet — Taub NUT configuration:

P = tat=ra2t =0, =s=0y' =g, (3.53)

Jgo = 1a91:—1a92:—7"27h3:—7"251n29,

h4 - V2 (T) 77(24,9)7 M) = Ol (Tu ‘9) CoS ’%(73 0) QO),

w; = 0,m1=0,n0=n9(r,0,k(r,0,p)) see (3.52),
U= U (M2 (2t 2?)) see (3.38),

T = T(¢"(z',2%)) see (3.39).

This solution will be extended to additional soliton anisotropic configurations
in the next Section.

3.3.2 Dirac fields and extra dimension polarizations

Now we consider a generalization of the data (3.46) for generation of a new
solution, with generic local anisotropy on extra dimension 5th coordinate, of
the Einstein — Dirac equations. Following the equation (3.21) we conclude
that there are not nonvacuum solutions of the Einstein equations (with T #
0) if A} = 0 which impose the condition T = 0 for hs, hy # 0. So, we have to
consider that the d-metric component hy = —r?sin®f from the data (3.46)
is generalized to a function hy4 (1, 6,<) satisfying a second order nonlinear
differential equation on variable ¢ with coefficients depending parametrically
on coordinates (r,6). The equation (i. e. (3.21)) can be linearized (see Ref.
[82]) if we introduce a new variable hy = h?

s

h** _
2hs

h* + hsTh =0,
which, in its turn, can be transformed :
a) to a Riccati form if we introduce a new variable v, for which h = v* /v,

*

h
v* + 0% — 2;31) + h3 Y = 0; (3.54)

b) to the so—called normal form [82],
A 4 TN =0, (3.55)

obtained by a redefinition of variables like

1 h¥ _
A = hexp [_E/h_gdg} =h hs 1/4
3
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where

LRy 1R\
T—hyy -~ L0y
3 16h3+4(h3)

We can construct explicit series and/or numeric solutions (for instance, by
using Mathematica or Maple programs) of both type of equations (3.54)
and normal (3.55) for some stated boundary conditions and type of polar-
ization of the coefficient hs (r,0,¢) = V2 (r) n(Qg) (r,0,¢) and, in consequence,
to construct different classes of solutions for hy (r,0,<). In order to have
compatibility with the data (3.46) we must take hy in the form

hy (r,0,¢) = —r?gin?6 + hae) (7, 0,5) ,

where hy (1,0,<) vanishes for T — 0.
Having defined a value of hy (1, 6, ¢) we can compute the coefficients (3.23),
(3.24) and (3.25) and find from the equations (3.21)

Wi,2 (T, 0, §) = 012 (Tv 0’ §) /5 (T> 0) §) .

From the equations (3.22), after two integrations on variable ¢ one obtains
the values of ny 5 (1,6, <) . Two integrations of equations (3.22) define

S z
ni(r,0,¢) = ngo(r, 9)/ dz/ dsP(r,0,s) 4+ nip(r, 6),
0 0

where

L b
2" hs hy

P

and the functions n,(r, @) and n;;(r, #) on (r,6) have to be defined by solv-
ing the Cauchy problem. The boundary conditions of both type of coefficients
w1 2 and ny 5 should be expressed in some forms transforming into correspond-
ing values for the data (3.46) if the source T — 0. We omit explicit formulas
for exact Einstein—Dirac solutions with ¢—polarizations because their forms
depend very strongly on the type of polarizations and vacuum solutions.

3.4 Anholonomic Dirac—Taub NUT Solitons

In the next subsections we analyze two explicit examples when the spinor field
induces two dimensional, depending on three variables, solitonic anisotropies.
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3.4.1 Kadomtsev—Petviashvili type solitons

By straightforward verification we conclude that the d—metric component
ha(r,0,s) could be a solution of Kadomtsev—Petviashvili (KdP) equation [81]
(the first methods of integration of 2+1 dimensional soliton equations where
developed by Dryuma [55] and Zakharov and Shabat [212])

i+ e (ha o Ghatiy + 1Y) = 0,6 = 1, (3.56)
if the component hs(r, 0, s) satisfies the Bernoulli equations [82]

hi+Y (r,0,5) (hs)* + F. (r,0,5) hs = 0, (3.57)
where, for h} # 0,

Y (r,60,s) = kT —, (3.58)
h4
and
R 2 /. /
F.(r,0,s) =44 =€ <h4 4 Ghall, + hg’) .
he = K

The three dimensional integral variety of (3.57) is defined by formulas

. ) , Y (r,0,s)
) B 1 i 9 9
hy ™ (r,0,s) = h3($) (r,0) E (x 75) X /md&

where
E.(r,0,s) = exp/FE (r,0,s)ds

and hg(,) (r,6) is a nonvanishing function.
In the vacuum case Y (r,60,s) = 0 and we can write the integral variety

of (3.57)

h:(gvac) (7", 9’ 8) _ thZ;) (7«’ 9) exp [— / F, (T: 67 5) d8:| .

We conclude that a solution of KdP equation (3.57) could be generated
by a non—perturbative component hy(r,6,s) of a diagonal h—-metric if the
second component hg (r, 0, s) is a solution of Bernoulli equations (3.57) with
coefficients determined both by hy and its partial derivatives and by the T}
component of the energy-momentum d-tensor (see (3.40)). The parameters
(coefficients) of (241) dimensional KdV solitons are induced by gravity and
spinor constants and spinor field configuration defining locally anisotropic
interactions of packets of Dirac’s spinor waves.
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3.4.2 (241) sine—Gordon type solitons

In a similar manner we can prove that solutions hy(r, 6, s) of (2+1) sine—
Gordon equation (see, for instance, [61, 90, 207])

RE* + hy — hy = sin(hy)
also induce solutions for hs (7, 6, s) following from the Bernoulli equation

h
h?wﬂ@ﬁﬁamﬁ+Fvﬁ@H@:Q@#Q
4

where

h* 2 1" b
LR Py sin(h4)] .

F(r.0,s)=-2
(r05) = 3+ 3

The general solutions (with energy—momentum sources and in vacuum cases)
are constructed by a corresponding redefinition of coefficients in the formu-
las from the previous subsection. We note that we can consider both type
of anisotropic solitonic polarizations, depending on angular variable ¢ or
on extra dimension coordinate ¢. Such classes of solutions of the Einstein—
Dirac equations describe three dimensional spinor wave packets induced and
moving self-consistently on solitonic gravitational locally anisotropic configu-
rations. In a similar manner, we can consider Dirac wave packets generating
and propagating on locally anisotropic black hole (with rotation ellipsoid
horizons), black tori, anisotropic disk and two or three dimensional black
hole anisotropic gravitational structures [195]. Finally, we note that such
gravitational solitons are induced by Dirac field matter sources and are dif-
ferent from those soliton solutions of vacuum Einstein equations originally
considered by Belinski and Zakharov [31].

Finally, we conclude that we have argued that the anholonomic frame
method can be applied for construction on new classes of Einstein—Dirac
equations in five dimensional (5D) space-times. Subject to a form of metric
ansatz with dependencies of coefficients on two holonomic and one anholo-
nomic variables we obtained a very simplified form of field equations which
admit exact solutions. We have identified two classes of solutions describing
Taub NUT like metrics with anisotropic dependencies on angular parameter
or on the fifth coordinate. We have shown that both classes of anisotropic
vacuum solutions can be generalized to matter sources with the energy—
momentum tensor defined by some wave packets of Dirac fields. Although
the Dirac equation is a quantum one, in the quasi—classical approximation we
can consider such spinor fields as some spinor waves propagating in a three
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dimensional Minkowski plane which is imbedded in a self-consistent manner
in a Taub—-NUT anisotropic space-time. At the classical level it should be
emphasized that the results of this paper are very general in nature, depend-
ing in a crucial way only on the locally Lorentzian nature of 5D space-time
and on the supposition that this space-time is constructed as a trivial time
extension of 4D space-times. We have proved that the new classes of so-
lutions admit generalizations to nontrivial topological configurations of 3D
dimensional solitons (induced by anisotropic spinor matter) defined as solu-
tions Kadomtsev—Petviashvili or sine-Gordon equations.
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Part 11

Anisotropic Spinors
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Spinor variables and interactions of spinor fields on Finsler spaces were
used in a heuristic manner, for instance, in works [19, 124], where the problem
of a rigorous definition of spinors for locally anisotropic spaces was not con-
sidered. Here we note that, in general, the nontrivial nonlinear connection
and torsion structures and possible incompatibility of metric and connec-
tions makes the solution of the mentioned problem very sophisticate. The
geometric definition of locally anisotropic spinors and a detailed study of the
relationship between Clifford, spinor and nonlinear and distinguished connec-
tions structures in vector bundles, generalized Lagrange and Finsler spaces
are presented in Refs. [163, 162, 165].

The purpose of this Part is to summarize our investigations [163, 162,
165, 186, 169] on formulation of the theory of classical and quantum field
interactions on locally anisotropic spaces. We receive primary attention to
the development of the necessary geometric framework: to propose an ab-
stract spinor formalism and formulate the differential geometry of locally
anisotropic spaces (the second step after the definition of locally anisotropic
spinors in [163, 162]). The next step is the investigation of locally anisotropic
interactions of fundamental fields on generic locally anisotropic spaces [165].

For our considerations on the locally anisotropic spinor theory it will
be convenient to extend the Penrose and Rindler abstract index formalism
[127, 128, 129] (see also the Luehr and Rosenbaum index free methods [91])
proposed for spinors on locally isotropic spaces. We note that in order to
formulate the locally anisotropic physics usually we have dimensions d > 4
for the fundamental locally anisotropic space-time. In this case the 2-spinor
calculus does not play a preferential role.
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Chapter 4

Anisotropic Clifford Structures

If a nonlinear connection structure is defined on a vector (covector, or higher
order vector—covector) bundle, or on a pseudo—Riemannian spacetime, the ge-
ometrical objects on this space are distinguished into some ”horizontal” and
"vertical” (co-vertical, or higher order vertical-covertical) invariant compo-
nents. Our idea on definition of Clifford and spinor structure on such locally
anisotropic spaces is to consider distinguished Cliffor algebras, which con-
sists from blocks of usual Clifford algebras for every horizontal and vertical
subspace (for every ”shall” of higher order anisotropies). For symplicity, we
restrict our constructions only to vector bundles (the covector bundles with
respective Clifford co-algebras are similar dual constructions [198], we can for
instance to develop a respective theory fo Clifford co—structures on Hamilton
and Cartan spaces).

4.1 Distinguished Clifford Algebras

The typical fiber of a vector bunde (v-bundle) &, , 7y : HE ®VE — E is
a d-vector space, F = hJF @& vF, split into horizontal hF and vertical vF
subspaces, with metric G(g, h) induced by v-bundle metric (1.39). Clifford
algebras (see, for example, Refs. [83, 154, 129]) formulated for d-vector spaces
will be called Clifford d-algebras [163, 162] . In this section we shall consider
the main properties of Clifford d-algebras. The proof of theorems will be
based on the technique developed in Ref. [83] correspondingly adapted to
the distinguished character of spaces in consideration.

Let k be a number field (for our purposes £ = R or k = C,R and C,
are, respectively real and complex number fields) and define F, as a d-vector
space on k provided with nondegenerate symmetric quadratic form (metric)
G. Let C be an algebra on k (not necessarily commutative) and j : F — C

113
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a homomorphism of underlying vector spaces such that j(u)? = G(u)-1 (1
is the unity in algebra C' and d-vector u € F). We are interested in definition
of the pair (C,j) satisfying the next universitality conditions. For every
k-algebra A and arbitrary homomorphism ¢ : F — A of the underlying d-
vector spaces, such that (o(u))? — G (u)-1, there is a unique homomorphism
of algebras ¢ : C' — A transforming the diagram 1 into a commutative one.

F- - C
]
R
A

Figure 4.1: Diagram 1

The algebra solving this problem will be denoted as C' (F, A) [equivalently as
C (G) or C (F)] and called as Clifford d-algebra associated with pair (F,G).

Theorem 4.1. The above-presented diagram has a unique solution (C,j) up
to isomorphism.

Proof: (We adapt for d-algebras that of Ref. [83], p. 127.) For a
universal problem the uniqueness is obvious if we prove the existence of solu-
tion C'(G) . To do this we use tensor algebra L) = LI (F) =62, T" (F)
where T® (F) = kand T (F) = kand T* (F) = F®...QF fori > 0. Let I (G)
be the bilateral ideal generated by elements of form € (u) =u®@u— G (u) - 1
where u € F and 1 is the unity element of algebra £ (F). Every element
from I (G) can be written as Y. A\je (u;) p;, where X;, u; € L(F) and u; € F.
Let C(G) =L(F)/I(G) and define j : F — C(G) as the composition of
monomorphism i : F — L'(F) C L(F) and projection p : £ (F) — C(G).
In this case pair (C (G), j) is the solution of our problem. From the general
properties of tensor algebras the homomorphism ¢ : F — A can be extended
to L(F) , i.e., the diagram 2 is commutative, where p is a monomorphism

Figure 4.2: Diagram 2

of algebras. Because (¢ (u))* = G (u) - 1, then p vanishes on ideal I (G) and
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in this case the necessary homomorphism 7 is defined. As a consequence of
uniqueness of p, the homomorphism 7 is unique.

Tensor d-algebra L£(F) can be considered as a Z/2 graded algebra. Really,
let us introduce LO(F) = Y2 T%(F) and LI(F) = S0 T?+(F).
Setting I'® (G) = I (G) N L@ (F). Define C'® (G) as p (L(¥)(F)), where p :
L (F) — C(G) is the canonical projection. Then C (G) = CO (G)®CWY (G)
and in consequence we obtain that the Clifford d-algebra is Z/2 graded.

It is obvious that Clifford d-algebra functorially depends on pair (F,G) .
If f:F — F' is a homomorphism of k-vector spaces, such that G’ (f(u)) =
G (u), where G and G’ are, respectively, metrics on F and F’, then f induces
an homomorphism of d-algebras

C(f):C(G)—C(G)

with identities C' (¢ - f) = C () C (f) and C (Idx) = Idc(z).

If A% and BP are Z/2-graded d-algebras, then their graded tensorial
product A® ® B? is defined as a d-algebra for k-vector d-space A* ® B? with
the graded product induced as (a ® b) (¢ @ d) = (—1)*” ac®bd, where b € B*
and c€ A* (o,0=0,1).

Now we reformulate for d—algebras the Chevalley theorem [45]:

Theorem 4.2. The Clifford d-algebra C (hF @& vF, g+ h) is naturally iso-
morphic to C(g) ® C (h).

Proof. Let n: hF — C(g) and n' : vF — C (h) be canonical maps and
map
m : hF & vF — C(g) ® C (h) is defined as m(z,y) = n(z) ® 1 + 1 ® n'(y),
x € hF,y € vF. We have (m(z,y))* = [(n(2))> + (' (v))°] -1 = [g(2) +
h(y)]. Taking into account the universality property of Clifford d-algebras
we conclude that m induces the homomorphism

C:C(hF®uF,g+h) — C(hF,g) RC (vF,h).
We also can define a homomorphism
v:C(hF,q)®C (vF,h) — C(hF ®vF,g+h)

by using formula v (z ® y) = 6 (z) 0’ (y), where homomorphysms § and ¢’
are, respectively, induced by imbeddings of hF and vF into hF ® vF :

§:C (hF,g) — C (hF ®vF,g+h),

§:CwF,h)— ChFodvF,g+h).
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Because z € O (g) and y € C® (g), we have

6(2)8' (y) = (=1) 5" ()6 (x).
Superpositions of homomorphisms ¢ and v lead to identities

vC = ldogr gacwrn SV = 1donr gacwsn- (4.1)

Really, the d-dalgebra C' (hF @ vF, g+ h) is generated by elements of type
m(z,y). Calculating

vC(m(r,y)) = vn(r)@1+120 (y))
o (n(x))d(n' (y) =m(x,0) +m(0,y) =m(z,y),

we prove the first identity in (4.1).

On the other hand, d-algebra C (hF,g) ®C (vF,h) is generated by el-
ements of type n(r) ® 1 and 1 ® n’(y), we prove the second identity in
(4.1).

Following from the above -mentioned properties of homomorphisms ¢ and
v we can assert that the natural isomorphism is explicitly constructed.O

In consequence of theorem 4.2 we conclude that all operations with Clif-
ford d-algebras can be reduced to calculations for C' (hF,g) and C (vF, h)
which are usual Clifford algebras of dimension 2" and, respectively, 2™ [83,
21].

Of special interest is the case when £k =R and F is isomorphic to vector

space RPT4+ provided with quadratic form —af —... —a2 +a2,  —yf —...—
Y2+ ...+ y2,,. In this case, the Clifford algebra, denoted as (CP?, C*?) | is
generated by symbols e(fv), e(;), . egq, e(ly), e(Qy), . egﬁb satisfying properties

(e)’=—-1(1<i<p), (ej)2 =—-1(1<j<a),(e)’=1(p+1 <k <ptq),
(ej)2 =1(n+1<s<a+b), ee; = —eje;, i # j. Explicit calculations
of CP% and C*® are possible by using isomorphisms [83, 129]

CPEa ~ OP9 @ My (R) @ ... @ My (R) = CP4 @ Myn (R) = Myn (CP),

where M, (A) denotes the ring of quadratic matrices of order s with coeffi-
cients in ring A. Here we write the simplest isomorphisms C'Y ~ C, C%! ~
R ® R, and C*° = H, where by H is denoted the body of quaternions. We
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summarize this calculus as (as in Ref. [21])

Co0 = RCYW=C " =R@R,C* =H,C"2=M(R),
C3 = HOH,0% =M, (R),

CY0 = My(H),C = My (H),C*0 = M, (C),

C% = My (H) ® My (H),C% = My (R),C* = M, (H),
C™ = Mg(R)® Mg (R), C%" = My (C),

C¥0 = Mg (R), C°% = My (R).

One of the most important properties of real algebras C% (C%®) and
CPO (C*Y) is eightfold periodicity of p(a).

Now, we emphasize that H?"-spaces admit locally a structure of Clifford
algebra on complex vector spaces. Really, by using almost Hermitian struc-
ture J, 7 and considering complex space C" with nondegenarate quadratic
form

n
Z ]za\2, 2z, € C?
a=1

induced locally by metric (1.39) (rewritten in complex coordinates z, = x, +
iy,) we define Clifford algebra

Cr=C'®.0C}

n

where 0! = C®xC = C @ Corin consequence, T~ 0" 2rC ~ C'" @5 C.
Explicit calculations lead to isomorphisms C'? = C*?®zC ~ My (R) @z C ~
M, (?") , C% 2 My (C) and T2+ & My, (C)@ Ma» (C) , which show that
complex Clifford algebras, defined locally for H?"-spaces, have periodicity 2
on p.

Considerations presented in the proof of theorem 4.2 show that map j :
F — C(F) is monomorphic, so we can identify space F with its image in
C(F.G), denoted as u — @, if u € CO(F,G) (ue CW(F,G)); then

u =T ( respectively, @ = —u).

Definition 4.1. The set of elements u € C (G)*, where C (G)* denotes the
multiplicative group of invertible elements of C (F,G) satisfying uFu~t € F,
is called the twisted Clifford d-group, denoted as I" (F).

Let 7 : I'(F) — GL(F) be the homorphism given by u — pi, where
pu (W) = wwu~'. We can verify that ker p = R*is a subgroup in I' (F).
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Canonical map j : F — C(F) can be interpreted as the linear map
F — C(F )0 satisfying the universal property of Clifford d-algebras. This
leads to a homomorphism of algebras, C (F) — C (F)', considered by an
anti-involution of C' (F) and denoted as u — *u. More exactly, if u;...u,, € F,
then t, = uy,...u; and '@ = fu = (—1)" uy,...u;.

Definition 4.2. The spinor norm of arbitrary u € C (F) is defined as
S(u)="u-ueC(F).

It is obvious that if u,u/,u” € T (F), then S(u,u') = S (u) S (u') and
S (wu'u") =8 (u) S (u)S (). For u,v’ € FS(u) = —G (u) and S (u,u’) =
S(u)S W) =58 (uu).

Let us introduce the orthogonal group O (G) C GL (G) defined by metric
G on F and denote sets SO (G) = {u € O (G),det |u] =1}, Pin(G) ={u €
['(F),S (u) =1} and Spin (G) = Pin (G)NC° (F) . For F = R™™ we write
Spin (n +m) . By straightforward calculations (see similar considerations in
Ref. [83]) we can verify the exactness of these sequences:

1 - Z/2— Pin(G)— O(G) — 1,
1 - Z/2— Spin(G) — SO (G) — 0,
1 - Z/2— Spin(n+m)— SO(n+m)— 1.

We conclude this section by emphasizing that the spinor norm was defined
with respect to a quadratic form induced by a metric in v-bundle &; (or by
an H?"-metric in the case of generalized Lagrange spaces). This approach
differs from those presented in Refs. [19] and [124].

4.2 Anisotropic Clifford Bundles and Spinor
Structures

There are two possibilities for generalizing our spinor constructions defined
for d-vector spaces to the case of vector bundle spaces enabled with the
structure of N-connection. The first is to use the extension to the category
of vector bundles. The second is to define the Clifford fibration associated
with compatible linear d-connection and metric G' on a vector bundle (or
with an H?"-metric on GL-space). Let us consider both variants.

4.2.1 Clifford d-module structure

Because functor F — C(F) is smooth we can extend it to the category
of vector bundles of type {; = {mq : HE ® VE — FE}. Recall that by F
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we denote the typical fiber of such bundles. For £ we obtain a bundle of
algebras, denoted as C' (&), such that C' (&), = C (F,). Multiplication in
every fibre defines a continuous map C' (£;) x C' (&;) — C (&q) . If €4 is a vector
bundle on number field k&, the structure of the C' (£;)-module, the d-module,
the d-module, on &, is given by the continuous map C (&) X g &g — &4 with
every fiber F, provided with the structure of the C' (F,,) —module, correlated
with its k-module structure, Because F C C (F), we have a fiber to fiber
map F xg § — &g, inducing on every fiber the map F, Xg aw) — Ea)
(R-linear on the first factor and k-linear on the second one ). Inversely,
every such bilinear map defines on &, the structure of the C(§;)-module
by virtue of universal properties of Clifford d-algebras. Equivalently, the
above-mentioned bilinear map defines a morphism of v-bundles m : §; —
HOM (£4,8q) [HOM (&4, &q) denotes the bundles of homomorphisms] when
(m (u))®> = G (u) on every point.

Vector bundles &; provided with C' (£;)-structures are objects of the cat-
egory with morphisms being morphisms of v-bundles, which induce on every
point u € £ morphisms of C (F,) —modules. This is a Banach category con-
tained in the category of finite-dimensional d-vector spaces on filed k. We
shall not use category formalism in this work, but point to its advantages
in further formulation of new directions of K-theory (see , for example, an
introduction in Ref. [83]) concerned with locally anisotorpic spaces.

Let us denote by H* (§, GL,+m (R)) the s-dimensional cohomology group
of the algebraic sheaf of germs of continuous maps of v-bundle ¢ with group
GLyim (R) the group of automorphisms of R"* (for the language of al-
gebraic topology see, for example, Refs. [83] and [74]). We shall also use
the group SLyim (R) = {A C GLyis (R),det A = 1}. Here we point out
that cohomologies H*(M,Gr) characterize the class of a principal bundle
m: P — M on M with structural group Gr. Taking into account that we
deal with bundles distinguished by an N-connection we introduce into consid-
eration cohomologies H* (§,GL, 1, (R)) as distinguished classes (d-classes)
of bundles ¢ provided with a global N-connection structure.

For a real vector bundle &; on compact base £ we can define the orientation
on &, as an element g € H' (€, GL,, 1, (R)) whose image on map

Hl (fa SLn—I—m (R)) - Hl (fa GLn+m (R))
is the d-class of bundle £.

Definition 4.3. The spinor structure on &; is defined as an element
By € H' (¢, Spin (n +m)) whose image in the composition

H' (&, Spin (n +m)) — H' (§,50 (n+m)) — H" (& GLym (R))
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is the d-class of €.

The above definition of spinor structures can be reformulated in terms of
principal bundles. Let &; be a real vector bundle of rank n+m on a compact
base £. If there is a principal bundle P; with structural group SO (n +m) |
or Spin (n 4+ m)], this bundle &; can be provided with orientation (or spinor)
structure. The bundle Py is associated with element ag € H' (¢, SO(n + m))
[or B € H' (&, Spin (n +m)).

We remark that a real bundle is oriented if and only if its first Stiefel-
Whitney d-class vanishes,

wy (&) € H (€, 2/2) =0,

where H' (£, Z/2) is the first group of Chech cohomology with coefficients
in Z/2, Considering the second Stiefel-Whitney class w, (§4) € H*! (€, Z/2)
it is well known that vector bundle &; admits the spinor structure if and
only if ws (§4) = 0. Finally, in this subsection, we emphasize that taking into
account that base space £ is also a v-bundle, p : E — M, we have to make
explicit calculations in order to express cohomologies H® (§,GLy+,,) and
H®(&,50 (n+m)) through cohomologies H*® (M,GL,),H® (M,SO (m)) ,
which depends on global topological structures of spaces M and &. For general
bundle and base spaces this requires a cumbersome cohomological calculus.

4.2.2 Anisotropic Clifford fibration

Another way of defining the spinor structure is to use Clifford fibrations.
Consider the principal bundle with the structural group Gr being a sub-
group of orthogonal group O (G) , where G is a quadratic nondegenerate form
(see(1.39)) defined on the base (also being a bundle space) space £. The fibra-
tion associated to principal fibration P (£, Gr) [or P (H*", Gr)] with a typical
fiber having Clifford algebra C (G) is, by definition, the Clifford fibration
PC (&,Gr). We can always define a metric on the Clifford fibration if every
fiber is isometric to PC (£, G) (this result is proved for arbitrary quadratic
forms G on pseudo-Riemannian bases [154]). If, additionally, Gr C SO (G)
a global section can be defined on PC (G).

Let P (&,Gr) be the set of principal bundles with differentiable base &
and structural group Gr. If g : Gr — G7' is an homomorphism of Lie groups
and P ({,Gr) C P (&, Gr) (for simplicity in this section we shall denote
mentioned bundles and sets of bundles as P, P" and respectively, P, P’), we
can always construct a principal bundle with the property that there is as
homomorphism f : P’ — P of principal bundles which can be projected to
the identity map of £ and corresponds to isomorphism ¢ : Gr — Gr'. If the
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inverse statement also holds, the bundle P’ is called as the extension of P
associated to g and f is called the extension homomorphism denoted as g.

Now we can define distinguished spinor structures on bundle spaces (com-
pare with definition 2.3 ).

Definition 4.4. Let P € P (£,0(G)) be a principal bundle. A distinguished
spinor structure of P, equivalently a ds-structure of £ is an extension P of P
associated to homomorphism h : PinG — O (G) where O (G) is the group of
orthogonal rotations, generated by metric G, in bundle &.

So, if Pisa spinor structure of the space £, then PeP (&, PinG) .

The definition of spinor structures on varieties was given in Ref.[50]. In
Refs. [51] and [51] it is proved that a necessary and sufficient condition for
a space time to be orientable is to admit a global field of orthonormalized
frames. We mention that spinor structures can be also defined on varieties
modeled on Banach spaces [1]. As we have shown in this subsection, similar
constructions are possible for the cases when space time has the structure of
a v-bundle with an N-connection.

Definition 4.5. A special distinguished spinor structure, ds-structure, of
principal bundle P = P (£, 50 (Q)) is a principal bundle P = P (£, SpinQG)
for which a homomorphism of principal bundles p : P — P, projected on the
identity map of & (or of H*) and corresponding to representation

R : SpinG — SO (G),
is defined.

In the case when the base space variety is oriented, there is a natural
bijection between tangent spinor structures with a common base. For special
ds-structures we can define, as for any spinor structure, the concepts of spin
tensors, spinor connections, and spinor covariant derivations (see Refs. [162,
189, 165]).

4.3 Almost Complex Anisotropic Spinor
Structures
Almost complex structures are an important characteristic of H?"-spaces.

We can rewrite the almost Hermitian metric [108, 109], in complex form

[163]:
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G = Hy (2,8)dz" ® d2, (4.2)

where

z=xz(2,Z)

24 =z + iyau 2% =" — Z.yav Hab (Z,E) = Jab (l‘, y) |y=y(z,2)’

and define almost complex spinor structures. For given metric (4.2) on
H?"-space there is always a principal bundle PY with unitary structural
group U(n) which allows us to transform H?"-space into v-bundle £V =
PY x U(n) R?". This statement will be proved after we introduce complex
spinor structures on oriented real vector bundles [83].

U(n) i SO(2n)

C

o p
Spin©(2n)

Figure 4.3: Diagram 3

Let us consider momentarily & = C and introduce into consideration
[instead of the group Spin(n)] the group Spin® xz,, U (1) being the factor
group of the product Spin(n) x U (1) with the respect to equivalence

(y,2) ~ (—y,—a), y € Spin(m).

This way we define the short exact sequence
1 — U (1) — Spin© (n) S SO (n) — 1,

where p°(y,a) = p°(y). If X is oriented , real, and rank n, y-bundle = :
E, — M", with base M", the complex spinor structure, spin structure, on
A is given by the principal bundle P with structural group Spin®(m) and
isomorphism A & P X gpine(n) R". For such bundles the categorial equivalence
can be defined as

€ EF(M™) — ) (M™), (4.3)

where € (E°) = P Agpinen) E° is the category of trivial complex bundles
on M™, EX (M™) is the category of complex v-bundles on M™ with action of
Clifford bundle C' (\), PA Spinc(n) and E¢ is the factor space of the bundle
product P x; E° with respect to the equivalence (p,e) ~ (pg—',ge),p €
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P e € E°, where g € Spin®(n) acts on E by via the imbedding Spin (n) C
C%" and the natural action U (1) C C on complex v-bundle £¢, B¢ = tot¢,
for bundle 7¢: B¢ — M".

Now we return to the bundle . A real v-bundle (not being a spinor
bundle) admits a complex spinor structure if and only if there exist a ho-
momorphism ¢ : U (n) — Spin®(2n) making the diagram 3 commutative.
The explicit construction of o for arbitrary v-bundle is given in Refs. [83]
and [21]. For H*"-spaces it is obvious that a diagram similar to (4.3) can be
defined for the tangent bundle T"M™, which directly points to the possibility
of defining the ¢Spin-structure on H?"-spaces.

Let A be a complex, rankn, spinor bundle with

7 Spin® (n) Xz, U (1) — U (1) (4.4)

the homomorphism defined by formula 7 (A, ) = 6. For P, being the prin-
cipal bundle with fiber Spin®(n) we introduce the complex linear bundle
L (X°) = Ps X gpine(n) C defined as the factor space of Pg x C on equivalence
relation

(pt,2) ~ (p,1(1) " 2),

where t € Spin©(n). This linear bundle is associated to complex spinor
structure on \°.

If A and \¢ are complex spinor bundles, the Whitney sum \¢ @ \¢ is
naturally provided with the structure of the complex spinor bundle. This
follows from the holomorphism

W' Spin® (n) x Spin® (n') — Spin® (n+n'), (4.5)

given by formula [(3, 2), (8, 2")] — [w (B, 5'), 2Z'] , where w is the homomor-
phism making the following diagram 4 commutative. Here, z,2' € U (1). It
Spin(n) x Spin(n') Spin(n +n’)

| |

O(n) x O(n’) O(n+n)

Figure 4.4: Diagram 4

is obvious that L (A\° & A%) is isomorphic to L (A) ® L (A%).
We conclude this section by formulating our main result on complex
spinor structures for H?"-spaces:
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Theorem 4.3. Let X¢ be a complex spinor bundle of rank n and H*"-space
considered as a real vector bundle X@ N\ provided with almost complex struc-
0 —6;'-
o; 0

5 is commutative up to isomorphisms € and € defined as in (2.49), H is
functor B¢ — E¢® L(X\°) and £y*" (M™) is defined by functor E (M™) —
EFP (M™) given as correspondence E¢ — A (C") ® E° (which is a catego-
rial equivalence), A (C") is the exterior algebra on C". W is the real bundle
X @ N provided with complex structure.

ture J* 55 multiplication on @ is given by . Then, the diagram

5372"(M2n) 5CAC®>\C (Mn)

€
&¢ %

& (M)

Figure 4.5: Diagram 5
Proof: We use composition of homomorphisms
o Spin€ (2n) = SO (n) = U (n) = Spin® (2n) xz, U (1),
commutative diagram 6 and introduce composition of homomorphisms
W Spinc (n) 2 Spin® (n) x Spin©(n) < Spin® (n),

where A is the diagonal homomorphism and w® is defined as in (4.5). Using
homomorphisms (4.4) and (4.5) we obtain formula u (t) = p (t) 7 (t) .

Now consider bundle P X gpinen) Spin® (2n) as the principal Spin® (2n)-
bundle, associated to M & M being the factor space of the product P x
Spin© (2n) on the equivalence relation (p,t,h) ~ (p,,u (t)_1 h) . In this case
the categorial equivalence (4.3) can be rewritten as

€’ (EC) =P Xgpmc(n) Spinc (271) Agpmc(gn)Ec
and seen as factor space of P x Spin®(2n) X, E¢ on equivalence relation
(pta h7 6) ~ (pa K (t)_l h: 6) and (pa hla hQ: 6) ~ (pa hl: hgle)

(projections of elements p and e coincides on base M). Every element of
€ (E°) can be represented as PAgpine) E°, i.e., as a factor space PAE® on
equivalence relation (pt,e) ~ (p, u®(t),e), when t € Spin®(n). The complex
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Spin(2n) C  Spin(2n)

|

SO(2n)

g

SO(n)

Figure 4.6: Diagram 6

line bundle L (A\°) can be interpreted as the factor space of
P X gpine(n) C on equivalence relation (pt,d) ~ (p, r (t)_l 5) .
Putting (p, e) ® (p,d) (p, de) we introduce morphism

€ (E) x L (M) — ¢ (X)

with properties (pt,e) ® (pt,0) — (pt,de) = (p, pe ()" 56) ,

(p, p© ()~ e) ® (p,l )" e) — (p,pc(t)r )~ de) pointing to the fact
that we have defined the isomorphism correctly and that it is an isomorphism
on every fiber. O
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Chapter 5

Spinors and Anisotropic Spaces

The purpose of this Chapter is to show how a corresponding abstract spinor
technique entailing notational and calculations advantages can be developed
for arbitrary splits of dimensions of a d-vector space F = hF & vF, where
dim hF = n and dimvF = m. For convenience we shall also present some
necessary coordinate expressions.

The problem of a rigorous definition of spinors on locally anisotropic
spaces (anisotropic spinors, d-spinors) was posed and solved [163, 162, 189]
in the framework of the formalism of Clifford and spinor structures on v—
bundles provided with compatible nonlinear and distinguished connections
and metric . We introduced d-spinors as corresponding objects of the Clifford
d-algebra C (F,G), defined for a d—vector space F in a standard manner
(see, for instance, [83]) and proved that operations with C (F,G) can be
reduced to calculations for C (hF, g) and C (vF,h), which are usual Clifford
algebras of respective dimensions 2" and 2™ (if it is necessary we can use
quadratic forms g and h correspondingly induced on AF and vF by a metric
G (1.39)). Considering the orthogonal subgroup O(G) C GL(G) defined by
a metric G we can define the d-spinor norm and parametrize d-spinors by
ordered pairs of elements of Clifford algebras C (hF,g) and C (vF,h). We
emphasize that the splitting of a Clifford d-algebra associated to a v-bundle
£ is a straightforward consequence of the global decomposition defining a
N-connection structure in £.

In this Chapter, as a rule, we shall omit proofs which in most cases are
mechanical but rather tedious. We can apply the methods developed in
[127, 128, 129, 91] in a straightforward manner on h- and v-subbundles in
order to verify the correctness of affirmations.

127
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5.1 Anisotropic Clifford Algebras,
Spinors and Twistors

In order to relate the succeeding constructions with Clifford d-algebras [163,
162] we consider a locally anisotropic frame decomposition of the metric
(1.39):

Gl (u) = 12 (u) 15 (u) G (5.1)

where the frame d-vectors and constant metric matrices are distinguished as

iy - (B 0 (9 0
l“”‘( o zs<u>>’G@ﬂ(0 ) 09

95 and h; are diagonal matrices with gz = hzg = £1.
To generate Clifford d-algebras we start with matrix equations

O'aUB—FUBO'a = _Gaﬁl’ (5.3)

where [ is the identity matrix, matrices o4 (0-objects) act on a d-vector space
F = hF & vF and theirs components are distinguished as

a0
(4 )

indices 3,7,... refer to spin spaces of type & = Sy) @ S(,) and underlined
Latin indices j.k, ... and b, c, ... refer respectively to a h-spin space Sy and
a v-spin space S(v), which are correspondingly associated to a h- and v-
decomposition of a v-bundle £g4). The irreducible algebra of matrices og
of minimal dimension N x N, where N = N(,) + Ny, dim S4,)=N¢,) and
dim 8(,)=N(p), has these dimensions

(IS}

2=1/2 0 =2k + 1
New = { /2 = 2k;
{ 2m=1/2 "y =2k + 1

Nem) om/2 =2k,

where £k =1,2, ... .
The Clifford d-algebra is generated by sums on n + 1 elements of form

AT+ Bl + Cos + Doy 1.
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and sums of m + 1 elements of form

Ayl + Blos + C’abm Dy

abc

+ ..

with antisymmetric coefficients Cl = (j@] Cab = Cfad Dm = D[?m Dabe —

D[a@a}, ... and matrices o3 ‘7[@ 00y, O3k = 030507 . Really, we

IR
have 2" coefficients <A1, C, D”k, ) and 2™ coefficients

<A2, Cab pabe, ) of the Clifford algebra on F.

For simplicity, in this subsection, we shall present the necessary geometric
constructions only for h-spin spaces Sy, of dimension N,). Considerations for
a v-spin space S(,) are similar but with proper characteristics for a dimension
N (m)-

In order to define the scalar (spinor) product on Sy we introduce into
consideration this finite sum (because of a finite number of elements am_@}) :

@ 2, iiavi 2 i, 2 i T
= v + 71)ic(0")m + 57 (03)i (0 ) + 57 (0357)ic (0 )im + ..
(5.5)
which can be factorized as
BB = Ny Bepn Peld for n = 2k (5.6)
and
WEL = 2Npewmed, O EL =0 for n = 3(mod4), (5.7)
WEL = 0, OBL = 2N for n = 1(modd).

Antisymmetry of o5 and the construction of the objects (5.5),(5.6) and

(5.7) define the properties of e-objects ey, and €, which have an eight-fold
periodicity on n (see details in [129] and, with respect to locally anisotropic
spaces, [163]).

For even values of n it is possible the decomposition of every h-spin space
S(pyinto irreducible h-spin spaces S,y and S/gh) (one considers splitting of h-
indices, for instance, = L& L',m = M & M’, ...; for v-indices we shall write
a=Ad®A,b=B® B,...) and defines new e-objects

m =

(Dem () bm) apg gl — % (Dem _) dmy  (5.8)

DO | =

We shall omit similar formulas for e-objects with lower indices.
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We can verify, by using expressions (5.7) and straightforward calculations,
these parametrizations on symmetry properties of e-objects (5.8)

LM ML
Im € = € O ~m __ O O
€ —( 0 O)ande _(o’gLM:gML)

for n = 0(mod8);

1
e = —5(’)6@ = 2 where (Pel™ =0, and (5.9)
1
m — —5(_)6@ = @for n = 1(mod8);

0 0 0 e = 't
Im _ =tm
€ —(GL,MO)ande _(O 0 )

for n = 2(mod8);

m _ L) am

5 = —e2 where (Helm — 0, and

€

1
am — §(+)elﬂ = —&for n = 3(mods);

LM ML
m [ € = —¢ 0 ~m [ 0O 0
€ —( 0 O)ande —(0 ’gLM:_’gML)

for n = 4(mod8);

im (=) Im ml

et = —3 e = —e™, where () lm — 0, and

em — —%()elﬂ = —%for n = 5(mods);

0 0 0 ’e‘“LM/ — €M/L
lm ~lm
‘ _(eL'Mo)ande _(0 0 )

for n = 6(mod8);

(S)elm — €™ where (H)elm — 0, and

&m — —%()elﬂ =& for n = 7(mod8).

Let denote reduced and irreducible h-spinor spaces in a form pointing to
the symmetry of spinor inner products in dependence of values n = 8k + [
(k =0,1,2,...;1 = 1,2,...7) of the dimension of the horizontal subbundle
(we shall write respectively A and o for antisymmetric and symmetric inner
products of reduced spinors and < = (A, o) and &= (o, A) for correspond-
ing parametrizations of inner products, in brief 4.p., of irreducible spinors;
properties of scalar products of spinors are defined by e-objects (5.9); we
shall use ¢ for a general i.p. when the symmetry is not pointed out):
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Sy (8k) = S.®S.; (5.10)

Sny Bk+1) = S (i.p. is defined by an (_)e—object);
S, = (S.,Ss), or

S = (S5,85);
Sny 8k +3) = S(g) (i.p. is defined by an e-object);
S (8k+4) = S @ S/A;
Sty (8k+5) = S(A*) (i.p. is defined by an (7e-object),
S, = (S.,Ss), or

5, = (85.80)

Sty 8k +7) = S (i.p. is defined by an Meobject).

Smy Bk+2) = {

S 8k+6) = {

We note that by using corresponding e-objects we can lower and rise
indices of reduced and irreducible spinors (for n = 2, 6(mod4) we can exclude
primed indices, or inversely, see details in [127, 128, 129]).

The similar v-spinor spaces are denoted by the same symbols as in (5.10)
provided with a left lower mark ”|” and parametrized with respect to the
values m = 8k + [ (k'=0,1,...; 1=1,2,...,7) of the dimension of the vertical
subbundle, for example, as

Sy (8K) = 81 @8], Sy (8k+1) =857, .. (5.11)
We use 7 7-overlined symbols,

Sy (8k) =So @ 5., Sy Bk +1) =S8, ... (5.12)
and

Sy (8K) =Sj0® 5[, Sy (8K +1) =S\, .. (5.13)

respectively for the dual to (5.10) and (5.11) spinor spaces.

The spinor spaces (5.10)-(5.13) are called the prime spinor spaces, in brief
p-spinors . They are considered as building blocks of distinguished (n,m)-
spinor spaces constructed in this manner:

(2.65)
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S(oo,oo) = So ©® Sg ©® S‘o ® Slogs(oopyo) = So ©® Sg ©® S‘o ©® glo,

Sleo, | *)=8S.®S, ®S, @8], S("") =S, S, ®S, @8],
P g

S(alo) = 8288 ©84,8(u°%) =8, 085 &8,

Considering the operation of dualisation of prime components in (5.14) we
can generate different isomorphic variants of distinguished (n,m)-spinor spa-
ces.

We define a d-spinor space S, n) as a direct sum of a horizontal and a
vertical spinor spaces of type (5.14), for instance,

Serst)y = So @S, DS @S, Sersr+1) = S. @S, D 3|(O_)7 o
Sektasi+s = SA DS D 3\(;),

The scalar product on a S, ) is induced by (corresponding to fixed values
of n.and m ) e-objects (5.9) considered for h- and v-components.

Having introduced d-spinors for dimensions (n,m) we can write out the
generalization for locally anisotropic spaces of twistor equations [128] by
using the distinguished o-objects (5.4):

(‘7(&)@ sud  n+m Gag(“ )g G (5.15)

where ’ B ’ denotes that we do not consider symmetrization on this index. The
general solution of (5.15) on the d-vector space F looks like as

Wl =08 + ua(aa)ggﬂg, (5.16)

where Q2 and II€ are constant d-spinors. For fixed values of dimensions n and
m we mast analyze the reduced and irreducible components of h- and v-parts
of equations (5.15) and their solutions (5.16) in order to find the symmetry
properties of a d-twistor Z® defined as a pair of d—spinors

Z® = (v, W/ﬁ),

where 7z = 0 e g(mm) is a constant dual d-spinor. The problem of

0
él
definition of spinors and twistors on locally anisotropic spaces was firstly
considered in [189] (see also [156]) in connection with the possibility to extend
the equations (5.15) and their solutions (5.16), by using nearly autoparallel

maps, on curved, locally isotropic or anisotropic, spaces.
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5.2 Mutual Transforms of Tensors and Spi-
nors

The spinor algebra for spaces of higher dimensions can not be considered as
a real alternative to the tensor algebra as for locally isotropic spaces of di-
mensions n = 3,4 [127, 128, 129]. The same holds true for locally anisotropic
spaces and we emphasize that it is not quite convenient to perform a spinor
calculus for dimensions n,m >> 4. Nevertheless, the concept of spinors is
important for every type of spaces, we can deeply understand the fundamen-
tal properties of geometical objects on locally anisotropic spaces, and we shall
consider in this subsection some questions concerning transforms of d-tensor
objects into d-spinor ones.

5.2.1 Transformation of d-tensors into d-spinors

In order to pass from d-tensors to d-spinors we must use o-objects (5.4)
written in reduced or irreduced form  (in dependence of fixed values of
dimensions n and m ):

, (aa)ﬁi, (aa)@,...,(aa)@,...,(UQ)J-E,...,(J&)AA,,...,((ﬁ)nl,.... (5.17)

(0a)

=15

It is obvious that contracting with corresponding o-objects (5.17) we can
introduce instead of d-tensors indices the d-spinor ones, for instance,

w& = (ga)ﬂ_’ywaa WAB = (O-a)AB’waa sy Q‘ZZ = (gk)llgLE?

For d-tensors containing groups of antisymmetric indices there is a more
simple procedure of theirs transforming into d-spinors because the objects

)LV’ (Uab...E)@7 ...,(aij"'k)H,, (5.18)

(035..5
can be used for sets of such indices into pairs of d-spinor indices. Let us enu-
merate some properties of o-objects of type (5.18) (for simplicity we consider
only h-components having q indices 7, }, /lg, ... taking values from 1 to n; the
properties of v-components can be written in a similar manner with respect
to indices @, b, ... taking values from 1 to m):

KL symmetric on k, [ for n —2¢g = 1,7 (mod 8);
(Ui"'j> 5 { antisymmetric on k, [ for n — 2¢ = 3,5 (mod 8) (5.19)
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for odd values of n, and an object

(.5 ((e2.5)"")

; symmetric on I, J (I', J') for n —2¢ = 0 (mod 8);
antisymmetric on I, J (I', J) for n — 2g = 4 (mod 8)

} (5.20)

or

n 4+ 2q = 6(mod8);

n + 2q = 2(mod8), (5.21)

(.5 = (o5}

1...J

with vanishing of the rest of reduced components of the d-tensor (0;'_3)ﬁ with
prime/unprime sets of indices.

5.2.2 Fundamental d—spinors

We can transform every d-spinor £& = (€%, £2) into a corresponding d-tensor.
For simplicity, we consider this construction only for a h-component &% on a
h-space being of dimension n. The values

gae(o™

Sy

Jap (1 is odd) (5.22)

or
le? (o), <0r gf’gf(a?--“)m) (n is even) (5.23)

with a different number of indices 73, taken together, defines the h-spinor
€% to an accuracy to the sign. We emphasize that it is necessary to choose
only those h-components of d-tensors (5.22) (or (5.23)) which are symmetric
on pairs of indices a3 (or I.J (or I'J’)) and the number ¢ of indices i...j
satisfies the condition (as a respective consequence of the properties (5.19)
and/or (5.20), (5.21))

n—2¢=0,1,7 (mod 8). (5.24)

Of special interest is the case when
1
¢=3 (n+t1) (nisodd) (5.25)

or

1
q=3n (n is even) . (5.26)
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If all expressions (5.22) and/or (5.23) are zero for all values of ¢ with the
exception of one or two ones defined by the condition (5.25) (or (5.26)), the
value & (or € (¢1')) is called a fundamental h-spinor. Defining in a similar
manner the fundamental v-spinors we can introduce fundamental d-spinors
as pairs of fundamental h- and v-spinors. Here we remark that a h(v)-spinor
£ (€%) (we can also consider reduced components) is always a fundamental
one for n(m) < 7, which is a consequence of (5.24)).

Finally, in this section, we note that the geometry of fundamental h- and
v-spinors is similar to that of usual fundamental spinors (see Appendix to the
monograph [129]). We omit such details in this work, but emphasize that
constructions with fundamental d-spinors, for a locally anisotropic space,
must be adapted to the corresponding global splitting by N-connection of
the space.

5.3 Anisotropic Spinor Differential (Geome-
try

The goal of the section is to formulate the differential geometry of d-spinors
for locally anisotropic spaces.
We shall use denotations of type

v = (v, 0") € 0” = (0%,0%) and ¢* = (¢',¢%) € 0° = (0%, o)

for, respectively, elements of modules of d-vector and irreduced d-spinor fields
(see details in [163]). D-tensors and d-spinor tensors (irreduced or reduced)
will be interpreted as elements of corresponding o -modules, for instance,

!

a v a7 I 1
qaﬁ E O'a[@,w g E O'é ,E JK'N’ E (o2 JK!N! 3 ++-

We can establish a correspondence between the d-metric g,z (1.39) and
d-spinor metric €45 ( e-objects (5.9) for both h- and v-subspaces of £ ) of a
locally anisotropic space £ by using the relation

Gos = — m (0(a (u))g1ﬁ1 (s (u))ﬁggz )eaa, €38, (5.27)

where
(0a(u)2? =15 (u)(0a)", (5.28)

which is a consequence of formulas (5.1)-(5.6). In brief we can write (5.27)
as

ga,@ == €g1g2€§1§2 (529)
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if the o-objects are considered as a fixed structure, whereas e-objects are
treated as caring the metric "dynamics ” , on locally anisotropic space—
times. This variant is used, for instance, in the so-called 2-spinor geometry
[128, 129] and should be preferred if we have to make explicit the algebraic
symmetry properties of d-spinor objects. An alternative way is to consider
as fixed the algebraic structure of e-objects and to use variable components
of o-objects of type (5.28) for developing a variational d-spinor approach to
gravitational and matter field interactions on locally anisotropic spaces ( the
spinor Ashtekar variables [20] are introduced in this manner).
We note that a d-spinor metric

on the d-spinor space S = (S(), S(»)) can have symmetric or antisymmetric h
(v) -components €;; (€q) , see e-objects (5.9). For simplicity, in this section (in
order to avoid cumbersome calculations connected with eight-fold periodicity
on dimensions n and m of a locally anisotropic space £ ) we shall develop
a general d-spinor formalism only by using irreduced spinor spaces Sy and
Sw)-

5.4 D-covariant derivation

Let £ be a locally anisotropic space. We define the action on a d-spinor of a
d-covariant operator

Vo= (V0 Vo) = (02)39 G2 = (00T, (00)25Farss)
(in brief, we shall write
Vo = Vaiay = (Vigip, Vaiaz))
as a map

8 B B

Vaa, 0~ 7 0a = Oaja
satisfying conditions
VQ(gg + 77@) = Vafﬁ + Voﬂ?ﬁy

and

Valféd) = fval+ €8, f
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for every 2,12 € o8 and f being a scalar field on £. It is also required that
one holds the Leibnitz rule

(VQCQ)UE = Va((@?ﬁ) - Cﬁ Va 77&

and that 7, is a real operator, i.e. it commuters with the operation of
complex conjugation:

Va¢g@... = Va(ag@)

Let now analyze the question on uniqueness of action on d-spinors of an
operator v/, satisfying necessary conditions . Denoting by VS) and /. two
such d-covariant operators we consider the map

(V) = Vo) : 0% — 05 o (5.30)

Because the action on a scalar f of both operators VS) and Y/, must be
identical, i.e.

v = Val, (5.31)

the action (5.30) on f = wﬁé‘é must be written as

(VS = Va)(wpt?) = 0.

In consequence we conclude that there is an element @al% ﬁl € 04 a, ﬁl for

which
v(gll)g2£1 - vngQEZ + @glggglfﬁ (532)

and
1 b
V;l)gzwﬁ = Vaya,Wg — @%%é Wy -

The action of the operator (5.30) on a d-vector v# = v%1%2 can be written by
using formula (5.32) for both indices 3, and f3, :

( (al) _ VQ)UEIEQ = @a,yﬁlvﬁQ + @a’yﬁgvgll

B . B B,. B
= (Oay, 0y, 7 + Oag 0y, " o1Te = Q7 07,

where

B

8.3 B B
T oy v, = 60‘1:1 512 Pa @O‘ll 2512

2 (5.33)
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The d-commutator /(g defines the d-torsion. So, applying operators
vf;)v(ﬁl]) and Vg on f = wgfé we can write

T = Ty = Qg = Qs
with Q"5 from (5.33). »

The action of operator VS) on d-spinor tensors of type Xa,a,aq..
must be constructed by using formula (5.32) for every upper index 3 3, ...
and formula (5.33) for every lower index ajasas... .

5.5 Infeld - van der Waerden coefficients
Let

0 ® = (01 02 Lo Oy 01 %02 % O )

be a d-spinor basis. The dual to it basis is denoted as

Lo, 2 ).

5 Q:<5. 12 5 N0,

K3 K3

?

A d-spinor k¢ € o ¢ has components £* = %9, ¢. Taking into account that

B
0y 05 "Vap = Vap,

we write out the components /.3 k2 as

5 %05 70y T Vagh = 0 700 T Vag R+ G T Vagl, ©
Vgﬁﬁl_}_ﬁg/ylgﬁg’ (534)

where the coordinate components of the d-spinor connection ’ylgﬂ§ are defined
as B

v . v
afe Or ~ Vap 59

[l

(5.35)

We call the Infeld - van der Waerden d-symbols a set of o-objects (0,)%
parametrized with respect to a coordinate d-spinor basis. Defining

Vo= (O-a)gﬁ Vg§7
introducing denotations

aB

Var = ’Ylgéz (0a)*=
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and using properties (5.34) we can write relations

o g B
la 05 = Va KO = o2 4 K2 Vs (5.36)
and
« ﬂ
ly 5g ~ Va Hg=Va Hg— :uéﬁ)/éag (5'37>

for d-covariant derivations v/, 2 and 7, -
We can consider expressions similar to (5.36) and (5.37) for values having
both types of d-spinor and d-tensor indices, for instance,

1305 * Vol =Vaby — 070 +6"T 70,
(we can prove this by a straightforward calculation of the derivation
Vall," 05 < 10)).

Now we shall consider some possible relations between components of
d-connections v, 5 and I' 7, and derivations of (¢,)?2 . We can write

%, = Loyl =15y (0)" =g 7y ((05)70.59,7)
= 120.25,574 (05)° +12(05) (0,5 /oy 0.5+ 6,574 6.7)
ey 7y (08)F + 12,0870, 2(05) (6,5 7y 6.5+ 8.5 7 0,5),

where [$ = (0.,)* , from which it follows
(Ua)ﬁz(gﬂﬁ)ﬁravﬁ = (Ugﬁ)ﬁ Uy (0a)2 + %ZVEVQ + 55727@

Connecting the last expression on  and v and using an orthonormalized

d-spinor basis when ”y%ﬁ = 0 (a consequence from (5.35)) we have

w1 w0 p
Ve = Ny T N ¢ vae T (%as)” Y (06)5), (5.38)
where
ﬁ [}
FLV aB — (UQ)%(Ugg)ﬁF ~B (5.39)

We also note here that, for instance, for the canonical and Berwald con-
nections, Christoffel d-symbols we can express d-spinor connection (5.39)
through corresponding locally adapted derivations of components of metric
and N-connection by introducing respectively the coefficients of the Barwald,
canonical or another type d—connections.
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5.6 D-spinors of Anisotropic Curvature and
Torsion

The d-tensor indices of the commutator A,z can be transformed into d-spinor
ones:

Uap = (Uaﬁ)gﬁAaﬁ = (Dil'v Daj)v (5‘40)

with h- and v-components,

O = (0°)5 A0 and Ogy = (0°7)spAus,

being symmetric or antisymmetric in dependence of corresponding values of
dimensions n and m (see eight-fold parametizations (5.18)—(5.20)). Consid-
ering the actions of operator (5.40) on d-spinors 72 and py we introduce the

d-spinor curvature X; lgﬁ as to satisfy equations
Opp 7= X; L m°
and

)
Hag piy = X, “apHs-

The gravitational d-spinor W,g.s is defined by a corresponding symmetriza-
tion of d-spinor indices:

Vapys = X(alpho)- (5.42)

We note that d-spinor tensors X; lgﬁ and W, are transformed into similar

2-spinor objects on locally isotropic spaces [128, 129] if we consider vanishing
of the N-connection structure and a limit to a locally isotropic space.

Putting &, * instead of u., in (5.41) and using (5.42) we can express
respectively the curvature and gravitational d-spinors as

and

Vosap = 5&5(@5@ -

Dy

The d-spinor torsion ™ op 1s defined similarly as for d-tensors) by

using the d-spinor commutator (5.40) and equations

2l
Dggf:T ! QQQVLZQ f
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The d-spinor components Rl1 1, 818 op Of the curvature d-tensor R 5@,@

can be computed by using the relations (5.39), (5.40) and (5.42) as to satisfy
the equations (the d-spinor analogous of equations (1.79) )

2,0 3,8 9,8
(Oap = T (50, VE = R 0% V0%, (5.43)
here d-vector V2122 is considered as a product of d-spinors, i.e. V%l =
vhip?2. We find
R, %% o — (x % q7nm 5 5, (5.44)
M, o el T v, of ag i, ) 0, :

g T1T. 5 5
+ <X12 Loy IO A 111212) o, &

It is convenient to use this d-spinor expression for the curvature d-tensor

é1 é2
Q1Q2glg2 v I11211> 512

6,0, T1T2

L) _ 9
RZIZQ Q1Q2ﬁ1§2 o (Xll Q1Qg§1ﬁ2 T T
o) T1T2

0
+ <X12 glg2§1§2 +T 1

) 4
a8 8, v 111212) 511

in order to get the d-spinor components of the Ricci d-tensor

_ 910, _ 9y T1T2 9
2 7,%1 % T Y109 @1@98,0; T Ty aqandyy, +T a1 a,50,7, v T1T27,
P T1To P
+X12 QlﬁzéllQ +T 219211§2 v 1727, (545)
and this d-spinor decomposition of the scalar curvature:
N2y 4, « T1ToQ a 5
— Qi Oy — Y&191 & T1T2Q Qo 04
q R - R aja, X e §1QQ + T Qgél ")/ T1ToQ0 (546>
g0y T1Ty Qo0 1
+X Qpd9) + a8V mimay

Putting (2.96) and (2.97) into (2.43) and, correspondingly, (2.41) we find
the d-spinor components of the Einstein and ®,3 d-tensors:

Gro = oo =X, Basy, F 15 pansn, P riy (5:47)
+X12 éﬁiﬁzéllg + TIlIQ 219211§2 /yé2 T1T27,
1
_igllgl 812Q2 [Xglﬁlﬁ1g2 B, * TIIIQ& gzﬁgf Pyﬁl T1T50,
+Xﬁ2ﬁ221 gQngl TIIIQ égfgl §2 éQ Ilz2g2]
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and
® Lt [xPit P (5.48)
e N8 T 0 €y,0:7,a B, wb, :
IlIle gg El gzﬂgzl T1T2 gggl ég
+T Byt 1125, +X B,y B8, 9 I1£2ﬁ2]
1 ) T T 5
- 91 L1L2 9
2 [le 105817, +T Q,250,7, g T1T2,
—|—X 9y + TI1IQ

g
Yy Q122917 ajayy,8; ’ zlzzlg]'
The components of the conformal Weyl d-spinor can be computed by
putting d-spinor values of the curvature (5.44) and Ricci (5.44) d-tensors

into corresponding expression for the d-tensor (1.82). We omit this calculus
in this work.



Chapter 6

Anisotropic Spinors and Field
Equations

The problem of formulation gravitational and gauge field equations on differ-
ent types of locally anisotropic spaces is considered, for instance, in [109, 27,
19] and [186]. In this section we shall introduce the basic field equations for
gravitational and matter field locally anisotropic interactions in a generalized
form for generic locally anisotropic spaces.

6.1 Anisotropic Scalar Field Interactions

Let ¢ (u) = (1 (1), 92 (u) ..., ok (1)) be a complex k-component scalar field
of mass p on locally anisotropic space £. The d-covariant generalization of the
conformally invariant (in the massless case) scalar field equation [128, 129]
can be defined by using the d’Alambert locally anisotropic operator [4, 168§]
0 = D*D,, where D, is a d-covariant derivation on £ constructed, for
simplicity, by using Christoffel d-simbols (all formulas for field equations and
conservation values can be deformed by using corresponding defrormation d—
tensors Pg. from the Cristoffel d-simbols, or the canonical d-connection to
a general d-connection into consideration):

n+m—2

4(n+—m—1)<ﬁ + 1) (u) = 0. (6.1)

We must change d-covariant derivation D, into °D, = D, + ieA, and take
into account the d-vector current

143
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if interactions between locally anisotropic electromagnetic field ( d-vector
potential A, ), where e is the electromagnetic constant, and charged scalar
field ¢ are considered. The equations (6.1) are (locally adapted to the N-
connection structure) Euler equations for the Lagrangian

£ () = VI |58 ) 3o () — (7 + 722

where |g| = detgags.

The locally adapted variations of the action with Lagrangian (6.2) on
variables ¢ (u) and P (u) leads to the locally anisotropic generalization of the
energy-momentum tensor,

B ™ () = 00 (1) 050 (u) + 057 (1) dap (1) — igagﬁ(o) (u), (6.3)

Vol

and a similar variation on the components of a d-metric (1.39) leads to a
symmetric metric energy-momentum d-tensor,

E(O) (U) _ E(O,Can) (U) .

n+m-—2 .
of (aB) ) [Riap) + DaDp) — 9asB] @ (1) ¢ (u) .

2n+m—1
(6.4)

Here we note that we can obtain a nonsymmetric energy-momentum d-tensor
if we firstly vary on G,s and than impose the constraints of compatibility
with the N-connection structure. We also conclude that the existence of a
N-connection in v-bundle £ results in a nonequivalence of energy-momentum
d-tensors (6.3) and (6.4), nonsymmetry of the Ricci tensor (see (1.77)),
nonvanishing of the d-covariant derivation of the Einstein d-tensor (1.85),
Da?aﬁ # 0 and, in consequence, a corresponding breaking of conservation
laws on locally anisotropic spaces when D,E*® # 0 [108, 109]. The prob-
lem of formulation of conservation laws on locally anisotropic spaces is dis-
cussed in details and two variants of its solution (by using nearly autoparallel
maps and tensor integral formalism on locally anisotropic multispaces) are
proposed in [168]. In this section we shall present only straightforward gen-
eralizations of field equations and necessary formulas for energy-momentum
d-tensors of matter fields on £ considering that it is naturally that the con-
servation laws (usually being consequences of global, local and/or intrinsic
symmetries of the fundamental space-time and of the type of field interac-
tions) have to be broken on locally anisotropic spaces.
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6.2 Anisotropic Proca equations
Let consider a d-vector field ¢, (u) with mass p? (locally anisotropic Proca

field ) interacting with exterior locally anisotropic gravitational field. From
the Lagrangian

£0) () = VI [~ Fas () £ (0) + 475, (0) 6" ()|, (65)

where fos = Dayps — Dsp,, one follows the Proca equations on locally
anisotropic spaces

Daf* (u) + 120" (u) = 0. (6.6)

Equations (6.6) are a first type constraints for § = 0. Acting with D, on
(6.6), for pu # 0 we obtain second type constraints

Dop® (u) = 0. (6.7)

Putting (6.7) into (6.6) we obtain second order field equations with re-
spect to ¢, :

O (1) + Rap” (w) + (o (u) = 0. (6.8)

The energy-momentum d-tensor and d-vector current following from the (6.8)
can be written as

Eéllﬂ) (U) - _géT (7ﬁ7f0¢6 + fasfﬂT) + /‘L2 (@a(p,@ + @ﬁ@a) - Mﬁ(l) (U) :

V1ol

T () = i (fap (u) 07 (u) = 77 (u) fap (u)).

For p¢ = 0 the d-tensor f,s and the Lagrangian (6.5) are invariant with
respect to locally anisotropic gauge transforms of type

o (1) = @a () + 00 (u),

where A (u) is a d-differentiable scalar function, and we obtain a locally
anisotropic variant of Maxwell theory.
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6.3 Anisotropic Gravitons and Backgrounds

Let a massless d-tensor field h,gp (u) is interpreted as a small perturbation
of the locally anisotropic background metric d-field g, (u). Considering, for
simplicity, a torsionless background we have locally anisotropic Fierz-Pauli
equations

Ohas (1) + 2Rrap, (u) K™ (u) =0 (6.9)
and d-gauge conditions
Dohj (w) =0,  h(u) = hg(u) =0, (6.10)

where R;ng, (u) is curvature d-tensor of the locally anisotropic background
space (these formulae can be obtained by using a perturbation formalism with
respect to hap (u) developed in [75]; in our case we must take into account
the distinguishing of geometrical objects and operators on locally anisotropic
spaces).

We note that we can rewrite d-tensor formulas (6.1)-(6.10) into similar
d-spinor ones by using formulas (5.27)—(5.29), (5.39), (5.41) and (5.45)—(6.6)
(for simplicity, we omit these considerations in this work).

6.4 Anisotropic Dirac Equations

Let denote the Dirac d-spinor field on & as ¥ (u) = (% (u)) and consider as
the generalized Lorentz transforms the group of automorphysm of the metric
G5 (see the locally anisotropic frame decomposition of d-metric (5.3)). The
d-covariant derivation of field ¢ (u) is written as

— 1 ~ N
Vol = |0a + Zoaﬁﬁ (u) 12 (u) P | 4, (6.11)

where coefficients C 5, = (D,12) lﬁal% generalize for locally anisotropic spaces
the corresponding Ricci coefficients on Riemannian spaces [60]. Using o-
objects 0% (u) (see (5.28) and (5.4)) we define the Dirac equations on locally
anisotropic spaces:

N
(i0” (u) Vo — )Y = 0, (6.12)

which are the Euler equations for the Lagrangian
L0 () = VIg{* ()0 (u) Tav () (6.13)

(Vo™ (w))o® (u) ¥ (w)] — ptp™ (u) 9 (u)},
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where ¢ (u) is the complex conjugation and transposition of the column

¥ (u) .

From (6.13) we obtain the d-metric energy-momentum d-tensor

EYY () = L1 (u) o (u) To0 () 4 (1) 05 () Tt (u)
~(Vatr* (u))og (W)Y (u) — (V5™ (u))on (u) ¢ (u)]

and the d-vector source

TP () = 0 (u) oq (u) ¥ (u).

We emphasize that locally anisotropic interactions with exterior gauge fields
can be introduced by changing the locally anisotropic partial derivation from
(6.11) in this manner:

S0 — 0o +i€*Ba, (6.14)

where ¢* and B, are respectively the constant d-vector potential of locally
anisotropic gauge interactions on locally anisotropic spaces (see [186] and the
next section).

6.5 Yang-Mills Equations in Anisotropic Spi-
nor Form

We consider a v-bundle Bg, mg : B — &, on locally anisotropic space &.
Additionally to d-tensor and d-spinor indices we shall use capital Greek let-
ters, ®, T, = W, ... for fibre (of this bundle) indices (see details in [128, 129]
for the case when the base space of the v-bundle 7 is a locally isotropic
space-time). Let Y, be, for simplicity, a torsionless, linear connection in Bg
satisfying conditions:

\V4 Y (A TS [or =0 Ee},

v, (X +1°8) = v A+ v °
v, (fA°) = XOv f+fv A fe X9 or 29,
where by T© ( E@) we denote the module of sections of the real (complex)

v-bundle Bg provided with the abstract index ©. The curvature of connection
v, is defined as

Koo X0 = (7,9, - 7,9, ) X°.
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For Yang-Mills fields as a rule one considers that Bg is enabled with
a unitary (complex) structure (complex conjugation changes mutually the
upper and lower Greek indices). It is useful to introduce instead of K ;q ©
a Hermitian matrix F, 5, © =i K0 © connected with components of the
Yang-Mills d-vector potential B, =® according the formula:

1

2
where the locally anisotropic space indices commute with capital Greek in-
dices. The gauge transforms are written in the form:

Fo= *= z[aBm; — iBy A B (6.15)

Ba®q> — Ba’\q> — Ba®q> S@ @ q(’_j © +/LS® q>za q(’_j 97
Fopz ? o F (I,:FﬁE ®sq %g 5,

where matrices sg ® and ¢= = are mutually inverse (Hermitian conjugated in
the unitary case). The Yang-Mills equations on torsionless locally anisotropic
spaces [186] (see details in the next Chapter) are written in this form:
VFupe ¥ = Jse ' (6.16)

«,

Viele = = 0. (6.17)

We must introduce deformations of connection of type,
z; — Vv, t P,, (the deformation d-tensor P, is induced by the torsion
in v-bundle Bg) into the definition of the curvature of locally anisotropic
gauge fields (6.15) and motion equations (6.16) and (6.17) if interactions are
modeled on a generic locally anisotropic space.

Now we can write out the field equations of the Einstein-Cartan theory
in the d-spinor form. So, for the Einstein equations (1.84) we have

Glllgglgz + )‘gzlgﬁzggg = “E1112g1g27

with 31112%% from (5.47), or, by using the d-tensor (5.48),

E A K

v e, T ( 1 5)511%512% = _§E1112g1g27

)

which are the d-spinor equivalent of the equations (1.86). These equations
must be completed by the algebraic equations (1.87) for the d-torsion and d-
spin density with d-tensor indices changed into corresponding d-spinor ones.



Part 111

Higher Order Anisotropic
Spinors
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The theory of anisotropic spinors formulated in the Part II is extended for
higher order anisotropic (ha) spaces. In brief, such spinors will be called ha—
spinors which are defined as some Clifford ha—structures defined with respect
to a distinguished quadratic form (1.43) on a hve—bundle. For simplicity, the
bulk of formulas will be given with respect to higher order vector bundles. To
rewrite such formulas for hve—bundles is to consider for the "dual” shells of
higher order anisotropy some dual vector spaces and associated dual spinors.
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Chapter 7

Clifford Ha—Structures

7.1 Distinguished Clifford Algebras

The typical fiber of dv—bundle & , 7g : HE S VIE® ... DV, EF — FE is
a d-vector space, F = hF ® 1y FP... ® v, F, split into horizontal hF and
verticals v, F,p = 1,..., z subspaces, with a bilinear quadratic form G(g, h)
induced by a hve—bundle metric (1.43). Clifford algebras (see, for example,
Refs. [83, 154, 129]) formulated for d-vector spaces will be called Clifford
d-algebras [163, 162, 189]. We shall consider the main properties of Clifford
d—algebras. The proof of theorems will be based on the technique developed
in Ref. [83] correspondingly adapted to the distinguished character of spaces
in consideration.

Let k be a number field (for our purposes £ = R or k = C,R and C,
are, respectively real and complex number fields) and define F, as a d-vector
space on k provided with nondegenerate symmetric quadratic form (metric)
G. Let C be an algebra on k (not necessarily commutative) and j : F — C
a homomorphism of underlying vector spaces such that j(u)? = G(u) -1 (1
is the unity in algebra C' and d-vector u € F). We are interested in definition
of the pair (C,j) satisfying the next universitality conditions. For every
k-algebra A and arbitrary homomorphism ¢ : F — A of the underlying d-
vector spaces, such that (o(u))? — G (u)-1, there is a unique homomorphism
of algebras ¢ : C' — A transforming the diagram 1 into a commutative one.

The algebra solving this problem will be denoted as C' (F, A) [equivalently
as C'(G) or C'(F)] and called as Clifford d-algebra associated with pair
(F,G).

Theorem 7.1. The above-presented diagram has a unique solution (C, j) up
to isomorphism.

Proof: (We adapt for d-algebras that of Ref. [83], p. 127 and extend
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for higher order anisotropies a similar proof presented in the Part II). For a
universal problem the uniqueness is obvious if we prove the existence of solu-
tion C'(G) . To do this we use tensor algebra L) = @LIT (F) =2, T" (F)
where T® (F) = kand T (F) = kand T* (F) = F®...QF fori > 0. Let I (G)
be the bilateral ideal generated by elements of form € (u) =u®u — G (u) - 1
where u € F and 1 is the unity element of algebra £ (F). Every element
from I (G) can be written as Y. A\je (u;) p;, where X;, u; € L(F) and u; € F.
Let C(G) =L(F)/I(G) and define j : F — C(G) as the composition of
monomorphism i : F — L'(F) C L(F) and projection p : L (F) — C(G).
In this case pair (C (G), j) is the solution of our problem. From the general
properties of tensor algebras the homomorphism ¢ : F — A can be extended
to L(F) , i.e., the diagram 2 is commutative, where p is a monomorphism
of algebras. Because (¢ (1)) = G (u) - 1, then p vanishes on ideal I (G) and
in this case the necessary homomorphism 7 is defined. As a consequence of
uniqueness of p, the homomorphism 7 is unique.

Tensor d-algebra L£(F) can be considered as a Z/2 graded algebra. Re-
ally, let us introduce £ (F) =32 T% (F) and LI (F) = 3" TH+(F).
Setting I (G) = I (G) N L (F). Define C™ (G) as p (L)(F)), where p :
L (F) — C(G) is the canonical projection. Then C (G) = CO (G)eCWM (G)
and in consequence we obtain that the Clifford d-algebra is Z/2 graded.

It is obvious that Clifford d-algebra functorially depends on pair (F,G).
If f:F — F is a homomorphism of k-vector spaces, such that G’ (f(u)) =
G (u) , where G and G’ are, respectively, metrics on F and F', then f induces
an homomorphism of d-algebras

C(f):C(G)—C(G)

with identities C' (¢ - f) = C () C (f) and C (Idx) = Idc ().

If A* and B® are Z/2-graded d-algebras, then their graded tensorial
product A% ® B is defined as a d-algebra, for k-vector d-space A% ® B? with
the graded product induced as (a ® b) (¢ @ d) = (=1)*” ac®bd, where b € B~
and c€ A% (o,0=0,1).

Now we re—formulate for d—algebras the Chevalley theorem [45]:

Theorem 7.2. The Clifford d-algebra
ChFeunuFe. . ®vF,g+h +...+h,)
is naturally isomorphic to C(g) @ C (h1) ® ... @ C (h,) .

Proof. Let n: hF — C(g) and n(, : vy F — C (h(»)) be canonical
maps and map

m:hFeunF&..6v,F —Cg)@C(h)®..0C (h,)
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is defined as

m(x7y(1)7 7y(z)) =

n(r)®1©.01+10n (yy) ® .0 1+18 ... 1@ (yz),
r € hF,yq) € viyF, ..., Yz) € vi)F. We have

(@), 9)” = [(0@) + (0 ()" + o+ (0 (90))°] -1
= [g(@)+h(ya) + -+ h(yex)].

Taking into account the universality property of Clifford d-algebras we con-
clude that m; 4 ... + m, induces the homomorphism

(:C(hFouF&..ov,F,g+h +..+h,)—
C (hF,q)@C (11 F, h) ®...C (v..F, h).
We also can define a homomorphism

v: C(hF,g)®C (01 F, ha)) ©..R0C (v.F, h)) —
C (hf DrF D..0v,F, g+ h(l) + ...+ h(z))

by using formula v (x QY ®...® y(z)) =0 (z) 621) (y(l)) ...5(2) (y(z)) , where
homomorphysms ¢ and (521), e 5EZ) are, respectively, induced by imbeddings
of hF and v; F into hF ® i F & ... D v, F :

§ ¢ C(hF,9) > C(hWFonuF®..00F,g+ha+ ..+ ),
W C(nF hy) = C(hF@uF®.. @vF g+hy+...+h),

522) O (sz, h(z)) — C (hf@ nF&...ev.F, g+ h(l) + ...+ h(z)) .
Superpositions of homomorphisms ¢ and v lead to identities

v( = Id
(v = Id

C(hF,g)BC(v1F (1)) ®..BC (v F b)) (7.1)
C(hfvg)®c(vl-7:7h(1))®@C(’sz,h(z))
Really, d-algebra C' (hF & 01 F @ ... ® v.F, g+ hay + ... + he,)) is generated
by elements of type m(z,y(), ...y-)). Calculating

v¢ (m (,90), ¥)) =v(n(E) @10 .. @1+1n)y (yy) ©®..®1

o+ 1@ @, (Ye)) =6 (n(2) 6 () (y)) -0 () (v)))
=m(z,0,...,0) + m(0, yay, ..., O) —|— .+ m(0,0,...,yc))

=m (l‘,y(l): e y(z)) ’
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we prove the first identity in (7.1).
On the other hand, d-algebra

C (hF,g9)RC (uF, hq)) ®..0C (v.F, )
is generated by elements of type

we prove the second identity in (7.1).

Following from the above—mentioned properties of homomorphisms ¢ and
v we can assert that the natural isomorphism is explicitly constructed.O

In consequence of the presented in this section Theorems we conclude
that all operations with Clifford d-algebras can be reduced to calculations for
C (hF,g) and C (v(p)}" , h(p)) which are usual Clifford algebras of dimension
2™ and, respectively, 2" [83, 21].

Of special interest is the case when £ = R and F is isomorphic to vector
space RPT%9+0 provided with quadratic form

2 2 2 2 2 2
X — e X, T~ Y] T e Yy e Yy

In this case, the Clifford algebra, denoted as (C’p’q,C’“’b) , is generated by
(x) (@) () (v W) (v)

symbols ey, 57, ..., ey 0,61, €5, ..., €,1, satisfying properties
(e) = =1 (1<i<p),(e;)=—-1 (1<j<a),
(er)” = 1(p+1<k<p+q),
(ej>2 =1 (n+1 <s< a+b>, €i€; = —€;€, Z?éj

Explicit calculations of C? and C*® are possible by using isomorphisms
(83, 129]

CPmatn ~ CP9@ My (R)® ... 0 My (R)
= CP1 @ Man (R) = Man (CP1),

where M, (A) denotes the ring of quadratic matrices of order s with coeffi-
cients in ring A. Here we write the simplest isomorphisms C'Y ~ C, C%! ~
R ® R and C*° = H, where by H is denoted the body of quaternions.
Now, we emphasize that higher order Lagrange and Finsler spaces, de-
noted H?"-spaces, admit locally a structure of Clifford algebra on complex
vector spaces. Really, by using almost Hermitian structure .J, # and consid-
ering complex space C" with nondegenarate quadratic form " _, |2a|%, 20 €
C? induced locally by metric (1.43) (rewritten in complex coordinates z, =
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T, + iy,) we define Clifford algebra Cr = fl ®..® @i, where O'! =

C®rC =C & C or in consequence, T~ o ®r C ~ C"" @z C. Explicit
calculations lead to isomorphisms

T2=0%2 95 C~ My (R) @5 C ~ M, (6”) , C% ~ My (C)
and
T~ My (C) ® My (C),

which show that complex Clifford algebras, defined locally for H?"-spaces,
have periodicity 2 on p.

Considerations presented in the proof of theorem 2.2 show that map j :
F — C(F) is monomorphic, so we can identify space F with its image in
C(F.G), denoted as u — @, if u € CO(F,G) (ue CV(F,G)); then

u =T ( respectively, u = —u).

Definition 7.1. The set of elements u € C (G)", where C (G)" denotes the
multiplicative group of invertible elements of C' (.7-1 Q) satisfyinguFu~t € F,
is called the twisted Clifford d-group, denoted as " (F).

Let 7 : I'(F) — GL(F) be the homorphism given by u — pi, where
pu (W) = wwu~t. We can verify that ker p = R*is a subgroup in r (F).

The canonical map j : F — C(F) can be interpreted as the linear map
F — C(F )0 satisfying the universal property of Clifford d-algebras. This
leads to a homomorphism of algebras, C (F) — C (F)", considered by an
anti-involution of C'(F) and denoted as v — *u. More exactly, if u;...u,, € F,
then ¢, = u,...u; and 7 = tu = (—1)" uyp...u;.

Definition 7.2. The spinor norm of arbitrary u € C (F) is defined as
S(u)="u-ueC(F).

It is obvious that if u,«/,u” € I (F), then S(u,u’) = S (u) S (/) and
S (wu'u") =8 (u) S (u)S (u"). For u,u’ € FS(u) = —G (u) and S (u,u’) =
S(u)S ) =5 (uu).

Let us introduce the orthogonal group O (G) C GL (G) defined by metric
G on F and denote sets

SO(G)={uecO(G),det|u| =1}, Pin(G) ={ueTl (F),S (u)=1}

and Spin (G) = Pin (G) N C° (F). For F = R™™ we write Spin (ng). By
straightforward calculations (see similar considerations in Ref. [83]) we can
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verify the exactness of these sequences:

1 - Z/2— Pin(G)— O(G) — 1,
1 — Z/2— Spin(G) — SO (G) — 0,
1 — Z/2— Spin(ng) — SO (ng) — 1.

We conclude this subsection by emphasizing that the spinor norm was defined
with respect to a quadratic form induced by a metric in dv-bundle £<*~. This
approach differs from those presented in Refs. [19] and [124].

7.2 Clifford Ha—Bundles

We shall consider two variants of generalization of spinor constructions de-
fined for d-vector spaces to the case of distinguished vector bundle spaces
enabled with the structure of N-connection. The first is to use the exten-
sion to the category of vector bundles. The second is to define the Clifford
fibration associated with compatible linear d-connection and metric G on a
dv-bundle. We shall analyze both variants.

7.2.1 Clifford d—module structure in dv—bundles

Because functor F — C(F) is smooth we can extend it to the category of
vector bundles of type

€<z> — {7Td . HE<Z> @ %E<z> @ @ V'ZE<Z> N E<Z>}.

Recall that by F we denote the typical fiber of such bundles. For <%~ we

obtain a bundle of algebras, denoted as C'({<*7), such that C'(£*7), =
C' (F.) . Multiplication in every fibre defines a continuous map

C(£<Z>) X C(§<Z>) N C(§<Z>) .

If £<%~ is a distinguished vector bundle on number field k, the structure of
the C' (£<*7)-module, the d-module, the d-module, on {<*~ is given by the
continuous map C ({<*7) x g {7 — £<*~ with every fiber F, provided with
the structure of the C' (F,) —module, correlated with its k-module structure,
Because F C C (F), we have a fiber to fiber map F xp £<%7 — <7
inducing on every fiber the map F, Xg §(<u§> — §(<u§> (R-linear on the first
factor and k-linear on the second one ). Inversely, every such bilinear map
defines on £<*~ the structure of the C'(£<*7)-module by virtue of universal
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properties of Clifford d—algebras. Equivalently, the above-mentioned bilinear
map defines a morphism of v—bundles

m - £<z> N HOM (€<z>’ £<z>> [HOM (€<z>’ £<z>>

denotes the bundles of homomorphisms] when (m (u))> = G (u) on every
point.

Vector bundles £<%> provided with C' (£<*7)—structures are objects of the
category with morphisms being morphisms of dv-bundles, which induce on
every point v € £<*7 morphisms of C (F,) —modules. This is a Banach
category contained in the category of finite-dimensional d-vector spaces on
filed k.

Let us denote by H* (£<*>,GL,, (R)), where ng = n+m;+...+m,, the
s-dimensional cohomology group of the algebraic sheaf of germs of continuous
maps of dv-bundle £<*~ with group GL,,, (R) the group of automorphisms of
R™E (for the language of algebraic topology see, for example, Refs. [83] and
[74]). We shall also use the group SL,, (R)={A C GL,, (R),det A =1}.
Here we point out that cohomologies H*(M,Gr) characterize the class of a
principal bundle 7 : P — M on M with structural group Gr. Taking into
account that we deal with bundles distinguished by an N-connection we intro-
duce into consideration cohomologies H® (€<%, GL,, (R)) as distinguished
classes (d-classes) of bundles £<*~ provided with a global N-connection struc-
ture.

For a real vector bundle £<* on compact base £<*~ we can define the
orientation on £<*~ as an element oy € H' (£<*>,GL,, (R)) whose image
on map

H' (<> SL,, (R)) — H (£<*>,GL,, (R))
is the d-class of bundle £<*~.

Definition 7.3. The spinor structure on £~ is defined as an element
Bq € HY (£<%>, Spin (ng)) whose image in the composition

ot (5<z>7 Spin (nE)) gt (5<z>7 SO (nE)) — H! (5<z>7 GLnE (R))
is the d-class of £<%>.

The above definition of spinor structures can be re—formulated in terms
of principal bundles. Let £<*> be a real vector bundle of rank n+m on a
compact base £<*~. If there is a principal bundle P; with structural group
SO(ng) or Spin(ng)], this bundle £<*~ can be provided with orientation (or
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spinor) structure. The bundle P; is associated with element
a4 € H (€5, 80(n.)) [or By € H (€5, Spin ().

We remark that a real bundle is oriented if and only if its first Stiefel-
Whitney d-class vanishes,

wy (&) € H (€,2/2) =0,

where H'(£<> Z/2) is the first group of Chech cohomology with coef-
ficients in Z/2, Considering the second Stiefel-Whitney class ws ((*7) €
H?(£<#>,Z/2) it is well known that vector bundle {<*> admits the spinor
structure if and only if wy (§<*7) = 0. Finally, we emphasize that tak-
ing into account that base space £<* is also a v-bundle, p : E<*> —

M, we have to make explicit calculations in order to express cohomologies
H* (E<*2 ,GLyym) and H® (%7, 50 (n + m)) through cohomologies

H* (M,GLy), H* (M, SO (my)),...H* (M, SO (m.)),

which depends on global topological structures of spaces M and £<*~ . For
general bundle and base spaces this requires a cumbersome cohomological
calculus.

7.2.2 Clifford fibration

Another way of defining the spinor structure is to use Clifford fibrations.
Consider the principal bundle with the structural group Gr being a sub-
group of orthogonal group O (G), where G is a quadratic nondegenerate
form ) defined on the base (also being a bundle space) space £<%~. The fibra-
tion associated to principal fibration P (£<%7, Gr) with a typical fiber having
Clifford algebra C' (G) is, by definition, the Clifford fibration PC' (£<*>,Gr).
We can always define a metric on the Clifford fibration if every fiber is iso-
metric to PC' (£<%7, G) (this result is proved for arbitrary quadratic forms G
on pseudo—Riemannian bases [154]). If, additionally, Gr C SO (G) a global
section can be defined on PC (G).

Let P (<>, Gr) be the set of principal bundles with differentiable base
E<#> and structural group Gr. If g : Gr — Gr’ is an homomorphism of Lie
groups and P (£<*>,Gr) C P (£<*7, Gr) (for simplicity in this subsection we
shall denote mentioned bundles and sets of bundles as P, P" and respectively,
P,P'"), we can always construct a principal bundle with the property that
there is an homomorphism f : P’ — P of principal bundles which can be
projected to the identity map of £~ and corresponds to isomorphism g :
Gr — Gr'. If the inverse statement also holds, the bundle P’ is called as the
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extension of P associated to g and f is called the extension homomorphism
denoted as g.
Now we can define distinguished spinor structures on bundle spaces .

Definition 7.4. Let P € P (£<*7,0(G)) be a principal bundle. A distin-
guished spinor structure of P, equivalently a ds-structure of £E<*~ is an ez-
tension P of P associated to homomorphism h : PinG — O (G) where O (G)
is the group of orthogonal rotations, generated by metric G, in bundle E<*~.

So, if P is a spinor structure of the space £<*>, then P € P (E<*7, PinG).

The definition of spinor structures on varieties was given in Ref.[50]. In
Refs. [51] and [51] it is proved that a necessary and sufficient condition for
a space time to be orientable is to admit a global field of orthonormalized
frames. We mention that spinor structures can be also defined on varieties
modeled on Banach spaces [1]. As we have shown similar constructions are
possible for the cases when space time has the structure of a v-bundle with
an N-connection.

Definition 7.5. A special distinguished spinor structure, ds-structure, of
principal bundle P = P (£<*7,50 (Q@)) is a principal bundle

P = ﬁ(5<z>,5pmG) for which a homomorphism of principal bundles p :
P — P, projected on the identity map of £E<*~ and corresponding to repre-
sentation

R : SpinG — SO (G),
15 defined.

In the case when the base space variety is oriented, there is a natural
bijection between tangent spinor structures with a common base. For special
ds—structures we can define, as for any spinor structure, the concepts of

spin tensors, spinor connections, and spinor covariant derivations (see Refs.
[162, 189, 165]).

7.3 Almost Complex Spinor Structures

Almost complex structures are an important characteristic of H?"-spaces and
of osculator bundles Osc*=2*1 (M), where k; = 1,2, ... . For simplicity in this
subsection we restrict our analysis to the case of H?"-spaces. We can rewrite
the almost Hermitian metric [108, 109], H?"-metric in complex form [163]:

G = Hy (2,8)d2" ® d2, (7.2)



162 CHAPTER 7. CLIFFORD HA-STRUCTURES

where

r=x(2,%Z)

24 =" + iyaa ? =" — iyaa Hab (Z,E) = Jab (.T, y) ‘y:y(z,E)’

and define almost complex spinor structures. For given metric (7.2) on
H?"-space there is always a principal bundle PY with unitary structural
group U(n) which allows us to transform H?"-space into v-bundle £V =
PY x um) R*". This statement will be proved after we introduce complex
spinor structures on oriented real vector bundles [83].

Let us consider momentarily & = C and introduce into consideration
[instead of the group Spin(n)] the group Spin® xz,, U (1) being the factor
group of the product Spin(n) x U (1) with the respect to equivalence

(y,2) ~ (—y,—a), y € Spin(m).

This way we define the short exact sequence
1 —U(1) — Spin®(n) % S0 (n) — 1, (7.3)

where p°(y,a) = p°(y). If X is oriented , real, and rank n, y-bundle = :
E, — M", with base M", the complex spinor structure, spin structure, on
A is given by the principal bundle P with structural group Spin®(m) and
isomorphism A & P X gpine(n) R™ (see (7.3)). For such bundles the categorial
equivalence can be defined as

€ EF (M™) — EX(M™), (7.4)

where € (E°) = P Agpinen) E€ is the category of trivial complex bundles
on M™, EX (M™) is the category of complex v-bundles on M™ with action of
Clifford bundle C (A), PAgpinen) and E¢ is the factor space of the bundle
product P x; E° with respect to the equivalence (p,e) ~ (pg—',ge),p €
P e € E°, where g € Spin®(n) acts on E by via the imbedding Spin (n) C
C%" and the natural action U (1) C C on complex v-bundle £¢, E¢ = tot€,
for bundle 7¢: E¢ — M™.

Now we return to the bundle £ = £<'>. A real v-bundle (not being a
spinor bundle) admits a complex spinor structure if and only if there exist a
homomorphism o : U (n) — Spin®(2n) making the diagram 3 commutative.
The explicit construction of o for arbitrary 4-bundle is given in Refs. [83]
and [21]. For H?"-spaces it is obvious that a diagram similar to (7.4) can be
defined for the tangent bundle T"M™, which directly points to the possibility
of defining the ¢Spin-structure on H?"-spaces.

Let A be a complex, rankn, spinor bundle with

7 Spin® (n) Xz, U (1) — U (1) (7.5)
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the homomorphism defined by formula 7 (A, d) = §%. For P, being the prin-
cipal bundle with fiber Spin®(n) we introduce the complex linear bundle
L (X°) = Ps X gpine(n) C defined as the factor space of Pg x C on equivalence
relation

(pt,2) ~ (p,1(8)" 2),

where t € Spin®(n). This linear bundle is associated to complex spinor
structure on \°.

If A and \¢ are complex spinor bundles, the Whitney sum \¢ @ \¢ is
naturally provided with the structure of the complex spinor bundle. This
follows from the holomorphism

W' Spin® (n) x Spin® (n') — Spin® (n+n'), (7.6)

given by formula [(3, 2), (#,2")] — [w (8, 5'), 22| , where w is the homomor-
phism making the diagram 4 commutative. Here, z, 2" € U (1) . It is obvious
that L (A\° @ A“) is isomorphic to L (A°) ® L (A).

We conclude this subsection by formulating our main result on complex
spinor structures for H?"-spaces:

Theorem 7.3. Let X¢ be a complex spinor bundle of rank n and H*"-space
considered as a real vector bundle @\ provided with almost complex struc-
5 _O(Sj ) Then, the diagram 5
J

is commutative up to isomorphisms € and € defined as in (7.4), H is functor
E¢ — E°®L(\) and £y (M™) is defined by functor E¢ (M™) — E°" (M™)
given as correspondence E¢ — A (C")QE° (which is a categorial equivalence),
A (C™) is the exterior algebra on C™. W is the real bundle A ® A\ provided
with complex structure.

ture J* g; multiplication on i is given by (

Proof: We use composition of homomorphisms
p: Spin® (2n) = SO (n) = U (n) = Spin® (2n) xz,2 U (1),
commutative diagram 6 and introduce composition of homomorphisms
w o Spin€ (n) 2 Spin® (n) x Spin(n) <, Spin® (n),

where A is the diagonal homomorphism and w® is defined as in (7.6). Using
homomorphisms (7.5) and ((7.6)) we obtain formula u (t) = p () r (t) .

Now consider bundle P X gpipen) Spin®(2n) as the principal Spin®(2n)-
bundle, associated to M & M being the factor space of the product P X
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Spin© (2n) on the equivalence relation (p,t,h) ~ (p,,u (t)_1 h) . In this case
the categorial equivalence (7.4) can be rewritten as

€ (E°) = P Xgpine(n) Spin’ (2n) Agpine(2n) E°
and seen as factor space of P x Spin®(2n) x,; E€ on equivalence relation

(pt7 h? 6) ~ (p7/‘L (t)_l h? 6) and (p) hla h27€) ~ (p7 h17 h2_1€)

(projections of elements p and e coincides on base M). Every element of
€® (E°) can be represented as PAgpine) E°, i.e., as a factor space PAE® on
equivalence relation (pt,e) ~ (p, u°(t),e), when t € Spin®(n). The complex
line bundle L (A\°) can be interpreted as the factor space of
P X gpine(n) C on equivalence relation (pt,d) ~ (p, r (t)_1 5) )

Putting (p,e) @ (p,0) (p, 0e) we introduce morphism

€ (E) x L(X) — € (X9
with properties

(pt.e) @ (pt,6) — (pt,de) = (p,u ()" de),
(e e) @ (pl(t) " e) — (pps(t)r(t) de)

pointing to the fact that we have defined the isomorphism correctly and that
it is an isomorphism on every fiber. O



Chapter 8

Spinors and Ha—Spaces

8.1 D-Spinor Techniques

The purpose of this section is to show how a corresponding abstract spinor
technique entailing notational and calculations advantages can be developed
for arbitrary splits of dimensions of a d-vector space F = hF v FD...dv, F,
where dim hF = n and dim v, F = m,,. For convenience we shall also present
some necessary coordinate expressions.

The problem of a rigorous definition of spinors on la-spaces (la-spinors,
d-spinors) was posed and solved [163, 162, 165] in the framework of the
formalism of Clifford and spinor structures on v-bundles provided with com-
patible nonlinear and distinguished connections and metric. We introduced
d-spinors as corresponding objects of the Clifford d-algebra C (F,G), de-
fined for a d-vector space F in a standard manner (see, for instance, [83])
and proved that operations with C (F,G) can be reduced to calculations
for C (hF,g),C (v1F,hy),... and C (v, F, h,), which are usual Clifford alge-
bras of respective dimensions 2", 2™ ... and 2™= (if it is necessary we can
use quadratic forms g and h, correspondingly induced on AF and v,F by
a metric G (1.43)). Considering the orthogonal subgroup O(G) C GL(G)
defined by a metric G we can define the d-spinor norm and parametrize
d-spinors by ordered pairs of elements of Clifford algebras C (hF,g) and
C (v, F.,hy),p = 1,2,...2. We emphasize that the splitting of a Clifford d-
algebra associated to a dv-bundle £<*~ is a straightforward consequence of
the global decomposition defining a N-connection structure in £<*~.

In this subsection we shall omit detailed proofs which in most cases are
mechanical but rather tedious. We can apply the methods developed in
[127, 128, 129, 91] in a straightforward manner on h- and v-subbundles in
order to verify the correctness of affirmations.

165
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8.1.1 Clifford d—algebra, d—spinors and d—twistors

In order to relate the succeeding constructions with Clifford d-algebras [163,
162] we consider a la-frame decomposition of the metric (1.43):
Geas<ps (u) = ligi (u) lig; (u) G<a><ﬁ>=

where the frame d-vectors and constant metric matrices are distinguished as

P 0 .. 0
lig; (u) _ 0 lgi (u) 0 ’
0 0 . 1w
g5 O 0
0 h s 0
Ceares> = | 00 |

0 0 0 hys

g;; and h; 5 ..., hy 3 are diagonal matrices with g5 = haya, = ... = by 3, =

+1.

To generate Clifford d-algebras we start with matrix equations
O<a>0 s t 0 5s0<a> = _G<a><,§>l’ (8.1)

where I is the identity matrix, matrices o4~ (0-objects) act on a d-vector
space F = hF @ F & ... v, F and theirs components are distinguished as

() 0 .. 0
: 0 (0a) .. 0
O<a> = (0<a>)§= ( 1)1—’1 , (8.2)
0 0 (O’az)fz

indices f3,7,... refer to spin spaces of type S = Sy © Sw,) © ... B S,
and underlined Latin indices j.k, ... and bi,¢qy .., b,, c,... refer respectively
to h-spin space Sy and v,-Spin space Sw,): (p = 1,2,..., z) which are cor-
respondingly associated to a h- and v,-decomposition of a dv-bundle £<*~.
The irreducible algebra of matrices 05~ of minimal dimension N x N, where
N = N(n) +N(m1) +... —}-N(mz), dim S(h):N(n) and dim S(UP)ZN(mp), has these
dimensions

2=1/2 0 =2k + 1
N { "2 = 2k; ’
N 20mp=D/2 " = 2k, + 1
(mp) 2mp7 m, = Qkp ’
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where £ =1,2,..,k,=1,2,....
The Clifford d-algebra is generated by sums on n + 1 elements of form

A+ Bio; + Clog + Do 4. (8.3)

and sums of m, + 1 elements of form

AgipyI + B0, + Cg, 5 4 DWog, o

apbp

with antisymmetric coefficients
CE — Cm}’ Capzp — C[apzp}’ Dm — D[ZNJTC}’ Dapgpep — D[apzpep]’
and matrices

oz U[z =

7 O'[ap(fgp}, Um = O'[;UEUH,

709

Really, we have 2"*! coefficients <A1,C€3, DEE,...> and 2™ ! coefficients

(Ag(p), C%%, Db ) of the Clifford algebra on F.

For simplicity, we shall present the necessary geometric constructions only
for h-spin spaces S, of dimension N,). Considerations for a v-spin space
S(v) are similar but with proper characteristics for a dimension Ny,).

In order to define the scalar (spinor) product on Sy we introduce into
consideration this finite sum (because of a finite number of elements o5 7):

ij ; 2, i 2 i Gy
R R (T Ca R GOV G
23 i 4
5 (o)A + (8.4)
which can be factorized as
BB = Ny Bepn Ped for n = 2k (8.5)
and
WEL = 2Npepmed, O EL =0 for n = 3(mod4), (8.6)
WEL = 0, OB = 2N for n = 1(modd).

Antisymmetry of o5z and the construction of the objects (8.3)-(8.6)
define the properties of e-objects (i)ek_m and €, which have an eight-fold
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periodicity on n (see details in [129] and, with respect to locally anisotropic
spaces, [163]).

For even values of n it is possible the decomposition of every h-spin space
S(ny into irreducible h-spin spaces S,y and S’(h) (one considers splitting of
h-indices, for instance, = L & L', m = M & M’, ...; for v,-indices we shall
write a, = A, ® A, b, = B, ® By, ...) and defines new e-objects

= 3 (Dl 40 dm) ang @ = 3 (kO ) (8)

We shall omit similar formulas for e-objects with lower indices.

In general, the spinor e-objects should be defined for every shell of an-
isotropy according the formulas (5.9) where instead of dimension n we shall
consider the dimensions m,,, 1 < p < z, of shells.

We define a d-spinor space S, ;) as a direct sum of a horizontal and a
vertical spinor spaces of type (5.4), for instance,

Stsisi) = So ® S, ® S ®S),, Shsws1) =S @S, BST, ...,

o

Ssktasii+5) = Sa B S) B 3\(;),

The scalar product on a S, ;) is induced by (corresponding to fixed values
of n and m; ) e-objects (5.9) considered for h- and vi-components. We
present also an example for Sg, p, 1. 4m.)

[SA® S\ & 3‘(&))A D ... B S|pa @ ST(p)A D .. DS(z)0 @ ST(Z)O‘

Having introduced d-spinors for dimensions (n,m; + ... +m,) we can
write out the generalization for ha—spaces of twistor equations [128] by using
the distinguished o-objects (8.2):

Y (5wﬁ 1 Y &,dé

(ot<a>)ig Su<P>)  nA4mi+ .. +m, Carepn (75 SuE’ (88)

where ’ B ’ denotes that we do not consider symmetrization on this index. The
general solution of (8.8) on the d-vector space F looks like as

W = Q8 4+ <> (g2 )00, (8.9)

where 2 and TI€ are constant d-spinors. For fixed values of dimensions n
and m = my+...m, we mast analyze the reduced and irreducible components
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of h- and v,-parts of equations (8.8) and their solutions (8.9) in order to find
the symmetry properties of a d-twistor Z* defined as a pair of d-spinors

Z° = (w*, 7T//@),

where Ty = w((?) € J§(n,ml7,.,7mz) is a constant dual d-spinor. The problem of

definition of spinors and twistors on ha-spaces was firstly considered in [189)
(see also [156]) in connection with the possibility to extend the equations (8.9)
and theirs solutions (8.10), by using nearly autoparallel maps, on curved,
locally isotropic or anisotropic, spaces. We note that the definition of twistors
have been extended to higher order anisotropic spaces with trivial N— and
d—connections.

8.1.2 Mutual transforms of d-tensors and d-spinors

The spinor algebra for spaces of higher dimensions can not be considered
as a real alternative to the tensor algebra as for locally isotropic spaces of
dimensions n = 3,4 [127, 128, 129]. The same holds true for ha—spaces and
we emphasize that it is not quite convenient to perform a spinor calculus for
dimensions n, m >> 4. Nevertheless, the concept of spinors is important for
every type of spaces, we can deeply understand the fundamental properties
of geometical objects on ha—spaces, and we shall consider in this subsection
some questions concerning transforms of d-tensor objects into d-spinor ones.

8.1.3 Transformation of d-tensors into d-spinors

In order to pass from d-tensors to d-spinors we must use o-objects (8.2)
written in reduced or irreduced form  (in dependence of fixed values of
dimensions n and m ):

(a<a>)§, Caglad (J<a>)&, o (0cas), (8.10)

AN/ 0
(‘7€)1E7"'7(‘7<6>> ,...,(O'Z)]]/,....
It is obvious that contracting with corresponding o-objects (8.10) we can
introduce instead of d-tensors indices the d-spinor ones, for instance,

<a>)

Wl = (g<a>)f6_7w<a>, wap = (0 AB'W<G>; ooy gzl = (Uk)%l'@’

For d-tensors containing groups of antisymmetric indices there is a more
simple procedure of theirs transforming into d-spinors because the objects

(Uag--.’y>6la (O'ab..E)@a sy (O'ij.“k)ff’v (811>
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can be used for sets of such indices into pairs of d-spinor indices. Let us enu-
merate some properties of g-objects of type (8.11) (for simplicity we consider
only h-components having q indices ?, 3, E, ... taking values from 1 to n; the
properties of v,-components can be written in a similar manner with respect

~

to indices @, by, ¢,... taking values from 1 to m):

(0 ;

M { symmetric on k, [ for n —2q = 1,7 (mod 8);
1.

- antisymmetric on k, [ for n — 2q = 3,5 (mod 8)

} (8.12)

for odd values of n, and an object

: symmetric on I, J (I’ J") for n — 2g = 0 (mod 8); (8.13)
antisymmetric on I, J (I', J') for n — 2g = 4 (mod 8) '

or

n + 2q = 6(mod8);

(o A‘)IJ/ = +(o; A)J/I{ n + 2q = 2(mods),

i...] 1...J

(8.14)

with vanishing of the rest of reduced components of the d-tensor (a;“.;)ﬁ with
prime/ unprime sets of indices.

8.1.4 Fundamental d—spinors

We can transform every d-spinor £€2 = (&4 €%, ..., £%) into a corresponding d-
tensor. For simplicity, we consider this construction only for a h-component
€% on a h-space being of dimension n. The values

2¢5(0" )5 (n is odd) (8.15)

or

el (a9, <0r e (ot )[/(]/) (n is even) (8.16)
with a different number of indices ?3, taken together, defines the h-spinor
€% to an accuracy to the sign. We emphasize that it is necessary to choose
only those h-components of d-tensors (8.15) (or (8.16)) which are symmetric
on pairs of indices a3 (or I.J (or I'J’)) and the number ¢ of indices i...j
satisfies the condition (as a respective consequence of the properties (8.12)
and/ or (8.13), (8.14))

n—2q¢=0,1,7 (mod 8). (8.17)
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Of special interest is the case when

1
¢=3 (n+1) (nisodd) (8.18)
or
1 :
q=3n (n is even). (8.19)

If all expressions (8.15) and/or (8.16) are zero for all values of ¢ with the
exception of one or two ones defined by the conditions (8.17), (8.18) (or
(8.19)), the value & (or & (€!")) is called a fundamental h-spinor. Defining
in a similar manner the fundamental v-spinors we can introduce fundamental
d-spinors as pairs of fundamental h- and v-spinors. Here we remark that a
h(v,)-spinor &' (£€%) (we can also consider reduced components) is always a
fundamental one for n(m) < 7, which is a consequence of (8.19)).

8.2 Differential Geometry of Ha—Spinors

This subsection is devoted to the differential geometry of d—spinors in higher
order anisotropic spaces. We shall use denotations of type

,U<oz> — (vi,v<“>) c a<a> — (O’i,0<a>)
and
(o = (¢, () € 0™ = (9",0™)

for, respectively, elements of modules of d-vector and irreduced d-spinor fields
(see details in [163]). D-tensors and d-spinor tensors (irreduced or reduced)
will be interpreted as elements of corresponding c—modules, for instance,

ol I, IpI,

<a> <a> /!, 1 % 1 P
(L5 €07 5[0, 9 5, ~S%8 . & kN €0 RNy e

We can establish a correspondence between the higher order anisotropic
adapted to the N-connection metric g,s (1.43) and d-spinor metric €,5 (e
objects (5.9) for both h- and v,-subspaces of £<*>) of a ha-space £<*> by
using the relation

1
« = - X
Jce><B>= TN T N(ma) + . + N(my)

(8.20)

((U(<a> (u))gg(‘7<ﬁ>) (u))é_)egzeﬁéa
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where

(0<ax(u))2 ligi (u)(0<as )™=, (8.21)

which is a consequence of formulas (8.1)—(8.7). In brief we can write (8.20)
as

J<a><p> = €a,0,68, 8, (8.22)

if the o-objects are considered as a fixed structure, whereas e-objects are
treated as caring the metric "dynamics ” , on higher order anisotropic space.
This variant is used, for instance, in the so-called 2-spinor geometry [128, 129]
and should be preferred if we have to make explicit the algebraic symmetry
properties of d-spinor objects by using metric decomposition (8.22). An
alternative way is to consider as fixed the algebraic structure of e-objects
and to use variable components of o-objects of type (8.21) for developing a
variational d-spinor approach to gravitational and matter field interactions on
ha-spaces ( the spinor Ashtekar variables [20] are introduced in this manner).
We note that a d-spinor metric

€ij 0 0
€, = O 691121 O
0 0 a,b

on the d-spinor space S = (S(n), S(11), ---» S(v,)) can have symmetric or anti-
symmetric h (v,) -components €;; (€45, ) ; see e-objects (5.9). For simplicity,
in order to avoid cumbersome calculations connected with eight-fold period-
icity on dimensions n and m, of a ha-space £<*~, we shall develop a general
d-spinor formalism only by using irreduced spinor spaces Sg,) and S,

8.2.1 D-covariant derivation on ha—spaces

Let £<%~ be a ha-space. We define the action on a d-spinor of a d-covariant
operator

V<a> (Vza <a>)
(U<a>)a1 Ve = ((O-Z‘)2112V1'112, (0<a>)9192vg1g2)
= ((0> Vitiz (O'al)_IQQV(l)@mg, ey
(

aap)alazv )a18z ;..o (Uaz )glgzv(z)ﬁm)

(in brief, we shall write

V<a> = Varae = (Vili% V(l)ﬁlﬁ% ) V(p 9142 5 .eny V(z ))
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as maps
B B
Vaa, + 077 02> = Oqjay
B_ B8 B _ B B _ B B _ B
i = %ip I (War — TWayay 0 P)ay — Tp)ajay 1 P(z)a: — Py

satisfying conditions

V<o (fﬁ + Uﬁ) = V<a>fﬁ + V<a>77é:

and

V<a> (ffﬁ) = f V<a> fﬁ + fﬁ Ve<as |

for every €2, n2 € o2 and f being a scalar field on £<%>. It is also required
that one holds the Leibnitz rule

(V<a>Cg)77ﬁ = V<a> (anﬁ) — (g V<a> n?

and that \y-,~ is a real operator, i.e. it commuters with the operation of
complex conjugation:

V<a>Vapy... = V<a> (¢g&)

Let now analyze the question on uniqueness of action on d-spinors of
an operator /..~ satisfying necessary conditions . Denoting by Vggo and
V<a> two such d-covariant operators we consider the map

(v(<134> o v<a>) : Ué - Ugooge- (823)

Because the action on a scalar f of both operators Vg) and v/, must be
identical, i.e.

V(<131>f = V<a>f,
the action (8.23) on f = ws” must be written as
(V(<12¢> - V<a>)(°‘)§§g) = 0.

. ol ¥
In consequence we conclude that there is an element @QIQQ 5 € 40,8 for
which

V(Q?QQ 51 - v9192 51 + 62122§1€ﬁ’

b
v(211)22wé = VaaWs — @g1g2g_wl . (824)
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The action of the operator (8.23) on a d-vector v<#> = v%1% can be written
by using formula (8.24) for both indices 3, and 3, :

1 8 Jé;
(V(<2y> - V<o¢>)véng = @<a*>111)ﬁ2 + @<a;211)g11

B B B B
= (Ooa2h 0y, 7+ O by, e

<p>
B <>

= Q <a><y> s

where

B8, B

<B> g B B B
<a><y> T Q@ a0 VY, @<a>111512 ‘4 @<a>211512 E (8‘25)

The d-commutator $/[<q> Y/ <> defines the d-torsion. So, applying operators
Vfi)a>v(<1;>] and Vj<a>V<ps) on f = wgﬁﬁ we can write

()<y> <v> _ AA<y> <v>
T <a><B> T<a><ﬂ> =0 <B><a> Q <a><B>

with Q<)~ from (8.25).

<a><f>
The action of operator V(<12¥> on d-spinor tensors of type Xglgggg...ﬁlﬁ?“
must be constructed by using formula (8.24) for every upper index 1ﬁ o

and formula (8.25) for every lower index a;ayay... .

8.2.2 Infeld—van der Waerden coefficients
Let

A d-spinor kK¢ € o ¢ has components £* = £, ¢. Taking into account that

8
0q “05 ~Vas = Vap:

we write out the components 7,5 £ as

0y @0, 20, L Vapht = 6, TOr L Vap K+ KE O
— Vgé/@ljtfis”ylggg, (8.26)
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where the coordinate components of the d—spinor connection ’ylgﬂg are defined
as B

Vlgﬁg = 0r . Vo 5§ . (8.27)

We call the Infeld - van der Waerden d-symbols a set of g-objects (o, )22
parametrized with respect to a coordinate d-spinor basis. Defining

V<a> = (O'<a>)gg VQéa
introducing denotations

/yl<a>1 = Vlgﬁz (O-<a>)gg

and using properties (8.26) we can write relations

fe! ; B8

lia; 5g - V<a> Kﬁ = v<o¢>’fﬁ + ’fé YV <a>é (828)
«a B )

1263 5@ T V<a> Mg = V<a> U= H8Y cosp-

for d-covariant derivations v/, 2 and V4 13-
We can consider expressions similar to (8.28) for values having both types
of d-spinor and d-tensor indices, for instance,

<a> j<v> [ <>
1262 1252 05 = V<a> b5 =

<y> <v>_ € <T> <y>
V<ax0s — 0, <ass T Us I' " Zasers

(we can prove this by a straightforward calculation).

Now we shall consider some possible relations between components of d-
connections v_ .5 and I' %o ... and derivations of (0.~)* . We can
write B

F<<Oéﬁ>><~/> = ligi V<> lzg;
= 1202 Vs (0255 )FIZ02 Van> ((0<p>)F0.50,%)
= 12020705 Vs (0<p> )™
HZ02(0<p5 )T (0,7 Vans 05+ 0,5 Vs 6,7)
= leiTCD Vers (0<ps)F

+lg<;>5£ﬁ512(0<,8>)g(5f Vs 05+ 0.5V 0,5),

where [£02 = (0,,)<*” , from which one follows
<p>p<a>
(U<a>)ﬁz(0gﬁ) r <aw><ﬁ> =

(0ap) ™" Vrs (0cax)™ + 5gz7ﬁ<v>g + 5&H’Yz<w>g'
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Connecting the last expression on  and v and using an orthonormalized

B

d-spinor basis when =

5 =10 (a consequence from (8.27)) we have

M 1 B
- = I'— 8.29
Y <y>a N(n) +N(m1) T+ —i—N(mz)( <y> aB ( )
—(Ugé)<ﬁ> V<y> (‘7<ﬁ>)—ﬂ)a
where
B a
11L<~y> af = (U<a>)ﬂ(0g§)ﬁr<<y>><,@>‘ (8.30)

We also note here that, for instance, for the canonical and Berwald connec-
tions and Christoffel d-symbols we can express d-spinor connection (8.30)
through corresponding locally adapted derivations of components of met-
ric and N-connection by introducing corresponding coefficients instead of
r<e” in (8.30) and than in (8.29).

<y>< B>

8.2.3 D-spinors of ha—space curvature and torsion

The d-tensor indices of the commutator A.,~.g> can be transformed into
d-spinor ones:

Oas = (057)a5005 = (Oy, Ow) (8.31)

<

with h- and v,-components,

Oy = (U<a><ﬁ>)sz<a><ﬁ> and O, = (0<a><ﬁ>)@A<a><ﬁ>’

being symmetric or antisymmetric in dependence of corresponding values of
dimensions n and m, (see eight-fold parametizations (5.9) and (5.10)). Con-
sidering the actions of operator (8.31) on d-spinors 72 and ji, we introduce

the d-spinor curvature X lgﬁ as to satisfy equations

Oap ™ = X; lggﬂ'é and Oug p1y = X, égg/ig- (8.32)

The gravitational d-spinor W,g.s is defined by a corresponding symmetriza-
tion of d-spinor indices:

Wapvs = X(alphe)- (8.33)
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We note that d-spinor tensors X la g and Wugs are transformed into similar
2-spinor objects on locally isotropic spaces [128, 129] if we consider vanishing
of the N-connection structure and a limit to a locally isotropic space.

Putting 8, * instead of piy in (8.32) and using (8.33) we can express
respectively the curvature and gravitational d-spinors as

Xlé—o‘ﬁ = 551Dgﬁ61 T and \Ilchag = 551D(g§61) -

The d-spinor torsion 77122 op 18 defined similarly as for d-tensors by using
the d-spinor commutator (8.31) and equations

Dg@f — T1112 gﬁ vl - f

1-2

5,0

The d-spinor components R, = B of the curvature d-tensor R, J of

s
can be computed by using relations (8.30), and (8.31) and (8.33) as to satlsfy

the equations

(Oag — TM 157, 5 VD% = R é1é2ggvl112,

aff Y1y

here d-vector VX422 is considered as a product of d-spinors, i.e. Vil =
vhipT2. We find

92:9; _ T, T F) 5
By, s T <X T T oy Y Tlrﬁl) 0, (8.34)
T1T 6
+ (X’y O‘ﬁ T af 7 7'11212) 511 B

It is convenient to use this d-spinor expression for the curvature d-tensor

élég _ é1
RLZQ ng2ﬁ1é2 - <X11 9192é1ﬁ2 +

T1To 52

9
a8, 8, v Ilzﬁl) 512

9y T1To 1 g
+ <X12 ngzélég + T g1g2ﬁ1ﬁ2 /y ? I1I212> 611 !

in order to get the d—spinor components of the Ricci d-tensor

_ 0105 _ 9y
R1112Q1Q2 - 1112 glﬁQéléQ - Xll QIQQQIZQ —I'_ (835)
T1T2 0 Oy T1T2 0.
T giatin, V' mmy, T X, drantin, TT aja0m,8, V7 1iman,

and this d-spinor decomposition of the scalar curvature:

s o vl o T1T20  Qy 6
qR - R 2 ajag T X e §1QQ + T Qgél ")/ ! T1To04 (836>
as0,04 T1Ty Qa0 S
+X Qodoay +T R ’ T1ToQy"
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Putting (8.35) and (8.36) into (1.78) and, correspondingly, (9.14) we find
the d-spinor components of the Einstein and ®.,~ > d-tensors:

ﬁ<’y><a> = ?1112Q1Q2 = le égllggé112 + 717 10,5817, ’Yél T1T27,
+X12 ég21m§112 + 1 097,85 VQQ TiTov,
5611g1812g2 [X&Hlﬁlgg u s, + T1725, QQgng ,yﬁl — +
Xﬁ2ﬁ221 8, Tlllz 7%2é1 5 o2 IIIQQQ] (837)
and
Ponca> =Py 5 a0, = ! €y a,Ev.a [Xglﬁl B, 4
T XS 2(n +m+ ...+ mz) AT P T By 1B,
TIlI2§1 ﬁgﬂﬁlz 7&1 - Xﬁzﬁzkl 8,0 T1T2 ﬁﬁl2§1 5 o) Ilzgﬁg] .
1
§[X11 éﬁllgzélzg + T @10568,7, 7§1 T1T2%, +
X, %;1%% FTRE e ] (8.38)

The components of the conformal Weyl d-spinor can be computed by
putting d-spinor values of the curvature (8.34) and Ricci (8.35) d-tensors
into corresponding expression for the d-tensor (1.77). We omit this calculus
in this work.



Chapter 9

Ha-Spinors and Field
Interactions

The problem of formulation gravitational and gauge field equations on dif-
ferent types of locally anisotropic spaces is considered, for instance, in [109,
27, 19] and [186]. In this Chapter we shall introduce the basic field equations
for gravitational and matter field la-interactions in a generalized form for
generic higher order anisotropic spaces.

9.1 Scalar field ha—interactions

Let ¢ (u) = (1 (1), 92 (u) ..., ok (1)) be a complex k-component scalar field
of mass i on ha-space £<#~. The d-covariant generalization of the conformally
invariant (in the massless case) scalar field equation [128, 129] can be defined
by using the d’Alambert locally anisotropic operator [4, 168] O = D<*> D_,-.,
where D_,~ is a d-covariant derivation on £<*~ and constructed, for sim-
plicity, by using Christoffel d-symbols (all formulas for field equations and
conservation values can be deformed by using corresponding deformations d—
tensors P=57___ from the Cristoffel d-symbols, or the canonical d-connection

<B><y>
to a general d-connection into consideration):

nE—2

4(np — 1)<E Tide ) =0 o

O+

where ngp = n+ my + ... + m,.We must change d-covariant derivation D_,-~
into Do~ = Doy~ +ieA-,~ and take into account the d-vector current

T () = i((7 (1) Degsip (1) — Deos (u))g (w))

179
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if interactions between locally anisotropic electromagnetic field ( d-vector
potential A~ ), where e is the electromagnetic constant, and charged scalar
field ¢ are considered. The equations (9.1) are (locally adapted to the N-
connection structure) FEuler equations for the Lagrangian

LY (u) = (9.2)

VI |00 ) e (0 = (1 + 7= ) Pl o ()]
(np —1)
where |g| = detgeas<p>-
The locally adapted variations of the action with Lagrangian (9.2) on
variables ¢ (u) and @ (u) leads to the locally anisotropic generalization of the
energy-momentum tensor,

B (1) = Scasn (u)dopmip (u) + (9.3)
1
6<ﬁ>¢ (U) 5<a>90 (U) - —/mg<a><,8>£(0) (U) )

and a similar variation on the components of a d-metric (1.43) leads to a
symmetric metric energy-momentum d-tensor,

(0) _ 1(0,can)

Eooseps (u) = E(<a><,@>) (u) — (94)
ng — 2 —

— [R(<a><ﬁ>) + D(ca>Dcpsy — g<a><ﬁ>D] D (u) @ (u).

Here we note that we can obtain a nonsymmetric energy-momentum d-
tensor if we firstly vary on Gc,><p> and than impose the constraint of
compatibility with the N-connection structure. We also conclude that the
existence of a N-connection in dv-bundle £<*~ results in a nonequivalence
of energy-momentum d-tensors (9.3) and (9.4), nonsymmetry of the Ricci
tensor, nonvanishing of the d-covariant derivation of the Einstein d-tensor,
D<a><§<°‘><ﬂ> =% 0 and, in consequence, a corresponding breaking of con-
servation laws on higher order anisotropic spaces when D_, E<®><8> =£

The problem of formulation of conservation laws on locally anisotropic
spaces is discussed in details and two variants of its solution (by using nearly
autoparallel maps and tensor integral formalism on locally anisotropic and
higher order multispaces) are proposed in [168].

In this Chapter we present only straightforward generalizations of field
equations and necessary formulas for energy-momentum d-tensors of matter
fields on £<*> considering that it is naturally that the conservation laws
(usually being consequences of global, local and/or intrinsic symmetries of
the fundamental space-time and of the type of field interactions) have to be
broken on locally anisotropic spaces.
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9.2 Proca equations on ha—spaces

Let consider a d-vector field ¢4~ (u) with mass 2 (locally anisotropic Proca
field ) interacting with exterior la-gravitational field. From the Lagrangian

L0 () = VI [~ Feasain (0) 5 (1) 4 12 () 9 (1)
(9.5)

where feoscps = Deas@eps — Depsp<as, one follows the Proca equations
on higher order anisotropic spaces

Decas f<27< (u) + p*¢™" (u) = 0. (9.6)

Equations (9.6) are a first type constraints for # = 0. Acting with D_,~ on
(9.6), for u # 0 we obtain second type constraints

D<a>(p<0é> (u) - 0 (97)

Putting (9.7) into (9.6) we obtain second order field equations with re-
spect to Yo -

Upca> (U) + R<a><ﬁ>80<ﬁ> (u) + M2<P<a> (U) =0. (9-8)

The energy-momentum d-tensor and d-vector current following from the (9.8)
can be written as

E(<10)1><ﬁ> (u) = —g==7=7~ (7<ﬁ><r>f<a><s> +?<a><5>f<g><7>)
_ — I<a><B> (1)
12 (PeasP<p> + PepsPaas) — —t= LV (u)
<a> <b> \/@
and

T8 () =i (Feaseps () 9% (1) = T (1) feaseps (1)) -

For p = 0 the d-tensor f.,~.p> and the Lagrangian (9.5) are invariant
with respect to locally anisotropic gauge transforms of type

P<a> (U) — P<a> (U) +0casAA (U) )

where A (u) is a d-differentiable scalar function, and we obtain a locally
anisotropic variant of Maxwell theory.
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9.3 Higher order anisotropic Dirac equations

Let denote the Dirac d-spinor field on £<*~ as 9 (u) = (% (u)) and con-
sider as the generalized Lorentz transforms the group of automorphysm of
the metric G see (1.43)).The d-covariant derivation of field v (u) is
written as

<a><B> (

SN 1 - ~
V<as® = |0cas + Zoaﬁa (u) 2o (u) oo’ 1, (9.9)

where coefficients Cy: = (Deysl597) I3 <a>l§7> generalize for ha-spaces the

corresponding Ricci coefficients on Riemannian spaces [60]. Using o-objects
0<% (u) (see (8.2) and (8.12)—(8.14)) we define the Dirac equations on ha—

spaces:

r <a>

(i (4) V<a> — p)1h =0,
which are the Euler equations for the Lagrangian
LY () = VIgH{[Y™ (@) o=* (u) V<ast) (u) = (9.10)
(V<as®™ (W)= (u) 1 (u)] — pgp™ (u) ¢ (u)},

where 9" (u) is the complex conjugation and transposition of the column

W (u).
From (9.10) we obtain the d-metric energy-momentum d-tensor
BOD o = 07 (0) 0 (0) Tt (1) 467 (1) 0 (0) Tt (1)
~(V<ast™ (W)o<ps (u) ¥ (1) = (Vap-t™ (0))ocas (w) ¥ (u)]

and the d-vector source

JE2 () = & (1) 0cos ()¢ (u) -

We emphasize that locally anisotropic interactions with exterior gauge fields
can be introduced by changing the higher order anisotropic partial derivation
from (9.9) in this manner:

0q — 0o + 1€ By,

where e¢* and B, are respectively the constant d-vector potential of locally
anisotropic gauge interactions on higher order anisotropic spaces (see [186]
and the next section).
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9.4 D-spinor Yang—Mills fields

We consider a dv—bundle Bg, mp : B — £ on ha-—space £<*~. Additionally
to d-tensor and d-spinor indices we shall use capital Greek letters, ®,7,
=, ¥, ... for fibre (of this bundle) indices (see details in [128, 129] for the case
when the base space of the v-bundle mp is a locally isotropic space-time).
Let Vs be, for simplicity, a torsionless, linear connection in By satisfying
conditions:

VT e

—0 —0 j|
~<a> <a> !

[OI‘ = —<a>
(€] (S (€]
z<cv> ()\ Tv ) - z<a>)\ +z<a>y ’
> (FA%) = A®z<a>f+fz<a>)\®’ fe 1°or =9,

where by T© ( Z°) we denote the module of sections of the real (complex)

v—bundle B provided with the abstract index ©. The curvature of connection
VN is defined as
Q e
K<a><,@>ﬂ)\ <Z<a>2<ﬂ> o z<ﬂ>z<a>> A”.

For Yang-Mills fields as a rule one considers that Bg is enabled with
a unitary (complex) structure (complex conjugation changes mutually the
upper and lower Greek indices) It is useful to introduce instead of K_ . <2>Q
a Hermitian matrix F_ . _ ﬁ>Q =3 K <o> <ﬂ>9 connected with components of
the Yang-Mills d-vector potential B according the formula:

<>"

o
9" <a><B>E = z[<a>B<ﬁ>]

—iB_ 2\ B (9.11)

<ﬁ>]”

where the locally anisotropic space indices commute with capital Greek in-
dices. The gauge transforms are written in the form:

P P 0, . @ e

B<a>® = B<a>é = B<a>® So qy  tiSe V_.. 9
® 3 d =
Fepscpsz = F<a><g>_ F<a><ﬁ>~3c1> 4=

where matrices sg ® and ¢z = are mutually inverse (Hermitian conjugated in
the unitary case). The Yang-Mills equations on torsionless locally anisotropic
spaces [186] (see details in the next Section) are written in this form:

v F v = J<ﬁ>(§, (9.12)

<a><B>0
0.

Z[<Q>F<g><7>]@
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We must introduce deformations of connection of type Va — Y, t P,,
(the deformation d-tensor P, is induced by the torsion in dv-bundle BE) into
the definition of the curvature of gauge ha—fields (9.11) and motion equations
(9.12) if interactions are modeled on a generic higher order anisotropic space.

9.5 D-spinor Einstein—Cartan Theory

The Einstein equations in some models of higher order anisotropic super-
gravity have been considered in [169, 172]. Here we note that the Einstein
equations and conservation laws on v—bundles provided with N-connection
structures were studied in detail in [108, 109, 2, 3, 193, 191, 164]. In Ref.
[186] we proved that the locally anisotropic gravity can be formulated in a
gauge like manner and analyzed the conditions when the Einstein gravita-
tional locally anisotropic field equations are equivalent to a corresponding
form of Yang-Mills equations. Our aim here is to write the higher order
anisotropic gravitational field equations in a form more convenient for theirs
equivalent reformulation in higher order anisotropic spinor variables.

9.5.1 Einstein ha—equations

We define d-tensor ®.,~ 3> as to satisfy conditions

(_
-2 =R - R
<a><fB> <a><fB> nt M+ .+ m. J<a><3>

which is the torsionless part of the Ricci tensor for locally isotropic spaces

[128,129], i.e. ®_52~ = 0. The Einstein equations on higher order anisotrop-
ic spaces

—

G<a><ﬁ> + )\9<a><ﬂ> = HE<a><ﬂ>a (9-13)
where

G <a><f> = R<a><ﬁ> - 5 Rg<a><ﬂ>

is the Einstein d—tensor, A\ and s are correspondingly the cosmological and
gravitational constants and by F.,><g> is denoted the locally anisotropic
energy-momentum d-tensor, can be rewritten in equivalent form:

1

R T
(I)<a><ﬁ> = —§(E<a><ﬂ> - ntmit..+m E<<T>> g<a><ﬁ>)- (9-14)
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Because ha—spaces generally have nonzero torsions we shall add to (9.14)
(equivalently to (9.13)) a system of algebraic d-field equations with the source
5555 <~ being the locally anisotropic spin density of matter (if we consider
a variant of higher order anisotropic Einstein—Cartan theory ):

<v> <v> ) <v>
T <Va><ﬁ> + 20 [Za>T<<ﬁ>>}<6> = kS <’Ya><ﬁ>. (9'15>

From (9.15) one follows the conservation law of higher order anisotropic spin
matter:

<y> _ <é> <y> o .
V<W>S <a><[B> T<5><W>S <a><p> E<ﬁ><a> E<a><,@>‘

9.5.2 Einstein—Cartan d—equations

Now we can write out the field equations of the Einstein—Cartan theory in
the d-spinor form. So, for the Einstein equations (1.78) we have

G1112Q1Q2 + )\811Q1 61292 - HElllzglgw

with ﬁlllﬂl% from (8.37), or, by using the d-tensor (8.38),
(—
R A K
Dy v 000, T (Z - 5)511%512% = _§E1112g1g27

which are the d-spinor equivalent of the equations (9.14). These equations
must be completed by the algebraic equations (9.15) for the d-torsion and d-
spin density with d-tensor indices changed into corresponding d—spinor ones.

9.5.3 Higher order anisotropic gravitons

Let a massless d-tensor field hen><p> (u) is interpreted as a small perturba-
tion of the locally anisotropic background metric d-field g<o><p> (u). Con-
sidering, for simplicity, a torsionless background we have locally anisotropic
Fierz—Pauli equations

Dh<a><ﬁ> (U) + 2R<T><a><,@><u> (U) h=Tosr> (u) =0
and d—gauge conditions

Do>hZ3Z (u) =0, h(u)= hig; (u) =0,

<p>
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where Ro;scas<ps<ys (u) is curvature d-tensor of the locally anisotropic
background space (these formulae can be obtained by using a perturbation
formalism with respect to hcas<g> (u) developed in [75]; in our case we must
take into account the distinguishing of geometrical objects and operators on
higher order anisotropic spaces).

Finally, we remark that all presented geometric constructions contain
those elaborated for generalized Lagrange spaces [108, 109] (for which a tan-
gent bundle 7'M is considered instead of a v-bundle £<*~ ) and for construc-
tions on the so called osculator bundles with different prolongations and ex-
tensions of Finsler and Lagrange metrics [110]. We also note that the higher
order Lagrange (Finsler) geometry is characterized by a metric of type (dmet-

. . . 2 2 A2
richcv) with components parametized as g¢;; = %% (gij = %%) and

hapbp = Gij, where £ = L (33', Ya), Y2, 7y(z)> (A =A (xay(l)ay@)a ceeey y(z)>>
is a Lagrangian (Finsler metric) on TM®) (see details in [108, 109, 96, 27]).
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Finsler Geometry and Spinor
Variables
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Chapter 10

Metrics Depending on Spinor
Variables

10.1 Lorentz Transformation

We present the transformation character of the connection, the nonlinear
connection and the spin connection coefficients with respect to local Lorentz
transformations which depend on spinor variables, vector variables as well as
coordinates.

For any quantities which transform as

[ (@968 = f (2.0.€.8) =U (2,9,6,9) (10.1)

their derivatives with respect to 2%, y%, &, and €& under Lorentz transforma-
tions

it i i sl —lagh
xr =X,y :yvffy:Aﬂagﬂvf :Aﬁ1£ (102)

will be given as follows

oU af  Of OAL, af oA
a) o= = S5t aTaast Za s

Ox Ox ¢!, Ox o Oz

ou of of 0Ny of ON}P
h) — = A% 4L + a3y 10.3
Ve T g tagee vt e o U0
o Lo Ay O | OO T

OF 9" 9Ely D€ og” o€

oU af o oN Of ONTLB_

C JEE— =
) 3y’\ 3y’\ @5//6 @y/\ v ag/ﬁ 3y,\

189
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Taking into account that (2.23) of [123], namely:

o 0 0 —a O
= — + N, — + N, —
o ((9:15)‘ T laage T Aag“)
— R =0 K T a
— (Ff_)\“}‘OT Na>\+N>\OTa>y ay"i
ol )k - o

(where the nonlinear connection coefficients N,y and Ny are given in [121]),
we substitute (10.3) in (10.4), then the nonlinear connection coefficients have
to be transformed for Lorentz scalar quantities as

AIAB
CL) N(;)\ = N/g)\Aﬁa-‘r ax/\aﬁg, (105)
_ _ OFIA e _
/o B\ _1la 3
d) Ny = NoAjo+ axf g

In the above mentioned (10.5) a), a’) the relation 0 /9z* = o' /0z> was

used for [*]-differential operators. For the calculation of the transformation

character of nonlinear connection coefficients nak,ﬁf,ﬁga,ﬁga,n%a,nga are

used the relations

ol ol | ol gl ol

=AY, — = A—ﬁla , = .

9 9 9 og oy oy
Also by means of (2.23) b), ¢), d) of [123] and (10.3) we obtain

A,
b) msy = AgnawTyAg%
oI A—18
b/ ﬁ/ﬁ — Afal,@%a_‘_ ~ gy’
)y s
A7
o @ = a0 (aear+ T heg ),
9o
] A—16
‘) = ALY A?‘SﬁS‘Ur%? :
9o
oA
0 5 0 5
9 n/’ga - AO‘(‘AWﬂnwa"f_ aga 7>7

_oHA-18
d) ngﬁa = A5a (n&;!\_m—i—é7 _57 > )
5
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Consequently, [x]-derivatives of the quantities 10.1) will satisfy the following
relations:

8[*}U af/ , af/ e af/ )k 1 8f’
a) o o> + N“Aa—ﬁg + N, 8E/a - Iy Dy (10.6)
MU Of O O om e OF
b — /P ZJ —/ o *)K Y
) (9y)‘ ay/)\ + L) aé‘(/l + LON aE/oz CT)\ Yy aym )
8[*}U af/ N af/ _ af/ () af,
o) A’ = + ng” Ofs O et
) S g, A 0¢j3 0 ag’ﬁ Yy D'~
[*] / / ’ ,
d) Aﬁaa _ﬂU _ 8_{@ L d f L 8{‘[3 _ ey 8_{& '
o€ o0& 0& 5 € Iy
We have Lorentz—scalar quantities
f (x,y,&’,@) = f(2.9,€,€), (10.7)

then, the

o okl f gl f gl f
ox* " 0y* " 06" OE,

are transformed as Lorentz—scalar and spinors adjoint to each other, respec-
tively. Consequently [«]-differentiation are covariant differential operators
[+] QM 9[*]/3

for Lorentz—scalar quantities. The spin connection coefficients w,;\, 0.\, 05",
95;][3 will be transformed by Lorentz transformations as follows:
We consider the relation (3.23) a) of [123], namely:

] Mh o,

Wil = (WJFFE,;’ ha) R, (10.8)
. O )

S = (B ),

O

also for the tetrads h/* and A} valid the relation h* = Lbh} (4.1) of [121]),
then taking into account (10.8) we take the transformation formula of spin
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[+]

connection coefficients w,;,,

* g oMLe
a) wiy = LZngt[;d],\+aT>flhchZl, (10.9)
* g oMLe
b) Oy = Lngef[:d})\—i_W)\anchgy
o o = A e+ O
Y
0 ol = 0 |oih et SR

!
where the connection coefficients F,(/*,\)M ,F(V*/\) # are Lorentz-scalar and simi-

lar procedures are considered for the transformed connection coefficients of
6’5;)]/\, 05;]]’8, 6’5;)][3, using the relations (3.23) b),c), of [123].
Next, we shall derive the transformation character of the spin connection

coefficients (F S?“,Cﬁ\)“,é;(*)m,(ﬂ(*)m> under Lorentz transformations. If

we take the relation (3.6) a) of [123],

N,y =T, (10.10)
and
N7, =T (10.11)

and we substitute (10.5) a) in (10.11), then we get the required transforma-
tion formula,

ol Ae

a) T = AZPATGE + T A, (10.12)
) oyt = Aoy Eheace

c) 56(*)5;) _ {Aléﬁ*)ﬁ“/\gmr%%w} A;lp’

d) CYY = A {Ag@@%\f%%z\;w}

Finally, from (3.20) of [123] and (10.5), (10.12), arbitrary terms ay, by,
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Ba, 0, are transformed as follows

a) = CL, (
b)\ _ b/ —/[8 (

fla
) <a§ )5;,
AHA— m
+ < )ﬂﬁa
A~ 1v )
) “(S)
a[*A 17
#) e ()

B = NI +F (

10.2 Curvature

In this section we shall present the form of the curvature of the above-
mentioned spaces. There must exist ten kinds of curvature tensors corre-
sponding to four kind of covariant derivatives with respect to xi,y)‘,fa,ga,
(coordinates, vector variables, spinor variables).

If we denote with M, n the number of curvatures and the kind of covariant
derivatives, then we have generally, N = n(n+1)/2. In our case N = 10,n =
4. Like in [121] (paragraph 5), here, they appear three different expressions
of the above-mentioned ten curvature tensors which are closely related to
each other. The relation between ten curvature tensors 7", and ten spin—

curvature tensors T,;,xy will be the following:
Taxy =Ty hl by (10.13)

which arises from integrability conditions of the partial differential equations
(cf. (3.22) of [121]).

The curvature tensors which are calculated below come from the Ricci
identities [136, 96], as well as the commutation formula of the [x|-differential
operators O /0z* and o /oy

The curvature tensors 7", are defined as follows

a[*}r(*)u a[*]r(*)li
m _ vA VK OTE) e TR
Ru)u-c - orr axA + Fl/)\ FTIQM Fzm FTA

— (AL O ATt 4 AR

YAK
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where A

e EE\T, /Ul[;]; are given by

AQ*;K = A, — C% A, — A,.C% — 45,05,
AN = AN+ G Aene — A5, Cl + A5,

AGE = A+ (CFyT) Aone + A5, (Cley)
PN,y N,

dx~ A 7
i INY oMY
AR oxr oz’
A a[*} ~pa T T
AL = o [ (O + O Nax + NRCE) ]
a[*} Ypo \T T
a3 [— (T2 + C2* Ny + N2C2) 7] -
Similarly, the curvatures P, and W/, can be defined as follows

T gkl

w _ ()T A P AT
PV)\a - afa ax)\ + FV)\ Cﬂ'au FT)\ Czla
- (BLOM + BSTr + B el
m _ VA VK )i~ ()1 () (%)
Rl/}\l’»’ - O - ayA + Fy)\ Cm - Fm CT)\
(ot e+ DiFCER+ D CLY).

The quantities EL’;}\O[, E /[\T, Ev/[\? and DL*;\K, ZA?E\*IP, DE\T are defined respectively
to AEJ\K,EE\T,A[QT. A a matter of fact the expressions are too big to be
presented for all ten curvature tensors, we prefer to give an algorithm for the
general case, presenting the following the Table 10.1 of symbols for nonlinear

connection.

In general for each of the ten curvature tensors, we have

olConXt, oM ConY",
oYy 0X
+ConX!ConY", — ConY",ConX"

- (Al + Alfcte+ ATl |

K —
TI/XY -

(10.14)
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coordinate connection - =

Vef:tor coefficients Nyy N§ _N])C(

spinors
! o Nox | Ng | (D) + CP* Ny + N9 Clo) 7
yA CISZ)M Nax ﬁ())f (Cf,\ + Cfanak + ﬁicfa) y"
£a EE@W n%o‘ ﬁga Cr* + C’ﬁan%a + ﬁgaCfﬂ d
Ea CS;)“ n%a nga CP, + C’fﬁn%a =+ ngaCfﬂ y"

Table 10.1: Nonlinear connections

where the coefficients are given by

Ay = A — C¥Acxy — AL C% — RS, CY,
A[;]; = A[;]; + éngéXY - Ag(ycgg + Aiycggj
A[;}{i = Ag(y + (C_fg?f) Aexy + Ai(y (CfgyT) )

ol N, x ol N,y

A = —

XY az/ a_X )

AL OMINT, B OFINT,
XY oy 0xX
Ko _ OYNG OMNg
AR oy 0xX

ConX" represent the connection coefficients i C,Eﬂ“ , a[j* ]W, oMm)  We

can write down all ten curvatures using the algorithm presented the above
and adopt the following symbolism:

We can write down all the spin—curvature tensors using the symbolism of
Table 10.2 with appropriate indices. The spin curvature tensros T,,xy are
defined in (10.15). According the Tables 10.2 and 10.3 our general formula
becomes

O sp.ConX, O sp.ConX,
Taxy = spa;n o Spa;n 2t (10.15)

+sp.ConX,ex sp.ConYyy — sp.ConYyy sp.ConX;x
(Al 0+ RSO + A500L)

where sp.C'onX,,x represent the spin connection coefficients w([;;)])\, (952)\, 5([;}@,

9[9;,],\ with before defined AL*)](Y’ _K[;]; : A[;];

a
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These spinor—curvature tensors will also appear in Ricci’ formulae for a

Lorentz vector field. To examine the transformation character of the curva-

ture tensors it is convenient to divide them into the parts T %% and T %

0 1
Ty = Tzfx)l;/ - Tzfx)l;/a
where
O _ oFlCon X", B olConYh,
vXY aY 0X
+ConX]yConYr, — ConY i, ConX",,
T = AL ANk A el

The curvature tensors T )21/ are expected to have the same transformation

character as TV( )QY and 7', and are confirmed to transform as tensors or

spinors under general coordinate transformations and local Lorentz transfor-

mations by formulae (10.3), (10.5) and (10.12). The arbitrary terms of spin

connection coefficients are contained only in the parts T} X)’{/, the arbitrariness

disappear completely by virtue of the homogeneity of N , C,f;]“ ,C, roital , Ca el

Therefore, T as well as T(X)Y are defined unambiguously. The followmg

conditions are imposed on T IE X)Y and T X)Y and, therefore, on 7%, .

X-Y [Ty | Ty | Txy | AW | AN | A
rT—z R X % A A A
z—¢ | P = v | E| E | E
z—&| P = v | F| F | F
T —y w v T D D D
E¢-¢| Q@ | O | p | B|B|B
c—¢ | S K | pw |V |V |V
E—y Q U v G G G
&l Qo | p|J | J|J
E—y | Q U 7| o | D | P
y—y Z Y v H H H

Table 10.2: Curvatures
Contractions of &, &, y* with the curvature tensors give the following:

g:ré’m = 0, gT(%zga =0, (10.16)
_ O _
&r (s S gT(s”s" =0,
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The above mentioned structures and properties of curvature tensors 77
are transformed to those of spin—curvature tensors T,,xy through the rela-
tions (10.13). Also, the integrability conditions of the partial differential
equations of Ricci formulae for a spinor field, led to another spin—curvature
tensors TfXY which are related to Ty,xy by the relation of

1 ab\d
TséXY = éTabXY (S b)6 +ZTXY ]g,

where I? is the unit matrix, 7%, Txy are defined by (10.17) and (10.18)
respectively, Ty,xy are given by (10.15) and S and (3.18) of [123].

coordinate . . . .
vector Spin connection Spin connection coef. Xx
. coefficients 1 coefficients 2 '

spinors
) w[z])\ F(?“ a[;]
, i i |
§a a{[l*b}a 5(;)’” B[*]a
g ol ol 5

Table 10.3: Spin Connections

Again, in order to present the spin—curvature tensors TP, we are going
to use an algorithm along with appropriate columns in the Tables 10.2 and

10.3. The general formula is

oMHsp.ConX? oMHsp.ConY?,
T(S — eX _ ey 1 . 1
eXY oY o0xX ( 0 7)

—i—sp.C'onXgX sp.C'oanY — sp.C'onY;jY sp.C'oanX
(Al 0+ RO 1 ALY,

where sp.ConX g + represent the spin connection coefficients and Al are
defined as before.
The spin—curvature tensors T'xy consisting of the arbitrary terms of I" ,(,’;)“ ,
clir, UEK }W, Cl are defined as follows
[+] [+]
Toy = 2 Cg;fXX 9 (;;fyy (10.18)
+i (coef X x coefYy — coefYy coef Xx)

* — 0¥ INIE: * N X7 [*
(At B+ RGPS + A,
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where the coe f X x are defined in Table 10.3. If we want to write down all ten
spin—curvature tensors T'xy we must use the corresponding column in Table
10.2. These objects are defined uniquely on account of the conditions (3.27)
or (3.28) of [123] and the homogeneity properties of roe. che ,5? }W, obr
There are imposed on T'xy conditions similar to (10.16): that is contractions
of €, &,y with the spin—curvature Txy results

W, =0. (10.19)

Now, from (10.13), (10.17) together with (10.16), (10.19), it is easily shown
that the similar conditions to (10.14) on 7", must be imposed on TCyy.



Chapter 11

Field Equations in Spinor
Variables

11.1 Introduction

The introduction of a metric g,, (z,w) that depends on the position variables
x as well as on the spinor variables w assigns a non-Riemannian structure
to the space and provides it with torsion. This procedure enables the con-
struction of a non-localized (bi-local) gravitational field, identical to the one
proposed by Yukawa [211] that allows a more general description of elemen-
tary particles. Further arguments have been developed by some other authors
[78, 121, 152]. In our context each point of the space-time is characterized
by the influence of two fields: an external one which is the conventional field
in Einstein‘s sense, and an internal one due to the introduction of the spinor
variables. These fields are expected to play the role of a geometrical unifi-
cation of the fields. If w is represented by a vector y, then we work in the
Finslerian framework [14, 77, 109]. A more general case of the gauge ap-
proach in the framework of Finsler and Lagrange geometry has been studied
e.g. in [15, 17, 28,109, 112, 115].

In the following, we consider a space-time and we denote its metric tensor

by

gul/(ZM)u

(here ZM = (a# €,,£%), 2", &y, £ represent the position and the 4-spinor
variables ¢ denotes the Dirac conjugate of ¢) [152]. With the Greek letters
A i, v and «, 3,7 we denote the space-time indices and the spinor indices,
also Latin letters «,b,c are used for the Lorenz (flat) indices. The (*)-

199
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differential operators 81(\2) are defined as

o™ o) o) g
() = _ 11.1
O =5 (axu’aga’aga)’ (11.1)
with
S ) 0 —a O
= Ny N
o op egee T gE
o) B o +~0ai+~ﬂa o
o6, o6, Mg, T o
o) 0 0 0

aga (95 +77ﬁaa£ +770aa€ﬁa

here Ny, Ni, ﬁga, ﬁNQO, nga, nga are the nonlinear connections [121].
In our study, field equations are obtained from a Lagrangian density of
the form

LT 9 pA), (11.2)
here U4 is the set

VA = {08 (2, €,6), w1 (2, €,E),00% (2, €, ), 00 (x, €, ).

Thus L is a function of the tetrad field, of the spin connection coefficients
and of their (*)-derivatives. the variables h,w™, 0*) §*) are considered as
independent.

It is known that gravity can be described by the tetrad field and the
Lorenz connection coefficients [134]. The variation of the Palatini action
with respect to h and w yields a set of two equations:

1 a
Ri—SRE, = 0 ()
Dbk — hgh)] =0 (b) (11.3)

R}, is the determinant of the tetrad hj; and D), is the gauge covariant deriva-
tive

D, :8H+Zwu,

where the sum is taken over all Lorentz indices.
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In spaces whose metric tensor depends on spinor variables, an analogous
method can be applied, but instead of one connection we have three connec-
tions:

w2, &,€),  09(2,6,8), 09 (x,£9).

So we choose a Lagrangian density of the form (11.2) from which four equa-
tions are obtained. The analogous gauge covariant derivatives of D, appear
naturally as

a) DY = 90+ W,
b DY = o+,
¢) DB = g4y gl (11.4)

Transformation laws of the connection coefficients wézz\(x,é‘ ,E),Héz)a (z,€,€)

and é((;g)a(x, ¢,€) under local Lorenz transformations are the expected trans-
formation laws for the gauge potentials [134]

. o OWLe
a) w((lb))\ = Lngwéd))\ + BIS) Lpe,
oy B a(*)Lc
b 9(*) a Lche(*)ﬁ ar . Afl a
) ab |: a~bYed + agﬂ b ( )ﬁ’
Ry . 8(*)LC
005 = a|Laield, + T, (115
08s

The matrices L and A belong to the vector and spinor representations of the
Lorentz group, respectively.
11.2 Derivation of the field equations

The field equations will be the Euler-Lagrange equations for a given La-
grangian. We postulate the explicit form of the Lagrangian density

LW ) (A (11.6)

But first we observe that the metric tensor g,,, and the tetrad i, are related
by (cf. [134])

CL) guu(xa Ea g) = hzhgnaba
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b) g"(x,€,€) = hihyn™, (11.7)

where 7, is the Minkowski metric tensor and it is of the form
diag(+1,—1,—1,—1). From the relations [203]:

a) g=-h* b)) dg=gg"dgu, (11.8)

and using (11.7), we get

oh 1

= ——hh® 11.
onE ~ 3w (119)
where g =det(g,,,).
Now we postulate the Lagrangian density in the form
L=h(R+P+Q+59), (11.10)

where R, P, (), S are the scalar curvatures obtained by contraction of the spin
curvature tensors:

bea

R = Rh'RYR™ P =h"hyP" P (11.11)

(2 cpat v

Q = Qabﬁa@abﬁaa S = gbﬂsgbﬁ'

The spin curvature tensors are given by the components

* (¥)ab *) n(*)ab
pet = A S (11.12)
“ g« ox?

Fwi 00 = 650w — (07 Egna + FR05),
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o™ wi*)“b H*) p(x)aba

—aba
P = -
) OE. 0"
_i_wé:)ae_(*)aab . ég*)aawg*)Cb - (Q_abﬁﬁﬁa)\ + Efaegb),
ot _ DG a0ge
o 3N oEP
(Map(x)cab _ p(x)aapg(*)cd  paba Yo pab
+90,@ 0 QC 9,@ (97 G'yﬁ + H,@ 97 )7
P _ OV g
w Oz oxrh
Fw — oW — (0 Ay + A B5),
%) p(*)8 ) plx)a
@ﬁ(? = a( )eab . a( )eab
a 73 9¢p
050707 — 050°0,7 — (O K + T 0u),
x) n(*)ab * *)ab
0o _ 9 )9_,3' _@( )%
Ba dE Oz
pgegle _ gagtdeb _ gaby 7 oy FEY gaby
cB Yba ca U TP Baty /1

where the coeflficients are defined

N N5
Aﬁ;w _ a B _ a ﬁV’AﬁV — me u’
oz ozt s oz ozt
* * * ~7P *
oy — 3(){\7@_8()77% Fﬂ:a()_]\[k_a()nga
ﬁ o 65‘3‘ ax)\ 9 o 65‘3‘ al‘)\ 9
* *) ~Ua * _ﬁ %) ~Po
Fo O Ngy O 4, _ 0N, o )i
X O, orr A o, o
. a(*)ngﬁ - 3(*)373& e a(*)ngﬁ B a(*)ﬁga
78 o€, ogs 1 h 73 ogs
e aee o T gee g
e _ 3(*),73,8 B @(*)ﬁga T _ a(*)ﬁgﬁ B a(*)ﬁo’ya.
7 aéa afﬁ 7 aéa aéﬁ

The Lagrangian (11.10) is the only possible scalar that can be made
from the curvature tensors (11.12) and it must be the sum of the first-order
quantity R and the second—order quantities P, () and S. The mixing of the
quantities of different order is not impossible. It is known that the Einstein-



204 CHAPTER 11. FIELD EQUATIONS IN SPINOR VARIABLES

Maxwell Lagrangian is the sum of the first-order quantity R and the second-
order quantity F,, F'". So, our Lagrangian (11.10) is physically acceptable.
The Euler-Lagrange equations for the objects

T — (o) g gy

B a )

are of the form

w( 0L oL
- - 11.1
Ou (a<a§?m<A>)) u (11.13)

where 81(\2) was defined in (11.1). From the variation of L with respect to the
tetrad we have

OL

=0. 11.14
ohy ( )
Taking into account (11.8), and (11.9) we get the equation
1
HY — ah,”, =0, (11.15)
where
HY = RY 4 P) = hR + hi P, P, (11.16)
and
H=R+P (11.17)
From the variation of L with respect to w,(f) we get
L L
a/(;k) (*? e + a(*)a a e + (1118)
A0 wy’ ™) DO, ™)
o) oL 0L _ 0

o

a(a&*)wl(j*)ab) awl(/*)ab

. . . b . .
The spin-connection coefficients wi*)a are contained in R and P:

h(R+ P) = hh!‘h (R + P2, P

cuat v

From relation (11.18) we get the following variation of the term hR with

respect to w,(f):

a(*) a(hR) a(*)a a(hR)
1 a(al(;k)wl(j*)ab) a(a(*)awl(j*)ab)
SR N (00) 119)

8(8C(f)w,(,*)ab) - PR
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By a direct calculation, the first term of (11.19) can be written as
O (b — W),

The second and the third terms of (11.19) are equal to zero. The fourth term
equals

h(RERY — hY YW e + h(REhE — S wg . (11.20)

ap

Consequently, the first and the fourth terms can be rewritten as
DY [h(hihy — kb)), (11.21)

where we have used the gauge covariant derivative DY’ from (11.4). Contri-
bution from the P-part is equal to

a(*) a(hp) + a(*)a a(hp) +
1 a(aﬁ(;k)wSk)ab) a(a(*)awsﬂab)

W O(hP)  O(hP)
[ a(aé*)w£*)ab> aw£*)ab'

The first term of (11.22) is equal to zero.The second and the third terms can
be written as

(11.22)

O™ (hhhl P, (11.23)
oY) (hhhiPy,), (11.24)
respectively. The fourth term may be written as
v *) clo v Ipka v A(*)ca v n(x)ka
hhLhE Oy ) P — hhy WO Py — R bt P 057 — hhih Pl 000,
(11.25)
The sum of (11.23), (11.24) and (11.25) is equal to
DY (hhihPye) + DO (RhL by Pie). (11.26)

So, (11.22) is written in the form
DS [h(hihy — Ry b)) + Dg*>(hhgh7ﬁlbjj) + D<*>a(hhgh7?§;j) =0. (11.27)

Taking the variation of L with respect to 65" we have contributions from
(P+Q+5). The field equation is

B s
9065 ) 902y

d(hL) d(hL)
8(8é*)9,(,*)ab) B ae,(j*)ab

+0)

«
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We proceed in the same way as before. The contribution from the AP term
is

—D{) (hhh!P,,). (11.29)

The contribution from the hQ) term gives

DY 2hQ5™). (11.30)
Similarly, the hS term yields
2DMF(hSS5). (11.31)

So, the third equation is written in the form
D (hhhiPyy) — DY (20Ql57) — 2DMP(hSS,5) = 0. (11.32)

Finally, the variation with respect to 8% yields the equation ”conjugate”
to (11.32)

D (hhth: PE o) — DY (2hQupas) — 2D (hS5,) = 0. (11.33)

11.3 Generalized Conformally Flat Spaces

In this Section we study the form of the spin-connection coefficients, spin-
curvature tensors, and the field equations for generalized conformally flat
spaces (GCFS) (M, g, (z,£,€) = @88y ), where 7, represents the Lo-
renz metric tensor 7, =diag(+, —, —, —), and &, € are internal variables. The
case of conformally related metrics of the Riemannian and the generalized
Lagrange spaces has been extensively studied in [112, 115]. It is remarkable
that in the above mentioned GCF'S spaces, some spin—connection and spin-
curvature tensors vanish.

As pointed out in [121], the absolute differential DV* of a vector field

Vi(z,£.£) is expressed in terms of the coefficients
{14, C,", Clin}. (11.34)
Considering the absolute differentials of the spinor variables &,, £

Dga = dga - Na)\dx)\ - ﬁgﬁDgﬁ - Dgﬂngﬁa
DE* = d&" — Nyda* —iig” Dgs — DEM,
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which depend on the nonlinear connections:

{Nox, N3, 72 7167008, 155 (11.35)

and expressing DV* in terms of da*,DE,,DEY, we obtain the connection
coefficients

(DG T clmy (11.36)

related to the coefficients (11.34) via the non-linear connections (11.35) [121].
By imposing the postulates of the length preservation for the parallel
vector fields and symmetry of the derived coefficients

{Fyu)\v v Ol/;wz} (1137)

in the first two tensor indices, we have the relations:

iy = 3B )
2 Y

vHA oz Ox#
—a 1 0g., 10g,
= — OV e’ = — _u, 1138
vy 2 aga ) / 2 afa ( )

where T{y = T + Tuu
Theorem 11.1. For the GCFS spaces we infer the following:
(a) The coefficients (11.37) have the explicit form
P;u)\ = 6 (nN{Vo-X} nV)\O-;L) 65& = 6!;0-@, Cﬁa = 5-(1657 (1139)

where 0% = 0o |0y, 50 = 00 |OE®, 05 = % /O are the derivation operators
of scalar fields involving the coefficients (11.35).
(b) The following relations hold:

R S 5uaam,
C*ua _ Oua +5N ﬁ Oa —}-6“0’ 770 ’ (1140)
ng = Cﬁa + 550 77,804 + 55770(1'
Proof. Computational, using the consequences (11.38) of the above postu-

lates and identifying the absolute differentials expressed in terms of (11.34)
and (11.36) . O

Considering the absolute differentials of a Dirac spinor field ¢ (z, &, £) and
of its adjoint ¥ (z, £, &) we have the coefficients

{18, 00,08 }. (11.41)

YA
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Expressing D1 and Dt in terms of dz?, DE,, DE®, we are led to the spin-
connection coefficients I:

(T8, Cxber ) (11.42)

YA

connected to (11.41) [121]. In a similar manner, the absolute differential of
a Lorenz vector V%(x,&, &) produces the coefficients

{wba)\a él?ay Qbaa}y (1143)

where the raising and lowering of the indices a,b, ... =1,... 4 are performed
by means of 7,,, and also the spin-connection coefficients I1I:

{wZa)\v é;)k(?? QZaa} (1144)

related to the coefficients (11.43) and (11.36) [121]. Similarly to the previous
work of Takano and Ono [121], we shall postulate the invariance of length of
the parallel Lorentz vector fields, and the vanishing of the absolute differen-
tials and covariant derivatives of the tetrads h%,which involve the connection
coefficients (11.36) and (11.44). .

In the GCFS, the tetrads are given by hf(x,§, §) = ea(x’f’f)(Sﬁ and lead to

the dual entities h¥(x, ¢, €) = e_"(x’f’g)é(’j. In general, the above postulates

produce the relations:
ont ,
wab)\ = (a A y)\ha) hub7

no ahu CENY

O = (8£a + 7" ) b (11.45)
h#

%mz(a cgw)um

Wy = ( a 4 Pi‘;h”) ho. (11.46)

For the GCFS case we are led to

Theorem 11.2. The spin—connection coefficients (1I) and the coefficients
(11.43) are subject to

Whar = huarg)\ — OAba,s ég‘b = O, eaba = O, (1147)
Whar = M@y, Oap =0, 03, =0, (11.48)
Whax = Wha, (11.49)

where hya = € Nye and Tiapy = Top — Tha.
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Proof. Relations (11.45) imply (11.47) ; (11.46) and
Whar = Whax + HfaNm + Nf@bag
produce (11.49) and
O = Oh + OpaT5" + 710" Oras Oraa = e + O + Mo Boas
So, we infer (11.47) and (11.48) . O

The connections (11.36) and (11.42) give rise to 8 curvature tensors as
described in (5.2) of [121]. But also the spin-connections (II) connected to
(11.36) lead to six spin-curvature tensors (11.12)

{Rasrses Pavres Pagns Sohss Quvpas Q') (11.50)

Taking into account Theorems 11.1 and 11.2 we can express these tensors as
follows.

Theorem 11.3. In the GCFES spaces the spin-curvature tensors are given by

Rabru = M6 a) + Nu(aOr) T 0204 (11.51)
HIN@TR ) + NalInpl 0L,
Pabra = M0 aa)s P = NG
55 =0, Quga =0, Qu =0, (11.52)

where o}, = 00 /0x"0xY;  x,y = {\ «a,a} and TGO gy = M0 g — TaaTp-

Proof. Relations (11.52) are directly implied by (11.48) and (11.49). (11.39)
leads to (11.51) after a straightforward calculation. Also, using Theorem

11.2, we infer that

* *
Pab)\a = wabk,oﬂ Pabka = Wapa (1153)
where
w* _ 8*wab,\ w* o a*Wabk
ab\,ao T aé?a ) ab\,a T afa

Then (11.54) leads to (11.51) and (11.52). O
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Relations (11.52) are directly implied by (11.47)—-(11.49). The relations
(11.39) leads to (11.51) after a straightforward calculations. Also, using
Theorem 11.3, we infer that

Pwar 5 0" wWabx

Pa a — T —=a pa a — . 1154
bA 85 b aga ( )

Then (11.48) leads to (11.51) and (11.52).
As a consequence of this theorem we state the following

Corollary 11.1. In the GCFS space (M, g,,) the Ricci tensor fields have
the form

Rﬁ = e"’(277bda;ia§ — 277bdazb — 5377‘1)‘0:{(1 — 25z77€fa:a;i),

Pl = =3¢ (10,0} — 0h0 i), (11.55)
Proof. Using Theorem 11.3 R} = hi‘Rﬁi, P! = hfl‘Pc‘luaFica we obtain rela-
tions (11.55) . O

Remark (1) It follows that the scalar curvature takes the form
R= Rihg = —6e~ 2 ("o, + nefcf:a;i). (11.56)
Furthermore, it can be easily seen that
P = Phy =0. (11.57)
As we have previously remarked, the scalar curvature fields
Q = Qupa @™ and S = Sypap ™
vanish identically. Then the employed Lagrangian density (11.10)
L=WR+P+Q+29), det(g,,) = —h?,

reduces to L = ¢?(R + P) and depends on the fields
o € {hb,wr,, 0%, 0%} The Euler-Lagrange equations

oL oL
o, (7) ——=—=0 11.58
W\ a3 7 5
for these fields produce the field equations (11.15), (11.27), (11.32) and

(11.33).
We shall obtain their form for the GCFS as follows.



11.4. GEODESICS AND GEODESIC DEVIATION 211

Theorem 11.4. The field equations for the GCFS are

5ﬁ7lef(20:f —0,0p) + QUbd(UZb —0,04)

+3n“o,00% = 3n*os.ont = 0, (F1)

0405y — 30,00, 00 — 30,05 0, (F2)

20,0,.5 = 0, (F'3)

200" NabOad = 20300y + 1" N pad = oy = 0, (F4)

where we have put o = 935 /0¢306*020.

Proof. By virtue of relations (11.15) and (11.16), and using Corollary 11.1
and Remark (1), we get (F1).

Considering Theorem 11.2 we infer that D} = 0% and D** = 0**. Also
from wgz)/\ = Wabx = —Whar, We derive D7 = (9:;. Taking into account (11.27) ,
we obtain relation (F2) by a straightforward computation. Also, by means of
Theorem 11.3 and noticing that Fﬁj;” = —30;°, after substituting to (11.32),

we infer (F3). Finally, from (11.33) we derive (F4). O

11.4 Geodesics and geodesic deviation

We shall now give the form of geodesics in spaces with the g, (z,§, £) metric.

A curve ¢ in a space (M, g,,(z,&,€)) is defined as a smooth mapping
c: I —UCM:t— (x(t),£(t),£(t)), where U is an open set of M and ¢ is
an arbitrary parameter.

Definition 11.1. A curve ¢ is a geodesic if it satisfies the set of equations:

Dit

ds — ds? + @7 (Th i + O e + ChLEY) = 0, (a)
D2§a D .. v B¢ ¢/

T = 7ol = G+ O + CLd)] =0, (b)
Dan B D

e %[ga + (T2 + C9¢5 + Co5E7)] = 0, (c) (11.59)
where i = dat/ds, &, = dEy/ds, £ = dE*/ds, and the coefficients T",, T7
U’:a, Cﬁﬁ ,Cﬁa,Cgﬁ satisfy the postulates imposed by Y. Takano and T. Ono
[121].
Proposition 11.1. (a) IfC." =0 and C%, = 0, thenT", = T'% and relation
(11.59) becomes

d*at dx? da

g2 Lo\ (z, &(2), () 15 ds 0. (11.60)
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(b) For the GCFS, equation (11.59) has the form

d?at

g2 T TH 73N 4+ 3 (0%%ig + T,E%) = 0. (11.61)

In this case élja =0,Ct, =0 hold true iff 0 = 6, =0, i.e., for o depending
only on x.

Proof. Equations (11.60) and (11.61) are consequences of Definition (11.59)

(a) and relations (11.39) . O
Remark (2): The spinor parts of equations (11.60) and (11.61) also write
as
b —&T0 — 17 — (& — &T)TY =0, (11.62)
EH T+ OT + (8 4TI =0,
where

T] =T0,d* + CPls + Clp” =T,

Having the equations of geodesics, it remains to derive the equations
of geodesic deviation of our spaces. This geodesic deviation can be given
a physical meaning if we consider two very close geodesic curves and the
curvature tensor is Riemannian.

In the general case of GCFS, the spinor variables are independent of the
position, so it is difficult to convey a physical meaning to the equations of
geodesic deviation. For this reason it is convenient to study the deviation of
the geodesics in the case where the spinor field £, = &, (z#)(and £ = £%(2))
is defined on the manifold. This spinor field associates a spinor -and its
conjugate-to every point of the space-time.

In this case, from Proposition (1) and relation (11.60) the Christoffel
symbols I'"', are symmetric in the lower indices and the equation of geodesics
is similar to the Riemannian one, except that the connection coefficients have
the additional dependence on the spinors &, (z*), £*(2*). Thus our approach
is more general. The equation of geodesic deviation in our case is given by

DO | detddat
ds? e ds ds ds

(11.63)

The above curvature tensor R, (z,&(x),&(x)) has a modified Riemannian
form. This equation has additional contributions from the spinor parts which
enter the curvature tensor R and the covariant derivative. In (11.63) ¢

denotes the deviation vector, and s the arc length.
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For the GCF'S, the deviation equation has the above form, where the cur-
vature tensor depends on the function o(x,&(x),&(x)) and its derivatives, as
we have proved in Theorem 11.3, relation (11.51). After a direct calculation
from (11.63) and

R, = Rapu,h™ e, (11.64)

uve

where h** = e, h = ?6%, we get the equation of geodesic deviation for
the GCFS, with C," = 0,C* =0, in the form

D*¢? A bA A
ds2 + (5(uag)v T Mol + (o030, +
dxt dC” dx?
¥ hb)\ ¥ 5)\ cd * * =0
i “a % I )ds ds ds

11.5 Conclusions

(a) We derived the gravitational field equations in spaces whose metric tensor
depends on spinor variables. Equations (11.15) and (11.27) are generaliza-
tions of the conventional equations (11.3) a) and (11.3) b). They are reduced
to equations (11.3) a) and (11.3) b) when the coefficients

(W, 0%,6049°) - (w,).

Relations (11.32) and (11.33) give rise to new results.

(b) Equations (F1)-(F4) represent the field equations on the GCFS
(M, g, (,&,€)). The solutions of these equations are the subject of further
concern. They represent an application of the gauge approach, for spaces
with the metric g(z, ¢, €), studied by two of the authors in [146, 147].

(c) The vanishing of the curvatures Sg; 5, Qubga; Qab (Theorem 11.3), re-
duces the 6 spin curvatures of the theory of Y. Takano and T. Ono to the
three ones Rgpau, Pab)\a,F:bA. This simplifies considerably the study of the
generalized conformally flat spaces.
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Chapter 12

Gauge Gravity Over Sinor
Bundles

12.1 Introduction

The concept of the nonlocalized field theory has already been developed in
recent years by Japanese authors (see, for instance, [79]) in order to provide
a unified description of elementary particles. In this approach, the internal
variable is replaced by a spinor w = (&, €) (€ and its conjugate £ are considered
as independent variables).

The description of gravity through the introduction of variables wzb(x)
as a gravitational potential (Lorentz connection coefficients) was proposed
originally by Utiyama [155, 38]. He considered the Lorentz group as a local
transformation group. The gravitational field is described by the tetrad hf ()
viewed as independent variables. With the help of these variables we may
pass from a general system of coordinates to a local Lorentz ones.

The Einstein equation were derived in the context of Utiyama’s approach,
but this was not satisfactory because of the arbitrariness of the elements
introduced. Later T. Kibble [64, 79, 87] introduced a gauge approach which
enables the introduction of all gravitational variables. To achieve this goal it
is important to use the Poincaré group (i.e. a group consisting of rotations,
boosts and translations).

This group first assigns an exact meaning to the terms: “momentum”,
“energy”, “mass” and “spin” used to determine characteristics of elementary
particles. On the other hand, it is a gauge acting locally in the space-time.
Thus, we may perform Poincaré transformations for a physical approach.
Hence by treating the Poincaré group as a local group, we introduce the
fundamental 1-form field p, taking in the Lie algebra of the Poincaré group.
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In our present study the basic idea is to consider a spinor bundle with a
base manifold M of a metric tensor g, (, &, €) that depends on the position
coordinates ¥ and the spinor (Dirac) variables (&,,£%) € C* x C*, where £
is the adjoint of &,, an independent variable, similar to the one proposed by
Y. Takano [152], and Y. Takano and T. Ono [121, 122, 123, 124]. The spinor
bundle S (M) is constructed from one of the principal fiber bundles with a
fiber: ' = C*.

Each fiber is diffeomorphic with one proper Lorentz group (which is pro-
duced by Lorentz transformations) and it entail a principal bundle SL(4,C)
over M, (SL(4,C) consists of the group of ratations and boosts of unit de-
terminant acting on a four-dimensional complex space, which is reducible to
(SL(2,0C)).

The consideration of the d-connections that preserve the (hv)-distribution
by the parallel translation (cf.[109, 116], in relation to the second order bun-
dles S?(M) = M x C** enables us to use a more general group G called
a structured group of all rotations and translations that is isomorphic to the
Poincaré Lie algebra. Therefore, a spinor in x € M is an element of the
spinor bundle S (M).

(2, Eq, %) € SP(M).

A spinor field is a section of S@(M).

Moreover, the fundamental gauge 1-form field mentioned above in con-
nection with the spaces that possess metric tensor g, (z,§ L&) will take a
similar but more general form than that proposed by other authors [97]. We

shall define a nonlinear connection on S® (M) such as,
T(SPM) =H(SPM) e FO(SPDM) @ FO(SDM),

where H, F_ F® represent the horizontal, vertical, and normal distribu-
tion. In a local base, for the horizontal distribution H(S® M) we have:

1 *a a
pu(£:€a€) = iwu bJab + hu(l', Ea §>pa7

where J,, P, are the generators of the four-dimensional Poincaré group sat-
isfying relations of the form:

[Jaba ch] = nchad - ndeac + nadec - naCdea
[Jabupc] :nbcpa_nacpby [Paupb] :07 Jab—i_Jba:O‘

The quantities wl(f)ab represent the (Lorentz) spin connection coefficients

and are considered as given, ng, is the metric for the local Lorentz spaces
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with signature (+ — ——).
These are connected with g, by

v "y ab v
g;whghb:nabu gl =n hghbu

where h; represents the tetrads. Similarly, for the vertical and normal distri-
butions FU(S@ M), FA(S@ M) the fundamental 1-forms (,, (* are given
by

1
ga = 56((1*)ab<]ab + \IJZPGJ
_ 1- _
Ca _ 5(9(>|<)ozabt]ab + \Ilaapa’

where 1), 9% are the spin tetrad coefficients, and @Ej"“b, O gre the
given spin connection coefficients which are determined in such a way that
the absolute differential and the covariant derivatives of the metric tensor
G (, €, €) vanish identically.

We use the Greek letters A\, u,v ... for space-time indices, A, (3,7 for
spinors, and the Latin letters a, b, c, ... for the Lorentz indices.

The general transformations of coordinates on S (M) are:

o = x/u(ly)’ 5& = é’g(é’g,@), gla = E/a(gﬁ’ g’Y) (12'1>

12.2 Connections

We define the following gauge covariant derivatives

1
x — = 4 =, (x)ab
Dlt S + 2(,«)” Jab,
0 1~
D(*)a - _@(*)aabJa
6£a + 9 by
) 1
D(*)a _ v _@(*)abJa
oo TP b
where
) 0 0 -0
= — +Nyy— — NY—,
o 0w T rag, T g
S 0 e O

6 0& " oer

Noy, N, NS“ 5 are the nonlinear connections which we shall define below.
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The covariant derivatives of the metric tensor g, are all zero:
D;(;k)gn)\ = 07 D(*)agn)\ = 07 ng)gn)\ = 0.

The space-time frame §/dz# and the local Lorentz frame ¢ /dx® are connected
with

u )
o~ Mg

Similarly, the spin-tetrad coefficients 1, and adjoint ¥ connect the spin
frames, 0/0€,, 0/0¢“ with 0/0x*:

a aa
8£a =9 63:“
9 _ 0
oce T 0xa’

The absolute differential of an arbitrary contravariant vector X" is given by

DX" = (Ddat + DW*X")dé, + (DY) X)dE™.

12.2.1 Nonlinear connections

We give the nonlinear connections N = {Ngu,Nga,Ngﬁ,Nﬁ,Nga,N&} in
the framework of our consideration in the following form:

1 *)a \ 1~ Jaa

Ng, = awL) Pl N§* = 5@ b TubEs, (12.2)
1 *)a \] 1 a

Naoﬁ = 56( ) bJabgﬂa Ng = _5 bJabgﬁ

N 1 aa 1 *)a cl

NP = —50 (aab 1 €%, Np. = _a@y b TuEP.

The differentials of DE,, DE® can be written, after the relations (12.2),
in the form:

Dés = dés+ N2ydéo + N§*dé, + Ng,da', (12.3)
DE = d&¥ + Nypd&® — Ny“dg, — Njjda",

The metric in the second order tangent bundle is given by the relation

G = goda"da + gi;0y'6y" + gapdu®u’,
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and the adapted frame
0 ( ) 0 N 0 o o6 0 )

0z4 ~ \oxr — orr oy M oue by due

where §/0y" = 0/dy" — L&D/ Ou”.
Furthermore, the dual frame is
674 = (dz*, 8y’ + Nida*, ou® = du® + Ldy' + M{dz?).
The metrical structure in the bundle will be defined as follows:
G = gu(,€,€)da’dz” + gap(w, &, ) DE*DE™ + g° DELDE,

an analogy with the previous adapted frame, a local adapted frame on a
spinor bundle S® (M) will be defined as

o\ (6 § &
() = (i

5 9 9 0
B L
e S T N T
5 0 o0

0 0 " 0€F
and
5CA = {dlﬁ,ng,Dgﬁ},

where the expressions D¢g, DEP are given by (12.3). If we consider the con-
nection coefficients I'4, given in the general case, then in the total space
S (M) we have

DAc = {D0e cn Cre T, 03, O, O, TR, ).

vp ) Yva) v 0T BA «

Considering that the connections are d—connections [109, 116] in an adapt-
ed base, we get the following relations

0 L0
Dojorc G5 = Lbegpn

or, in explicit form,
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Ds /50—
8/000 5
Dsyseas

Ds /sy ——
e

Dé/ésa a—gﬁ

Dé/ééa @

GAUGE GRAVITY OVER SINOR BUNDLES

- Fff;)“%a Da/a@(g%u: Wafcﬂ’
= 5 Do = ”%
= FE\’; ﬁ(sg Ds s, a?g W@im
— Cga%, Da/ag‘a%:égv(g;;’
- Cfaé(;

The covariant differentiation of tensor and spin-tensors of arbitrary rank
may be classified into three types:

Vi
VA
VoIl

Q...

53 T = DT

5(%:. + CWmapre L CRei
agﬁa + ORI T+ = ORI

55; — TG — e YT 4

5;}% o éghé@g: — @g:::éf’y)od +o
af; — OB =+ RGO+
% wiﬁ“vj;; + WPV

5(‘52 Oy L @labyan
Ve L 08V 4 — PV

5o
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12.2.2 Lorentz transformation

We can get the Lorentz transformations of linear connections Wl @ )Bab

@(ﬁ )% i1 the following form:

OLg
1(x)ab arh, (¥)cd crb cd
WP = LeLh* = L

_ ~ oL
@(*) aab |:LZLZ@(*)ﬁcd+ chchd] A/gla’

ey = AJ ngLgégW OL: s cd],

oEs

Similarly, the Lorentz transformation law of nonlinear connection is given

by:

\J 1 *)a a 1 5Lc
N,@u = 55‘)/8) bJabgaL/@ + 5 Sk Lb abA fa
«a 1 c 5[’? A<
e NO‘H‘A,@ + 5” d5 ‘],b ,360“
where
- - 1 0L°
O 06 cd c b loz
NO . A5 NO A'Y 1 cda aL /
af T a it} + 5 aéé d ab fw ’
- 1 O L2
N,@ — NaAl—,@ o cLb / 'yA 1,8
o [ e 2 (55['” ab£
- - 1 0LY
af () -18 cd c 18 la
NeA = {NOVAW o7 e LT ]A

1 0L®
N()ﬁa — Ai [N&A;ﬂ ned cLb /AWEWA 1ﬁ:|

2" o&°

where J!, = LSLE 4.



222

CHAPTER 12. GAUGE GRAVITY OVER SINOR BUNDLES

12.3 Curvatures and torsions

From the covariant derivatives D,(L*), Do D&*)

torsions:

a) [D(*) D(*)} —

b) [D(*) D(*)} —

aB T

we get six curvatures and

1
DYDY — DYDY = Re, P, + —RY T,

1 " 2"

(;Z“ S —
T
PP, + %Pﬁi(}aba

W o el
% _ % i w/(fc)“iﬁg — @(*)aachz,

PP, + %Pl‘jbaJab,

6625‘):@ - 6“(;/Zab . (:)g*)“bw/(f)ac B ég*)aawi*)cb’
Sfap, + %SZW Tab,
(ﬁi‘%§+@wwww—@ﬁ%&

asgb - a?gab +0 W — gl 6%,
QP + %QZ%Jab,

g?;é B gqggl + @,(a*)ba%b - @S)abwﬂb’

ae&*)ab ae&*)ab
o OEP

*)a *)cb *)ca
+0"e? — el 65,
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. 1 -
f) [D(*)oz7 D(*)ﬁ] _ Qa,@apa + éQabaﬁJaby

NaBa (wa 5wg A\ (x)Bba, 7o O (x)aba, 7.
Q™ = 5€ﬁ—a—&%+@()ﬁb¢b_@()b¢5:
Qaba,@ _ 59[3“" _ (59““” + é(*),@abé((:*)aa o @g*)abé,@ca’

5504 afﬁ

12.4 Field equations

We derive the field equations using the spin-tetrad frames in the Lagrangian
form: L(h,w® 1,0 1), ©®). The method of derivation of equations is
similar to Palatini’s one.

We get the Lagrangian

[:(h,w(*),@b, @(*)ﬂz’ @(*))
or
LA b =h(R+P+P+5+Q+Q), (12.4)
where

wA — <hZ($,fag):w£*)ab($a5,5),¢Z($,§’§)’&6.@.), @a*()fl_b)a @E*)?ab) ’

0 o o6 0 M o o
5M_(SZ—M - (5:[7”7550[75&7@)7 z —(33' 750175 )7

hiihi Ry

ns
o 7. pab D 7. paba
- hgwb ]Duou P = hzwabpu ’

Z%nglqzbﬁ: Q = Qabalawaawﬂba
= YSmSe”.

n O U X

The Euler-Lagrange equations are written in the form:

oL oL oL

5 T 00y @) 0@
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From the relation (12.4), the variation of £ with respect to h"b yields the
equations

a a Da 1 D a
(Ru+Pu —i—PN) — i(R—i-P—i-P)hu = 0,
a 1 a
Hy — SHIb, = 0,
where
a 7o pab Da paba a v pab
Pu = bPW, Pu = 1Z)abPM , Ru = thuw
and

HY=R:+ P+ P! H=R+P+P.

From the variation of £ with respect to w,(f)ab

) oL ) oL
St P <5%uw£*)ab> + E@

+i oL _ oL
5 9 <Lw,(j*)ab> awl(/*)ab

p— O7
§E
we get
DS [h(hihy — hi b)) + DO Th(Riby — b))
+ DO R(hapay — BEYS)] = 0.

The variations with respect to 5%, @®ae ield the relation

5 oL 5§ O 5 oL oL _,
with

Q(*) _ {@((;)ab, é(*)aab}
which gives us the equations:
D (hhiisg) = DS (2higdy) = 2DP (i) = 0,
DY (hhine) — 2D (Wpaatly)) — DO (2hpgating) = 0.
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Finally, the variation of £ with respect to the spin-tetrad coefficients 1%, 1)@
derives the equations:

- 1 1
ey + 5 S8 e + S Puahy = 0,

~ 1 _
Qaa . 5(Saoz_i_‘Paoz) — 0.

12.5 Bianchi identities
From Jacobi identities,
Q(XYZ) D;)7 [Dg;k)7 Dg)]] = 07

we get 18(3 x 6) relations of different types. For each relation we derive two
identities, namely 36 ones in total. Taking into account that

) 1
() — = 4 =, ,(x)ab
DM = S + 2&)# Jab7

where

I N

Sz Oam "€, " oge

= h%P, — NP, — NSU2P, = A°P,,
a a Taa \T O a

A,U' — hM_N,U'O‘w _NN’ pa:%,

we can get
D D ptl = |Acp L A¢ a
I 7[ K PN ] - n- ¢ QR/@AJab +[ uPC? Rn)\Pa] (125)

1 1
+§wl(j)ab R T, Jed] + éwlg*)ab R, [, P,

The first term of the right hand side of (12.5) by straightforward calcu-
lations is written in the form

. 1 ab 1 (SRZ& a b
{Aqu QRMJ“”} = 55 Jab T Fpn AL

Similarly, the second, third, and fourth terms of (12.5) yield the relations

. . ORS, ¢ pa ORp\
(A Pey RiyPl] = —22 Py + AL R [P, ] = 2P,
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where we used the fact that [P, P,] = 0 Also

1 *)ab pc *)ac

Zw/(i : beiCi[Jabv ch] = WL ) Rgn)\Jaba
1 *)a C *)ac

§w£) "Ri\[Ja, Pe] = w;(z) R} P,

so the relation (12.5) is written as

~—

ab
* * (%) - 1 5R/-c>\ *)ac b
[Dlg ). [, Dt ]] - (§W + W Rm)
6 a *)a
+Jab + ( 51‘7;\ + Rl(:f{)\Az + Ri)\w;(ib) ) Pa'
Defining
10RA
D, R% 5?73 + Wl R, (12.6)
10R: “a
DRy, = S22+ ALt Reywy)”, (12.7)

we have the relations:

DR + DyRS;, + DRy, =0,

K

DR\ + Do Ry, + DAR,, = 0.
In the similar way, from
Qasy) ng), [Dé*), D'(y*)] =0
we get for the Q)-curvature and torsion the identities below:
DaQfy, + Do + D2 Qs = 0
and

DaQY, + DyQly + DyQL5 = 0,

where we put

1 3Qab
ab By (x)ac,Hb
Pl = 579gn +O Qo
Q5 “)a
DaQly = —ggat + Qb o+ Q500"

oL
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12.6 Yang-Mills fields

In this section, we study Yang-Mills fields and we derive the generalized
Yang-Mills equations in the framework of our approach. In such a case we
consider a vector field A

F

1L

v =D,A, —D,A, +i[A, A (12.8)
represents the Yang-Mills field, A, is given by
AM = ALTia [Tia T]] C Tka (129)

the elements 7; are the generators which satisfy the commutation relations
of the Lie algebra, and D,, represent the gauge covariant derivatives.
Using (12.8), (12.9) of the matrices A, we find that

%
Ew F Ti

nv
where the field strengths are given by
Fl, = D,A} — DAl +iAl Al CE.

Moreover, the generalized gauge field is defined by the quantities Fixy, X,Y =
{p, v, a, B}, that is

with

In our space S®) (M) the Yang-Mills generalized action can be written in the
form

Sap = / d*zd'¢d* ER(tr Fy ™ + trF o F* + tr Fyg F° + tr FUFS),
(12.10)
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where F),, represent the internal quantities in the base manifold, ¥ the field
in the tensor bundle and [,z the internal quantities in the internal space.

In order to derive the generalized Yang-Mills equations we get the La-
grangian

Lyn(Ax, DxAy),
where Ax = {A,, Aa, A’} and Dx Ay represent
DxAy ={D,A,,D,A,, D* D,As, D*As, D, A, D,,A“}.

Varying the action (12.10) and taking into account the Euler-Lagrange

equations
0Ly mr OLy mr
D — = 12.11
X(@(DXAY)) Ay 0 ( )

obtain the generalized Yang-Mills equations in the following form:

D"F,, + D*F,, + D,F* = 0,
D, F"® + D F*® 4 D°F8 = 0,
D Ff + DoF§ + D Fop = 0,

we used the trace properties of the operators 7, with the normalization con-
dition

1
tr(rorP) = ééaﬁ.

12.7 Yang-Mills-Higgs field

In this last Section we shall give the form of Yang-Mills-Higgs field in a
sufficiently generalized form. The usual case has been studied with the ap-
propriate Lagrangian L ... the corresponding Euler-Lagrange equations.

Here, we get a scalar field ¢ of mass m which is valuated in the Lie algebra
G of consideration and is defined by

¢:M(4)><(C4><(C4—>Q

Pa’, €, §" € G.

.. is in adjoint representations, its covariant derivatives are given by

Dy = Do+ [Ay, 8, Dap = Dot + [Ag, @], D*¢ = D¢ + [A%, ¢)].
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The first of these relations, after taking into account (12.9), becomes
Dyé = Dy + Ang Coomy; (12.12)

for D¢, D*¢ similar relations are produced.
The generalized Lagrangian is given by the following form:
L, = L, =~ Mo L oo o
L="Lyy— étT(Du@ - itT(Da@(D ¢) + §m tro”.
Using (12.12) and getting (12.11) for this Lagrangian £, the generalized
Yang-Mills-Higgs equations are as follows:

DMF/LV+DQFQV+DQFVO£+[¢7DV¢] = 07
D, F"® + D, F*® + D*FP 4 [, DP¢] = 0,
Dy Ff 4+ DoFg + D*Fop + [¢, Dgg] = 0.

These equations defines a Poincare like gravity theory on spaces where the
metric tensor g, (¢, w) depends on internal independent variables w = (f , @ .
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Chapter 13

Spinor Bundle on Internal
Deformed Systems

13.1 Introduction

It was formulated [140, 148] the concept of a spinor bundle S® M and its
relation to the Poincare group. This group, consisting of the set of rotations,
boosts and translations, gives an exact meaning to the terms: “momentum”,
“energy”, “mass”, and “spin” and is used to determine characteristics of the
elementary particles. Also, it is a gauge, acting locally in the space-time.
Hence we may perform Poincaré transformations for a physical approach. In
that study we considered a base manifold (M, g, (z, ¢, €)) where the metric
tensor depends on the position coordinates and the spinor (Dirac) variables
(€0, €%) € C* x C*. A spinor bundle SM (M) can be constructed from one
of the principal fiber bundles with fiber /' = C*. Each fiber is diffeomorphic
with one proper Lorentz group.

In our study we apply an analogous method as in the theory of deformed
bundles developed in [144], for the case of a spinor bundle S@ M = M xC*?
in connection with a deformed internal fiber R. Namely our space has the
form S®M x R. The consideration of Miron d - connections [109], which
preserve the h— and v—distributions is of vital importance in our approach,
as in the previous work. This standpoint enables us to use a more general
group G, called the structural group of all rotations and translations, that is
isomorphic to the Poincare Lie algebra. A spinor is an element of the spinor
bundle S@® (M) x R where R represents the internal fiber of deformation.

The local variables are in this case

(2", 60, €% 0) € SB(M) x R=S®(M),\ € R.

The non-linear connection on S® (M ) is defined analogously, as for the

231
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vector bundles of order two [111, 120]
T(SPM) = H(S’M) & FO(SPM) e FO(SPDM) @ R,

where H,F1), F® R represent the horizontal, vertical, normal and deforma-
tion distributions respectively.

The fundamental gauge 1-form fields which take values from the Lie al-
gebra of the Poincare group will have the following form in the local bases
of their corresponding distributions

pule.E.E0) = gw;abjamﬂ(x,f,s‘,wpa (13.1)
Ca = 59&*“bJab+wZPa (13.2)
= 19(*)“”Jab+zﬁaapa (13.3)
Po = %wgb(] + LoP, (13.4)

where, Ju, P, are the generators of the four—dimensional Poincaré group,
. (x)ab
namely the angular momentum and linear momentum, w, " represent the
Lorentz - spin connection coefficients, W, ¥2 9&*)ab’ §)aab are the given
spin-tetrad and spin - connection coefficients, and L? deformed tetrad coef-
ficients. We use Greek letters A, u, v, ... for space-time indices, «, 3,7, ...
for the spinor, a,b, ¢, ... for Lorentz ones, and the index (o) represents the
deformed variable; \,a, a =1, ... ,4. The general transformations of coordi-

nates on S@ M are

o =" (2"), &, = €,.(65,67),€" = E7(€7,65), N = A (13.5)

13.2 Connections

We define the following gauge covariant derivatives

* 5 1 *)a * Qv 6 1 oa
(a) DY) = s T QW;S) T (b)) DY = BTN + 59 9 T
0 1
() DY = (9—50‘ B C IRk 9
(d) DY) = 9 w“bjab (13.6)

O\
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where,
5 ) o _. 0 0
o~ g T Negg ~NigE ~Nigs
0 0 .0 0 0
- = NeB 2 2 _gp_Z
3¢, e, N aeran = Logan (13.7)

The nonlinear connection coefficients are defined further. The space-time,
Lorentz, spin frames and the deformed frame are connected by the relations

5 6
@) 5o = P

0 a0 O o 0 0
Oz, = V5 5@ = Yo

0 0

[N — n_—
(0 5y = iz (13.8)

The relation (13.8a) is a generalization of the well - known principle
of equivalence in the total space of the spinor bundle S® M. In addition,
the relations (13.8a, b,V ¢) represent a generalized form of the equivalence
principle, since the considered deformed spinor bundle contains spinors as
internal variables.

The absolute differential of an arbitrary contravariant vector X* in S@ M,
has the form

DXY = (DY) XV)da" + (D XY)dé, + (DY XY)dE™ + (D XV)dA  (13.9)
The differentials DE,, DE*, DX can be written
D5 = dés+ N2dE™ + Ngodé, + N, da"
DEP = deF + NP dE™ — NP dE, — NP dat (13.10)
DA = dX\+N%dz" — NedE, — Nodee,
where
N = {No?ﬂaNﬁm ~§a’N£,Nfa’N£’Ns’Nf’N£}

represent the coefficients of the nonlinear connection which are given by

1 *)a \ / 1 *)a ¢ o 1 @
N/@N = awlg) bjabéﬂ? N;IA@ = _éwl(l) bjabfﬁ"/\/’# - iwolljjab
Y 1_*aa 7o 1_*aa & \ 1 a c
Nga = 56( ) bjabgﬂa Noﬁ = _59( ) bjabgﬂa No = iwobjabgfli;‘ll)

1 a 1 *)a ¢ 0 1 a
(3,@ = 58(()) bjabé@a Noﬁa - _58((1) bjab£ﬁ7 Na = §w0b‘7ab§o"
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The metrical structure in the deformed spinor bundle S® M has the form
G = gu(r,&ENda" @ dr” + gag(z, €6, \)DE* @ DEP +
+9°%(2,6,&, \)Déa @ DES + goo(,£,6, )DAR DA (13.12)

where "* denotes Hermitean conjugation. The local adapted frame is given
by

and the associated dual frame
¢t = (D" = da™, D€, DEP, DN}, (13.13)

where the terms -2 o 55 , D,\, Dx" Dé’g,Df are provided by the relations
(13.7), (13.9), (13.10).

The considered connection in S® (M) is a d-connection, having with re-
spect to the adapted basis the coefficients

Fgc - {Fupu7czlja7cﬂa V0M7F,(8*)\ 705770501 _o: ’
ow)ﬁ7 CW Cga7 O,@o’ ou 700(1 Ogon go} (1314)
defined by the generic relations
) ) ) o o6 0 0
D s =14 € — ==y f 13.15
520 028 BC A7 024 {(53:“’5@’8&‘“’6)} ( )

It preserves the distributions H,F®, F@ R, and its coefficients are de-
fined by

) ) ) )
— Teu_2 —OHF
Dé%ﬂéx” Loy dar’ D@%(Sz” vk
) ) ) )
D — (Ore D — T
5 Oa” o dar’ o dav Yo dak’
5 e 0 )
Pisse, = "o s Patsg, = O
) ) ) - )
Ds — = (Pa__ Doy — =B
g O ST
0 0 0 0
Ds; — = I'Wi__ Do — =0 —
57 O v AgB’ 967 OEP Cﬂaagv’
D, Dl 00
5¢a QLB 0" ax Q&P oce
0 0 0 ~ 0 0 0
& (x)o ¥ (Yoo Y __ rvwo
Paan = Togn Py =G i Patan =Ygy
'Dgg = [° — (9
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The covariant differentiation of tensors, spin-tensors and Lorentz - type
tensors of arbitrary rank is defined as follows:

STH-

VTl = e DT 4 =TT
VT = 65T€i + OO+ = GO
VoTl = T CLTI . = CLTL:
VoIl = 87;: + DR TS — o+ DT
Ve = 6?75 ~TEIes — k@I (13.16)
V‘S@g;;; = 6?; —C”5<I>aj—...+¢>g::(j§“5
VPG = 8;1); — O @S — .+ 5O
Vodg = &% LU og — 4 oy )
VOVE = Tl b Py
v = %+..-+9‘QZ’“V£ O
v((j)vca _ aaV; +9 Vb 9((;0)12%(1
SV = %+w§Z)“V§?::'+---—w§?”%‘i’:'-

The covariant derivatives of the metric tensor g,, are postulated to be zero:

DY g = 0, D%, = 0, D gx = 0,D() gur = 0. (13.17)

13.3 Curvatures and Torsions

From the relations (13.6) we obtain the curvatures and torsions of the space
S@ 0

DY, D] = DYDY — DYDY = R Py + R Jab (13.18)

(%
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with their explicit expressions given by

u ohg,  5he (arb (Vay b
R, = -t -y,
(*)ab (*)ab
szy _ (SC(‘;M _ &v‘;/u +wl(t*)apw£>;)b _ wlg*)paws;)b’
xv T
5w(*)ab 5w(*)ab
ab H v (*)ap, (*)b (*)pa, (*)b
Ry = Szv Oxh tw ey — W
* * a 1 a
(D, DS = PioPu+ 5 Pl (13.19)
(x)ab (x)ab
ng _ 6iau _ auajzt + egs;)bw/(;k)ac . ng;)aw/(;k)cb’
T e
sy O
a N (*)a,c _ pEapc
Puoz - 51‘H aé?a +wuc ¢a eac h/u
sy O
a a (*)a,c _ pEapc
p,U«Ol - 5{1)“‘ aéta +w,U‘C wa eac hu

Similarly to [148], the other four curvatures and torsions result from the
commutation relations

* « Dao 1 paba
DY, D] = PP, + o D o (13.20)
1

(DY DWP] = sfap, 4 §S§bﬁJab (13.21)

* a ]' a,
D), Dé N = QP+ §Qa”ﬁjab (13.22)

~ 1~
(D™ DWF) = Q*fep, 4+ 5Qabaﬁj&b, (13.23)

The contribution of the A\ - covariant derivative Dg*)

lowing curvatures and torsions

provides us the fol-

* * a ]‘ a
(DY), D] = R2 P, + §ROZJab (13.24)

a 5La 5hg *)a rb *)aqg b
5w(*)ab 6w(*)ab
ab H o (*)ap, ,(x)b _  (x)pa, (*)b
RON = 5 o +w, pwop wy P W
(*)ab (*)adb
Rab _ (5wu _ Owe + w(*)apw(()z)b _ w(()*)pawl(j;))b’

o oA

Sz #
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D), D) =0, Rip=0, R,=0. (13.25)
_ 1-
[P, DHe] = poap, 4 §PgbaJab (13.26)
B a&aa 5La
poe — . Ja,aa aaLc
° O\ (5§a -
~ HO(x)aab 5w(*)ab B B
aba o o (*)ab, (x)ac _ p(*)ac, (x)ab
A R
- 90(x)aab 5. (ab B
aba . 0 (*)ab, (x¥)ac _ p(*)ac, (x)ab
F N T e
1
(D), DY) = PP+ SP (1327)
vy oLy
pe = a Yo Ja,c aLc
oa ar  ogn e Ve
80(*)ab 6w(*)ab
Pab _ o . o + 0(*)bw(*)ac . ‘9(*)aw(*)cb
ox O\ 5501 ac %o ac %o >
69(*)ab 6w(*)ab
pv — Wa'  0Wo e (ac _ gls)a ()b
o« EN 55@ ac %o

13.4 Field Equations

In the following, we derive by means of the Palatini method the field equa-
tions, using a Lagrangian of the form

L=WR+P+P+Q+Q+R,+P,+ Po) (13.28)
which depends on the tetrads and on the connection coefficients,
L2, 6pr™) = L(h,w®,9,9,0%) 9% )
where,
w4 € {(Ry(2), i)™ (2), Ua(2), 9(2), 07 (2), 902 (2), w0 (2))

_ 9 5 &6 0 0 e
6M_ 6ZM S {6xu75§aaa€—ayaA}, Z—(Z )—(I' 7§a7£ ,A) (1329)
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and

( R=WhERS,, = WMo PL,, P = 1o P

b
Q = QbEYsyy, Q= QU =Yg, S =1YUsSP,

R — LO hlth/ﬁRaC P — LO hm¢acpaca — LO hnqﬁapaof'

a~top’

\

The Euler-Lagrange equations are generally given by

oL _, oL oL
ox M\ 90y k@) ) kA

=0, (13.30)

: o) 0 0 o) o)
with 8M = 9. € Dk (Sé_a7 85__07 B3N

From the relation (13.30), the variation of £ with respect to the tetrads
hy gives us the first field equation
oL oL oL oL oL

aua(auhg) + a a(aahZ) + aaa(aahz) + aoa(aohz) - 8hg - 07 (1331)

where we denoted 0, = %. Finally, after some calculations we get,

1, -
HY — 5h,’iﬂ =0, (13.32)
where we put,

= R+P+P+Q+Q+S+R,+P,+P,
H) = 2R, +P)+P)+R), +P,+P,,
Rb_hﬁRZf{, P£:¢apbc Rb _Lohan +LohuRbc

va) o

Pub = ¢Q£Pybca) ng = Lz&acpgcav ng = quzgpobé

The equation (13.32) is the Einstein equation for empty space, in the

framework of our consideration. Also, the variation of £ with respect to

(x)ab .
o gives,

Ay ac(*) —+0° oL ap. T Yo aﬁ(*) = a('c) > =0, (13.33)
A(0,w”") A(0°w,”"") 00wy’ ™) Owy

From this relation we get the second field equation in the following form,

Oy [h(h Ry — hyhey)] — 0% [hhfivpas] — DaRRGWR] — Dol LY RG]~
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LWl + B0 + acd )+

c’ab

Rl (GR05)" + a0 — Lowl iRl = 0, (13.34)

where the parantheses () and [| are used to denote symmetrization and anti-
symmetrization respectively.
The variation of £ with respect to 12 provides the field equation

oL oL oL oL oL
Oy 4+ —"—+0 + 0, — =0, (13.35
on) 2 orn T Pa@en T a0 oo (1B

having the explicit form

1- 1 .
§¢§scg — PP QD = 0. (13.36)

2" palh

From the variation with respect to 1)

oL oL oL oL oL
d, -1+ ° 19 ~_ 10, - ==,
a(aywaa) a(aﬂwaa) fga(aﬁwaa) a(aowaa) awaa
(13.37)
we get the fourth field equation
1 _
2Pgww + W,Sgg +4yQL ., =0. (13.38)
Finally, we write down the other three field equations which are derived
from the variation of £ with respect to the connection coefficients Hé*)ab,
gaab and w((*)ab
oL oL oL oL
Ou(mrme=) + () + O3 ) 4+ O (=) = 0
W a@.am)) T2 Gaamy) T 2 Gaam) % GEamy)
(13.39)

with Q) e {g5) gixlaad )ab} which have the corresponding detailed
forms

0y (hZE) + 0p (W P02y — 0P (W) + B,(RLERETE )~ (13.40)
—hlw$ B + BTOI0 + 657 ey + LW EDS] = 0,
)

—hlwl B + BT O + 057 e ey + LW D] = 0
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( au(hhgiab)_'_ aﬁ(hwa[ﬂwa}b)—i_ aﬂ(h&gwab)"‘

Oo(RLENE op) — h[wbu h’;waa+ 05 w Wbjat (13.41)

. 20¢(1*)’yd¢7[d77z)b]a+ LZ(hgquaaw(()Z)d_ 77Z)ozdhfﬁ("}0a )] =0

([ hLo[hehsw S~ Whhol Rl -

05 P+ hDac 00— S )+ (13.42)

| ORIk hE)+ OplhLehidy 1+ O IhLhids] =



Chapter 14

Bianchi Identities,
Gauge—Higgs Fields and
Deformed Bundles

14.1 Introduction

In the works [148],[143] the concepts of spinor bundle S@M as well as of
deformed spinor bundle S@ M of order two, were intorduced in the framework
of a geometrical generalization of the proper spinor bundles as they have been
studied from different authors e.g. [39],[201],[200].

The study of fundamental geometrical subjects as well as the gauge co-
variant derivatives, connections field equations e.t.c. in a deformed spinor
bundle S@ M, has been developed in a sufficiently generalized approach.
[143] In these spaces the internal variables or the gauge variables of fibration
have been substituted by the internal (Dirac) variables w = (&,&). In addi-
tion, another central point of our consideration is that of the internal fibres
C,

The initial spinor bundle (S@ M, r, F), 7 : SP M — M was constructed
from the one of the principal fibre bundles with fibre F' = C* (C* denotes the
complex space) and M the base manifold of space-time events of signature
(+,—,—,—). A spinor in € M is an element of the spinor bundle S® M
148),

(z", €., €%) € S@ .

A spinor field is section of S® M. A generalization of the spinor bundle
S@ M in an internal deformed system, has been given in the work [143] .The

241



242CHAPTER 14. BIANCHI IDENTITIES AND DEFORMED BUNDLES

form of this bundle determined as
SONM=SPM xR

where R represents the internal on dimension fibre of deformation. The
metrical structure in the deformed spinor bundle S®® M has th form:

G = gu(®, & )de" @ da” + gas(z,&, &N DE @ DEF +
+g°%(x,6,E,\) D€ @ DES + goo(w,€,E,)DA® DX (14.1)

where “x” denotes Hermitean conjugation. The local adapted frame is given

by:

o o o o 0

(K—A:{@’@’éé—_a’a} (142)

and the associated dual frame:
A= (D" = da™, DEsDEg, Doy} (14.3)

where the terms Doy, Dz, D€ég, DEP are provided by the relations

(6)-(7) of [143]. .
The considered connection in S® M is a d-connection [109] having with
respect to the adapted basis the coefficients(cf. [143] ).

5 >\75£

Phe = {LUw Cn, Cre vl TG, 8 oo,

vp ) Trvar ay?
NS NNl cga,cﬁo,rg’; LC0 OO o). (14.4)

The metric G of relation (14.1) could be considered as a definite physical
application like the one given by R. Miron and G. Atanasiu for Lagrange
spaces [111] for the case of spinor bundles of order two. According to our
approach on S® M the internal variables £, € play a crucial role similar to
the variables y™, y® of the vector bundles of order two.

The non-linear connection on S@ M is defined analogously to the vector
bundles at order two (cf. [111] ) but in a gauge covariant form:

T(S®M) = HSOM) o FO(SOM) 0 FOSPM) @R (145)

where H, F), F®) R represent the horizontal vertical normal and deforma-
tion distributions respectively.

In the following we study the Bianchi identities and Yang-Mills-Higgs
fields on S@ M bundle..
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14.2 Bianchi Identities

In order to study the Bianchi Identities (kinematic constraints) it is necessary
to use the Jacobi identities:

Sy DY, (DY, DY) =0 (14.6)

There are forty-eight Bianchi relations derived from twenty-four different
types of Jacobi identities. Two of these relations are identically zero. There-
fore remain forty-six Bianchi relations. We will give now some characteristic
cases of the Bianchi identities.

Similarly to our previous work [143], the gauge covariant derivative will
take the form

DY) = ;H + %wfj)abjab (14.7)
here
9 _ 9 9 el jod
Saxt Qe Hog, " og HON
or
5; = AP,
with
A = AT NOLELG, Py =
( ( pE0 Tk e T 5
AL = hi— Nopth®® — Ngwg.

After some calculations we get:

M (* H(x) 70k 5RZ Ha x)ab pc
DD, DY) = (G2 4 Ry Al + W Ry P
1 5}?26 *)ed pe
+(5 (9:1:“)\ + W RG ) ee (14.8)

and wﬁ(f)ab represent the Lorentz-spin connection coefficients. We define also:

- 10R e e

DuBS = Gggn Te R (14.9)
e pa gég pa A *)ab De

DpRiy =~ 4 Rp AL+ w B (14.10)
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By cyclic permutation of the independent generators J.., P, we get the
following Bianchi identities,

D, R¢\ + D.RS, + D\RS, =0 (14.11)
D, RS + DRSS, + DA\R:, = 0 (14.12)

Using the Jacobi identities Qv 5,7) DY, [f)(ﬁ*)7 D]l = 0 the Bianchi
identities with respect to spinor quantities produce the relations,

D.Q% + DsQ% + D,Q% = 0, (14.13)
DaQ%, + DsQC, + D,Q% = 0. (14.14)

The new Jacobi identity, due to A, has the form

(D{, DS, DS =0 (14.15)

which yields us no Bianchi identity.

Bianchi identities of mixed type give us the kinematic constraint which
encompass space-time, spinors and deformed gauge covariant derivatives. In
that case from the Jacobi identities

QuaO [D/(j)v [ng)v D(()*)]] =0

we get the relations

N N(x) 7y Spda » e *)d pa
(DY, (DY), D)) = ( o2 o Do Ay, + Wil ) Py
1P .
+(§ﬁ05 + WP T (14.16)
Dd
D® 1D P = % pd gc *)d pa \ p
[ a?[ 0 » u]] (a§a+ cp0 a+*waa yO)d
1 apcd ~
“5—@5? + Wi Bit) Jed (14.17)
Pd
PO, 100, b = (2ran | pa ge  y0ipe ) p
[ 0 7[ oo a]] (a)\ + cay 0+w0a au) d
10P< .-
(gt Wi P J g (14.18)
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where,
. o 1 . o 1
DY = — = Jap, DY = — 4+ -0
K’ oxH + QW“ b Ha o0&~ + 2 ¢
~ 0 0
D(*) = —_ abJa —_— = Luhapa =
0 ox Yo e By = Rl 5
Now we put,
- 5P - -
DH da = —= + P(fito W&Z)dP;o:
. OP . N
DanO = L + Pcduo wg;)dPSO?
~d o ap ~d (*)d Pa
Dy P, + P Ao+ wo, P

in virtue of (14.14), (14.15) and (14.16) we get the identity

DB, + DB+ DyPY, = 0

Similarly we define

From (14.18)-(14.20) we get

10Pg

2 Oz
1 0P
2 9o
1 0P

—F +tw

2 0\

cpad
+ w(*)cpad

(* Cpad

Oa?

)

ap’

D, P§+ Do Pid + Do Pt = 0

14.3 Yang-Mills-Higgs equations.

ap

i

ap*

245

(14.19)

(14.20)

(14.21)

(14.22)

(14.23)

(14.24)

(14.25)

(14.26)

The study of Yang-Mills-Higgs equations within the framework of the geo-
metrical structure of S (M)-bundle that contains the one-dimensional fibre
as an internal deformed system can characterize the Higgs field which is stud-
ied in the elementary particle physics. In our description we are allowed to
choose a scalar from the internal deformed fibre of the spinor bundle S (A1).
Its contribution to the Lagrangian density provides us with the generated

Yang-Mills-Higgs equations.
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In the following we define a gauge potential A = (A, Aa, A%, ) with
space-time and spinor components, ¢ : R — g which takes its values in a

Lie Algebra g.

A:S(M)—>g

AX = Aé(Tiu [TZ‘, Tj] = CZIBTk
AX = {AN,AQ,AQ,QO}

where the elements 7; are the components which satisfy the commutation
relations of the Lie algebra. Then A is called a g-valued spinor gauge po-

tential.

We can define the gauge covariant derivatives:

D*=D" +iA,

D, +iA,
D, +iA,
(14.27)

In virtue of the preceding relations we get the following theorem:

Theorem 14.1. The commutators of gauge covariant deriwatives on a
S@ M deformed bundle are given by the relations:

a) D

b) (D, D=
&) [Da D)
d)  [Da, Dy
¢)  [Dy Dol
n oD

D,,D | +iF
Do, D)+ iF?
(D, Dg) + iFag
[D,, Do) + iF
D" D+ iF” (14.28)

The curvature two-forms Fxy, FXY FX, XY = {a, 3, u, v} are the g-valued
field strengths on SPM and they have the following form:

Fla D,A,
o= b

F, = DA~
F.5 = D,Az—
o= DA

D,A, — D,A, +i[A,, A)]

(14.29)
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The appropriate Lagrangian density of Yang-Mills(Higgs) can be written
in the form

~ ~ o~ ~ = po ~  ~af =03 ~a
L = tr(Ep B 4 tr(EW B +tr(FaE +tr(FF,
1 1.

+om?e® — Str{(Dup) (D)) %tr[(ﬁaw)(f?“w)] (14.30)

In our case the Yang-Mills(Higgs) generalized action can be written in
the form

Ty m) = / Ldizd*ed*€d) (14.31)

From the Euler-Lagrange equations

oL - oL oL
—_— —_D _ — =0 14.32
Ay X(a(DXAy)) dAy (14.52)
the variation of L with respect to A, is
. oL - 0L - oL oL
Di(—=——)+ Ds(—=——) + D (== — =0 14.33

and it will give us after some straightforward calculations the equation:
DyF* + DgF* + DPF} + [p, D ] = 0 (14.34)

Similarly from the variation of L with respect to A, and A? we associate
the equations:

DyF* + DsF) + D°F) +[p, D7) = 0, (14.35)
DyFF + DsF> + D°Fy, + [, Dyg] = 0. (14.36)
So we can state the following theorem:

Theorem 14.2. The Yang-Mills-Higgs equations of S@ M -bundle are given
by the relations (14.30)-(14.51).

14.4 Field Equations of an Internal Deformed
System

Considering on the deformed spinor bundle S M x R a nonlinear connection
and a gauge d-connection, the authors obtain the equivalence principle and
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the explicit expressions of the field equations corresponding to a Utiyama
gauge invariant Lagrangian density produced by the corresponding scalars of
curvature; these results extend the corresponding ones for S M.

The concept of a spinor bundle S@ A and its relation to the Poincarée
group were introduced in [140, 148]. This group, consisting of the set of rota-
tions, boosts and translations, gives an exact meaning to the terms: “momen-
tum”, “energy”, “mass”, and “spin” and is used to determine characteristics
of the elementary particles; also, it is a gauge, acting locally in the space-time.
Hence we may perform Poincaré transformations for a physical approach. In
[140], the metric tensor of the base manifold (M, g,,(, &, €)), depends on the
position coordinates and on the spinor (Dirac) variables (&,,£%) € C* x C*.
A spinor bundle S (M) can be constructed from one of the principal fiber
bundles with fiber /' = C*. Each fiber is diffeomorphic with one proper
Lorentz group. In this study we apply for the space S@ M x R an analogous
method as in the theory of deformed bundles developed in [6], for the case of
a spinor bundle S@ M = M x C*? in connection with a deformed internal
fibre R. The consideration of Miron d - connections [109], which preserve the
h— and v—distributions is essential in our approach, as in the previous work:
this standpoint enables using a more general group G, called the structural
group of all rotations and translations, that is isomorphic to the Poincare Lie
algebra. A spinor is an element of the spinor bundle S@ (M) x R where R
represents the internal fibre of deformation. The local variables are in
this case

(7",€0, €%, 0) € SP(M) x R= SP (M), € R.

The non-linear connection on S® (M) is defined analogously, as for the vector
bundles of order two [111, 120]

T(S@M) = H(S2M) @ FO(SPM) & FO(SPM) @ R,

where H,F1), F® R represent the horizontal, vertical, normal and deforma-
tion distributions respectively.

We introduce the fundamental gauge 1-form fields which take values from
the Lie algebra of the Poincare group and denote by J,,, P, the generators
of the four-dimensional Poincaré group (namely the angular momentum and
linear momentum), by w,(f)ab - the Lorentz - spin connection coefficients, ¥,
we. 9&*)@, g*)aab _ the spin-tetrad and spin - connection coefficients, and L
- the deformed tetrad coefficients. We use Greek letters A, u, v, ... for space-
time indices, «, 3,7, ... for the spinor, a,b,c,... for Lorentz ones, and the
index (o) represents the deformed variable; A\,a, a = 1,...,4. The general
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transformations of coordinates on S@ M are
xlﬂ = xlﬂ(xu)’ fg = f;(fﬁa €ﬂ>7 gla = E/O‘(gﬂ’ €ﬁ>7 )‘/ = A

Like in [140, 148] we define the following gauge covariant derivatives,
including the new derivative corresponding to the deformation-parameter.

The space-time, Lorentz, spin frames and the deformed frame are shown
to be connected by a set of the relations which generalize the well - known
principle of equivalence in the total space of the spinor bundle S® M.

The deformed spinor bundle S® M is endowed with a metrical struc-
ture.The considered connection in S (M) is a d-connection; it preserves the
distributions H,FM F® R, and is assumed to be metrical.

The covariant differentiation of tensors, spin-tensors and Lorentz - type
tensors of arbitary rank is defined as in [140, 148]; also, are present the
supplementary derivation laws relative to the deformation component.

From the anticommutation relations of the adapted basis, we obtain the
curvatures and torsions of the space S@ M

R Rab Pab

12 V7 Ve %)

a
Pl

and, similarly to [148], other four curvatures and torsions. The contribution

)

of the A - covariant derivative DY provides us the following curvatures and

torsions

Ra Rab

op? * Yo

Rgb =0, Ry, = 0, By, Py™, Py,

o)

ab
P

In the following, are derived the field equations, by means of the Palatini
method, using a Lagrangian of the form

L=hR+P+P+Q+Q+R,+ P, + Po)
which depends on the tetrads and on the connection coefficients,

LKA, 0067 = L(h,w™ 4,4, 0% 9 )
where,

€ {(hy(2), wi ™ (2), Ua(2), 977 (2), 000 (2), 0000 (2), W (2))},

(5{5586

oM = 537 € \ 5an 05, 98 DA

}, 2= (M) = (@, 60,8, 0)
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and

(R = hihiR; P = hiy¢ P P = o Pe,

u,ﬂ-c? )
Q= QULuty, Q=0 =t S=151mSw°

Ry, = LOW!hERS, P, = LW P2, P, = LOhfyo P,

op? a

\

The Euler-Lagrange equations are generally given by

oL _ 4 oL oL
5k — M 9(0y k@) ) 0k

=0,

: _ 0 0 0 o 0
with (9]\/[ = 5.7 € {8:5_‘” 55_0785_7‘1’ (-

The variation of £ with respect to the tetrads hy gives us the first field
equation

1
HY — 5h,’iH =0,

where we put,

H = R+P+P+Q+Q+S+R,+P,+P,
H) = 2R, +P)+P +R),+P,,+P,,,
heRy., — Py=viPy, R, =Lih"R,, + Lihi Ry,

pb = ¢acp£ca, Poby - Lgiacpobcav Pobu - quzgpobocz'

The equation (14.4) is the Einstein equation for empty space, in the

framework of our consideration. Also, the variation of £ with respect to

W gives the second field equation

O, [n(hhy, — Ry hy)] — 0% [hhifitpas] — BalRRGUR] — Oo[RLYRY]—
—hlwS B + BAD205) + )+

ab
FHG 0L + a0 = L hichly =0,
where the parantheses (... ) and [... | are used to denote symmetrization

and antisymmetrization respectively.
The variation of £ with respect to 1% provides the field equation

1- 1 -
§¢fscg + S PY R 4 Qg = 0.

2 m
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From the variation with respect to 1** we get the fourth field equation
1 Dbac hu 1 bs 7Y Nd
§PH b + §¢ﬁbsaa + ¢anwa =0.

Finally, are obtained the explicit expressions of the other three field equa-

tions, by means of the variation of £ with respect to the connection coefli-
cients Qé*)ab, faab and w((z))ab.
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Chapter 15

Tensor and Spinor Equivalence
on Generalized Metric Tangent

Bundles

15.1 Introduction

The theory of spinors on pseudo-Riemannian spaces has been recognized by
many authors, e.g. [128, 39, 200] for the important role it has played from
the mathematical and physical point of view.

The spinors that we are dealing with here, are associated with the group
SL(2,C). In particular SL(2,C) acts on C?. Each elements of C? represents
a two-component spinor. This group is the covering group of the Lorentz
group in which the tensors are described [39]. The correspondence between
spinors and tensors is achieved by means of mixed quantities initially intro-
duced by Infeld and Van der Waerden.

The correspondence of tensors and spinors establishes a homomoerhism
between the Lorentz group and the covering group SL(2,C).

In the following, we give some important relations between spinors and
tensors on a general manifold of metric g,,.

Let 0 : S® S — V* be a homomorphism between spinor spaces S, S and
four-vectors belonging to the V* space, then the components of o, which are
called the Pauli-spinor matrices, are given by

1 10 1 0 1
0 _ 1 _
Oap = \/i ( 0 1 ) ) O Ap \/i ( 1 0 ) ) (151>
0 i , 1 0
—i0) AT 5\ 0 -1

253

0'1243/ =

Sl -



254 CHAPTER 15. TENSOR AND SPINOR EQUIVALENCE

The hermitian spinorial equivalent notation of o’y 5, is given by oy 5, = 0%, =
ot 4. Greek letters u,v,--- represent the usual space-time indices taking
the values 0, 1, 2,3 and the Roman capital indices A, B, A’, B’ are the spinor
indices taking the values 0,1. The tensor indices are raised and lowered by
means of the metric tensor, whereas the raising and lowering of spinor indices
is given by the spinor metric tensors € ac, € grcr which are of skew-symmetric
form. Thus, for two spinors €4, n" we have the relations, moreover we have,

§AnA = fAnB€BA = —§A€AB7LB = —anB.
For a real vector V), its spinor equivalent it
Vap = V0l g, (15.2)

where o, 5, are given by the relation (15.1). Also, the following formulas are
satisfied,

i

AB’ AB’
Py T =g, oot =3

Oap 0y - Vv
The spinor equivalent of a tensor 7, is given by

Ty = 03 0P Tupcp
and the tensor corresponding to the spinor Tapcpr is,

_n v
Tapcp = 0ap0cp L.

The relationship between the matrices ¢” and the geometric tensor g, ,
as well as its spinor equivalent are

H —
YuwOapOCp = EACEBD, (15.3)

B v _
gAB'CD’ OapOcp' Yuw = €EACEB' D/,
! / ! ! ! /
AB'CD’ _ _AB O,S‘D g = SAC_B'D"

g - O'M
The complex conjugation of the spinor Ssp/ is

Sap = Sap.

Furthermore, for a real vector V,, the spinor hermitian equivalence yields
Via = Vap. If a vector y* is a null-vector,

v ye = gyt =0, (15.4)
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then its spinor equivalent will take the form
Yk = ok 50407 (15.5)

where,64, 65" represents the two-component spinors of SL(2, (') group.
In the Riemannian space, the covariant derivative of z-dependent spinors
will take the form

agA ~A! agA, = A TR/
Dqu = Oh + LgugB, DugA = % + LglufB )

04 Fo_ 0w rpo;
Duta = 220 = L3.8, Dufw = 220+ L8,

A FA" £ : A TA
where 7, §%, {4 represents two—components spinors and Ly, Ly, are the
spinor affine connections. In the case that we have spinors with two indices,
the covariant derivative will be in the form

D SAB/ _ aé—AB 4 LA gCB’ 4 EB/ gAC/
p ~ oen Cu cl, :
Applying this formula to the spinor metric tensors € ¢, €gcr We get
Doy = 4B e e, (15.6)
neAB = 5 A,6CB B,EAC .
If
DueAB = O,

we shall say that the spinor connection coefficients Lgu are metrical together
with the relations

D,o4p =0, D=0, Dyeap =0, D,eYP =0. (15.7)
From the relation (15.6) we immediately obtain
Lpa, = Lag,
where we used the relation
Lap, = L cca.
Also from the relation (15.7) we have

v _ v v _p C v 7D v _
DHO-AB/ — auO-AB/ —I'_ LHPOAB' - LA;,,O-CB/ - LBLO-ADI — O
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15.2 Generalization of the Equivalent of Two
Component—Spinors with Tensors

The above mentioned well-known procedure for SL(2,C) group between
spinors and tensors in a pseudo-Riemannian space-time can be applied to
more generalized metric spaces or bundles. For example G. Asanov [14] ap-
plied this method for Finsler spaces (FS), where the two-component spinors
n(z,y) depend on the position and direction variables or n(z?, 2%, with za
a scalar for a gauge approach. Concerning this approach some results were
given relatively to the gauge covariant derivative of spinors and the Fins-
lerian tetrad. In our present study we give the relation between spinors of
SL(2,C') group and tensors in the framework of Lagrabge spaces (LS).

The expansion for the covariant derivatives, connections non-linear con-
nections, torsions and curvatures are the main purpose of our approach.

In the following, we shall study the case that the vectors of LS are null-
vectors and consequently fulfill the relation (15.5). In Finsler type space-time
the metric tensor g;;(z,y) depends on the position and directional variables,
where the vector y may be identified with the frame velocity ([14] ch. t). So,
a vector v* will be called null if

i (z, v)v"v! = 0. (15.8)

In this case there is no unique solution for the light-cone [80, 26]. The problem
of causality is solved considering the velocity as a parameter and the motion
of a particle in Finsler space is described by a pair (z,y). The metric form
in such a case will be given by

ds® = gij(z,v)dz'dx?.

When a particle is moving in the tangent bundle of a Finsler (Lagrange)
space-time its line-element will be given by

do? = Gudrdz® (15.9)

o dx®
= g (x,y)da'da? + g{})(w, y)oy"6y”, (ya - E) ’

where the indices i, j and «, 3 taking the values 1,2, 3,4 and
Sy~ = dy™ + Ni'da'.

Thus we have
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Theorem 15.1. The null-geodesic condition (15.8) is satisfied for a parti-
cle moving in the tangent bundle of Finsler space-time of metric do® (15.9)
with the assumption, the velocity v is taken as a parameter of the absolute
parallelism

dy® = 0.

The previous treatment of null-vectors in Finsler spaces can also be consid-
ered for Lagrange spaces involving Lagrangians which are not homogeneous
[109, 26]. The introduction of spinors 0,0 of the covering group SL(2,C)
in the metric tensor g(z,0,0) under the correspondence between spinors and
tensors in LS,

(33', y) - (.I’, VAB/ - (33', eAa Q_Al)

preserves the anisotropy of space with torsions. in this case all objects de-
pend on the position and spinors, e.g. the Pauli matrices 6y (.0, 0). Such
an approach can be developed for a second-order spinor bundle applying the
method analogous to [144]. In virtue of relation (15.4), a null vector in spinor
form can be characterized by

ganp 00V 0808 = &' .60, .,9:,0407 0707 = 0. (15.10)
Proposition 15.1. In a tangent bundle of metric (Finsler, Lagrange)
G = gij (33', y)dl’zd]?] + hab(xa y)(sya5yb’

if the vector y is a null, then the corresponding spinor metric of the bundle
will be given in the form

G = ganppdd*do? dOPdO" + haxppd(0P65)5(646%) (15.11)
or equivalently
G = ganppdd*d0* dOPdO” + hyapp oy Y 6yPP,
where y*4" = 0404, when y is null vector (cf. [39)).

Proof. The relation (15.11) is obvious by virtue of (15.3) and (15.5).

Remark. A generalized spinor can be considered as the equare root of a
Finsler (Lagrange) null vector.
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15.3 Adapted Frames and Linear Connecti-
ons

In the general case of a LS, the spinor equivalent to the metric tensor

0*L 1
] — " =y L - —F2
Jii Oytoyd 2

is given by
~AA' ~BB'
9i5 =0 05  YJAA'BB'-

The corresponding Lagrangian will be L : M x C? x C? — R, with the prop-
erty L(z,0,0) = L(z,y), where L represents the Lagrangian in a Lagrange
space. We can adopt the spinor equivalent form of the adapted frames and
their duals in a LS,

o 0 o 0 0 4 .
_ m ) m A A
(533#’6?;") - (51:“’6%’80”)’ (da, 0y") = (d=", 06,067

as well as the spinor counterpart of the non-linear connection N [L of a LS,
N = (NN,
The geometrical objects 84, 564" are given by
00" = do* + Nda#, 60 =do* + N\ da". (15.12)
In virtue of (15.2), the bases 0,044/ are related as follows

0, = 24 O, (15.13)

_ 0 _
where 0, = 577 and Jaa = 307 347 -

Theorem 15.2. In a Lagrange space the spinor equivalent of the adapted
basis (8/0x*,0/0y*) and its dual (dzt,dy®) are given by

5 / A
a) — =5,"0400 — N'0a— N/ On (15.14)

b) 8p6ﬁ’4, = aAA’; P = {i,Oé}
C) dx” = 6-ZA/d0Ad9_A/

d) Sy~ = (0Vdo* + 649 )55 + (04 N2 + 0ANY)57 , doP o™
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Proof.The relations (15.14) are derived from (15.12) and (15.13).

Proposition 15.2. The null-geodesic equation of spinor equivalence in a LS
or F'S is given by

dy® = 654,04 d0* + 04d9”), N& =65, (07 N +04NY).  (15.15)
Proof. The relation (15.15) is obvious because of (15.14) d).

Proposition 15.3. The null-geodesic equation of spinor equivalence in a LS
or F'S is given by

04 do* (6% 4 N Y + 1) + 02d0Y (54 NY do* + 1) = 0. (15.16)

Proof. In virtue of relations (15.10) and (15.14) ¢,d) we obtain the
relation (15.16).

Affine connections and affine spinor connections are defined in the frames
of LS by the following formulas

) ) 0 g O
Ds s (5Iu) - Luuﬁ’ Ds/son (&W) = LA;Lwﬁv

.9 5 s
DJ/JJ:” (80‘4/) - LﬁuaeBm Da/aﬂA (5—) ONA(S—V’
D8/86A (803/) B/A 890/ ) Da/aﬂA ( ) BA/ 007

( 93/) CB’A’ 907 8/69 ( ) BA@OC’
5 9
Da/aéA/ (—) - MAI (1517)

Sxv

We can give the covariant derivatives of the higher order generalized
spinors (A% (x,0,0),

5CAB’ 3
AB' _ BA'.. 7B C ~AB'... C' ~AB'...
D Cpar = -+ Lcu G+ L u pi i — Ly, Cear — LyaCper”
ozt
AB' Sty AB'... AB'..
ApChar = 00F CCECBA/. +CC'ECBA/ CBE CA. CEA’ BC' ..
AB’ S T AC'... AB’
AZ/CBA’ - = +Ccz/ BA’.. CC/Z/ BA'.. CZ/A/ BC/ (1518)

007’
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Proposition 15.4. If the connections defined by the relations (15.17) are of
the Cartan-type, then the spinor equivalent relations are given by

_A/ 5914 A C_A/ Aée_A/ —A/ _C/ A
G4 THON AR 0t + 0 AR 0Y) = 1, (15.19)

@) O A 0+ 01 Ny 0Y) = 1

Proof. Applying the relations (15.18) to a null vector y with the Cartan-
type properties yj = 0 and y* |p= 05 [116, 14], and taking into account
the (15.2) a), (15.5) we obtain the relations (15.19). (As we have mentioned
previously the y-covariant derivative has corresponded to the spinor covariant
derivatives).

15.4 Torsions and Curvatures

The spinor torsions corresponding to the torsions of LS are given by an
analogous method to that one we derived in [144] for a deformed bundle.
The torsion tensor field T" of a D-connection is given by

T(X,Y)=DxY — DyX — [X,Y]
Relatively to an adapted frame we have the relations

- )\k@ )\k‘ae_A/
[ R RS

907" 5) = Duagyw T uases T luagge
L4 0 g 0
) :TMA,W +1}LBA/W +TMBA,89_B'

9 i) 0 e 0 o O

=Tpag5: T Toagge + Toagge

5 6 B R B,

(15.20)

o 0 R B
e) T (aoﬁ, @_B’) = Tg/AW + TB/AW + TB/AW

o 0 R
f) T (ae_A/ ) aTB) = TgA’W + TBA’W + TB’Aae_C/

o 0 R S PR
g) T(a—A/,aQ—B,) :Té/A/@_}_TB’A/aoT_}_TB’A’W'
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The torsion (15.20) a) can be written in the form

) ) )
Dsjson—— — Dgjspr— — | —, — | = 15.30
o0 5 v o0 5 {(53:“ 595”] ( )
) ) 0 ;0
A A A A
VI § e - Luyé'x)\ - RlLVaOA - V/u/ 80_‘4”
where the brackets have the form
0 ;0
vl _ pPA A
[(S/(S.CL’M, (5/(5]] ] = Ruyw + V/“’ W’ (1531)
and §/0z", R7,, V;,g are given by
0 _ 9 a0 g O (15.32)

Sk Ok k pA koogA

A _ |2 v
R, = — , V

o Sy dar
! . .
The terms Rﬁy, V/ﬁ‘, represents the spinor-curvatures of non-linear connec-

tions N4, le‘/. In virtue of the relations (15.20), (15.30), (15.31) we obtain
A TA A A _ _pA A _ A
r,=L,—-L,, T,,=-R,, T, =-V.,.
Similarly from the relations (15.20) b)- g), comparing with the torsion in the
following form,

J d o o d J
! (ay—w 6Y—Q) =~ Doovrya = Dapvagyr = [WP, m}

we can obtain the relations

T, = Ci, T4 = ON;; L4 15.33
Ap Aps Bp — BYEE ~ “Bu ( . )
T;lqu = _qu7 le\B = le\A’
T}AB = CfAB - leBAa Tff? = _Rjg;?’ T:A’ = _Cj\l’p
TA _ a]\fl14 TA/ _ CA/ _ OA’ PA/

pA” T gpAr TeB' T MuB T YB'w o S uB

! ! 80 '

TABA/ — _CEA/, TIfB/ — C;?B/ - Wg/,

where we have put

5 (o 0 5 [ @
SYP 9677 06~ [ 5YQ  \dur 065 [

A = B,B and C{ =C46".

So, we obtain the following:
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Proposition 15.5. In the adapted basis of a generalized metric tangent bun-
dle the spinor equivalent of coefficients of the torsion T of a D-connection,
are given by the relations (15.32)-(15.53).

Proposition 15.6. D-connection has no torsion if and only if all terms of
the relation (15.33) are equal to zero.

The curvature tensor field R of a D-connection has the form
R(X,Y)Z = [Dx, Dy|Z — DixyZ VXY, Z € X(TM).

The coefficients of the curvature tensor and the corresponding spinor curva-
ture tensors in spinor bundle are given by

oL, 5L’§H

Ry, = - + L8, LE, — L5, Lh, — RA,Ch, — VA Chy (15.34)
R, = S %L: + L4, L8, — L, LE, - R, LY, — VO,
RA/W = 5;:5%, _6§;fl +EVBA'LM_LEIVL;L RA OA’A ‘/;g/CD’A’
Pha = T by oh, - o1, + DO, Tk,
Plg, = aaL@’;;“ - 5?‘}? + L4,Cip — ClipLiy, + ZJHV; Chn ;XCA/B
Pl = 8;9%“ - 5?‘};’4 + L4, Cha — Cia L,

88 i CA’E MA Chra
Stas = om n o o, - OCh, - RiGChy
Stin = ot~ Sy oo, - Cpeyy — RACR,
STus = 20k _0ks | op 0B, — ORCBs - FESCEn
By = 2 Oh o i 1, Z;V/fcm, 4,0,
B, = " O o e as,0n, - e incn,
Ho, = e 88%%, OB, L2~ IE,C7,,

ON?P

| B/ 7D’
aeA/L LA’ C /C/
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ack,  ack, oLy
‘]LCA’B = 60/]‘3 - ae_f/ + Cﬁ’ngp - Ogycxlz’p - ae_f/ OD/V
o acr,,  ac”, aLY
Jovs = aéqAB - aéﬁg + ChiaClp — ChpClhy — WQCBB
(()C_'B/l ’ aCB// ’ ’ aLD, = !
JE/C’A == 8gAC - 89—1?4;4 + CE/DCCD"A - CE’ECg’A - Wng/D/
KZA/B’ - KEA’B’ - KE/IC/D/ == O

So we have

Theorem 15.3. The coefficients of the curvatures of a D-connection are
given by the relation (15.34).

Theorem 15.4. In a tangent bundle a D-connection has no curvature if and
only if all the coefficients (15.84) of the curvatures are equal to zero.

Finally, we note that the gravitational field can be described by virtue of
the corresponding spinorial form of the metric tensor equivalent to the spinor
bundle. This will be the object of our future study.
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