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Inflation
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Inflationary cosmology is reviewed. Particular attention is given to processes of creation.

1. Introduction

A typical universe should have had Plankian
size, live Plankian time and contain 1 parti-
cle. Yet, the observable Universe contains 1090

particles in it and had survived 1065 Plankian
times. Where does it all came from ? In other
words, why is the Universe so big, flat and old
(t > 1010 years), homogeneous and isotropic
(δT/T ∼ 10−5), why does it contain so much
entropy and does not contain unwanted relics?
These puzzles of classical cosmology were solved
with invention of Inflation [1].

1.1. Getting something for nothing
Stress-energy tensor T µν which drives the ex-

pansion of a homogeneous universe can be charac-
terised by two parameters, energy density, T 0

0 =
ρ, and pressure T ij = −pδij. Conservation of
energy and momentum T µν ;ν = 0 in an ex-
panding Friedmann universe takes a simple form
ρ̇ + 3H(ρ + p) = 0 . Here H is a Hubble pa-
rameter, H ≡ ȧ/a, and a(t) is a scale factor
which describes the expansion of the Universe.
Consider the stress-energy tensor Tµν of a vac-
uum. Vacuum has to be Lorentz invariant, hence
T ν
µ = V δ νµ and we find p = −ρ. Therefore, the

energy of a vacuum stays constant despite the
expansion. In this way, room for matter full of
energy could have being created. It remains to
find out how vacuum energy was converted into
radiation at some later stage.

1.2. Horizon problem and the solution
The size of a causally connected region (hori-

zon) scales in proportion to time, RH ∝ t. On
the other hand, the physical size of a given patch
grows in proportion to the scale factor, RP ∝
a(t) ∝ tγ . Exponent γ depends upon equation

of state, γ = 1/2 for radiation and γ = 2/3 for
matter dominated expansion. In any case, for the
“classical” Friedmann Universe γ < 1 and hori-
zon expands faster than volume. Take the largest
visible patch today. It follows that in the past
it should have contained many casually discon-
nected regions and the question arises why the
Universe is so homogeneous at large scales ? This
problem can be solved if during some period of
time the volume had expanded faster than the
horizon. During such a period the whole visi-
ble Universe can be inflated from one (“small”)
causally connected region. Clearly, this happens
if γ > 1, which means ä > 0. Either of these two
conditions can be used as definition of an infla-
tionary regime.

Using the Einstein equation ä = −4πGa(ρ +
3p)/3 we find that the inflationary stage is real-
ized when p < −ρ/3. If p = −ρ we have de Sitter
metric and the Universe expands exponentially.

A crucial and testable prediction of Inflationary
cosmology is a flat Universe, Ω = 1 (as usual, Ω(t)
is the ratio of current and critical energy densities,
Ω(t) ≡ 8πGρ/3H2). Indeed, Einstein equations
can be cast into the form ȧ2(Ω(t)− 1) = ȧ2

0(Ω0 −
1). Accelerated expansion, ä > 0, increases ȧ and
therefore drives Ω(t) to 1.

The first model of inflation was de-facto sug-
gested in [2]. De Sitter expansion appeared as a
result of vacuum polarization effects in a one-loop
order – too complicated to be sure that higher or-
der corrections are unimportant.

1.3. Arranging for a vacuum
Consider Tµν of a real scalar field φ

Tµν = ∂µφ∂νφ− gµν L
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with the Lagrangian L = 1
2
∂µφ∂

µφ − V (φ). In
a state when all derivatives of φ are negligible,
∂µφ ≃ 0, the stress-energy tensor of a scalar field
is that of a vacuum, Tµν ≃ V (φ) gµν .

There are two basic ways to arrange φ ≃ const
and hence to imitate the vacuum-like state.

1. The simplest possibility was suggested by
A. Guth in his original paper [1]. Consider po-
tential V (φ) which has a local minimum with a
non-zero energy density separated from the true
ground state by a potential barrier. The Uni-
verse will be trapped in the meta-stable minimum
for a while and expansion will diminish all field
gradients. Then the Universe enters a vacuum
state. Subsequent phase transition into the true
minimum ends inflation and creates the radiation
phase. Today the model of Guth and its variants
based on potential barriers is good for illustration
purposes only. It did not stand up to observations
since inhomogeneities which are created during
the phase transition into the radiation phase are
too large [3].

2. A. Linde was first to realise that things work
in the simplest possible set up [4]. Consider po-
tential

V (φ) =
1

2
m2
φφ

2 . (1)

Equation of the field motion in expanding Uni-
verse is φ̈ + 3Hφ̇ + m2

φφ = 0 . If H ≫ m the
“friction” is too big and the field (almost) does
not move. Therefore time derivatives in Tµν can
be neglected and inflation starts (in sufficiently
homogeneous patch of the Universe). Hubble pa-
rameter in this case is given by H ≈ mφ/MPl and
we see that inflation starts if initial field value
happen to satisfy φ > MPl. During inflationary
stage the field slowly rolls down the potential hill.
This motion is very important in the theory of
structure creation. Inflation ends when φ ∼MPl.
At this time field oscillations start around poten-
tial minimum and latter decay into radiation. In
this way matter was likely created in our Uni-
verse.

2. Unified theory of creation

Small fluctuations of any field obey

Ük + [k2 +m2
eff(τ)] Uk = 0 . (2)

Effective mass is time dependent here because of
the expansion of the Universe. Because meff is
time dependent, it is not possible to keep fluctu-
ations in vacuum. If one arranges to put oscil-
lators with momentum k into the vacuum, they
will not be in vacuum at a latter time since this
vacuum would correspond to wrong value of the
field mass.

Some remarks are in order:

• Eq. (2) is valid for all particle species

• Equation looks that simple in conformal
reference frame ds2 = a(τ)2 (dτ2 − dx2).
Everywhere in this chapter a “dot” means
derivative with respect to τ .

• Of particular interest are ripples of space-
time itself

– curvature fluctuations (scalar fluctua-
tions of the metric)

– gravitons (tensor fluctuations of the
metric)

• meff may be non-zero even for massless
fields

– graviton is the simplest example [5],
m2

eff = −ä/a

– m2
eff for curvature fluctuations has

similar structure [6] with a being re-
placed by aφ̇/H

• For conformally coupled, but massive scalar
meff = m0 a(τ)

Creation was only possible because nature is not
conformally-invariant. Otherwise meff = 0 and
vacuum remains vacuum forever.

2.1. Sources of creation
Amplitudes Uk in Eq. (2) are quantum opera-

tors and a theory of creation reduces to the the-
ory of Bogolyubov transformations or to a theory
of particle creation in homogeneous time varying
classical background. There are two important
instances of such background in cosmology:

• Expansion of space-time, a(τ)
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• Motion of the inflaton field, φ(τ)

Both can be operational at any epoch of creation

• During inflation

• While the inflaton oscillates (reheating)

During inflation superhorizon size perturbations
of metric are created which give seeds for Large
Scale Structure (LSS) formation and eventually
lead to formation of galaxies, the Solar system
and all the rest which we can see around us.
During reheating matter itself is created. Over-
all there are four different situations (two sources
times two epochs). If coupling to the inflaton is
not essential, the corresponding process will be
called “pure gravitational creation” in what fol-
lows. Let me consider all four possibilities in turn,
starting from

2.2. Gravitational creation of metric per-
turbations [7]

During inflation the motion of the inflaton field
is slow, while the expansion of the Universe is
fast. It follows that relevant cosmological scales
encompass small ∆φ interval. E.g. in the model
Eq. (1) the whole visible Universe is inflated away
while the inflaton field φ changes from 4MPl to
MPl. Potential V (φ) should be relatively “flat”
over this range of ∆φ to maintain the inflationary
regime. We may conclude that observables should
essentially depend on a first few derivatives of V
and the shape of the potential outside this region
of ∆φ is irrelevant. One may construct dimen-
sionless quantities (slow roll parameters) out of
potential derivatives

ǫ ≡
M2

Pl

16π

(

V ′

V

)2

,

η ≡
M2

Pl

8π

V ′′

V
. (3)

The value of potential itself during this period is
also relevant and defines the value of the Hubble
parameter, H2(φ) = 8πGV (φ)/3.

Solutions of Eq. (2) with vacuum initial condi-
tions give for the power spectra of scalar (curva-
ture) and tensor (gravity waves) perturbations

P (k)S =
1

πǫ

H2

M2
Pl

,

P (k)T =
16

π

H2

M2
Pl

. (4)

These spectra can be approximated as power law
functions

P (k)S = P (k0)S

(

k

k0

)n−1

,

P (k)T = P (k0)T

(

k

k0

)nT

. (5)

where scale dependence k enters via weak depen-
dence of H on the current field value (current
means here corresponding to the moment when
the scale gets bigger than the horizon and evo-
lution of the mode k freezes out). One expects
spectra to be nearly scale invariant since the field
(almost) does not move. Indeed, expanding in
slow roll parameters one finds

n− 1 = 2η − 6ǫ ,

nT = −2ǫ . (6)

2.2.1. Consistency relation
According to Eqs. (4) the ratio of power in

tensor to scalar perturbations is equal to 16ǫ.
On the other hand the exponent of tensor per-
turbations is also proportional to ǫ, see Eq. (6).
This gives “consistency relation”, nT ≃ −0.14 r ,
where the ratio of tensor to scalar power is ex-
pressed through the ratio of directly measurable
respective contributions to quadrupole CMBR
anisotropy, r ≡ CT /CS. Verification of the con-
sistency relation should give major peace of evi-
dence that the Inflation did happened.

2.2.2. Testing Inflation
Predictions of inflationary theory can be tested

measuring CMBR anisotropy and power spectra
of galaxies distribution. All tests completed so
far are in agreement with predictions. Latest
CMBR data [8] imply that the Universe is flat
Ω0 = 1.02± 0.04. The spectrum of perturbations
is nearly scale invariant, ns = 0.97 ± 0.1, and
Gaussian [9]. Overall normalisation of CMBR
spectrum fixes inflaton parameters. In the sim-
plest case of Eq. (1) mφ ≃ 1013 GeV.

Consistency relation was not tested yet since
it requires measurement of tensor perturbations.
In forthcoming CMBR experiments tensor and
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scalar modes may be disentangled. This can be
done unambiguously because tensor and scalar
perturbations contribute differently to the polar-
isation of CMBR (for a review see [10]) which
hopefully will be measured.

Measured position of the first acoustic peak in
CMBR not only tells us that the Universe is flat,
but also that the isocurvature perturbations are
ruled out as the primary block of structure forma-
tion. While during inflation both types of pertur-
bations, curvature and isocurvature, can be pro-
duced, the models which do not involve inflation
(e.g. network of cosmic strings) produce isocur-
vature fluctuations. Therefore this is an impor-
tant test of inflation [11]. In principle, curvature
perturbations may be mimicked by causal pro-
cesses [12], but polarisation measurements will
also give unambiguous proof that density pertur-
bations are of superhorazon origin [13].

While the tensor mode is not measured yet, it
is restricted by CMBR anisotropy measurements.
Different models of inflation occupy well defined
and different regions in the (r,n) parameter plane
[14], see Eqs. (3), (6). Regions, specified for new
[15], chaotic [4] and hybrid [16] inflationary mod-
els are shown in Fig. 1. Other inflationary models
are also bounded to these regions. For example,
“natural” inflation [17] fits the region of “new”
inflationary model. Parameter space favoured by
current CMBR and LSS measurements is also
shown [18] as a shaded area (note however that
size and shape of this region depends upon pri-
ors used). E.g., for the V ∝ φp chaotic inflation
model all this means that p < 6 at 99% c.l. [18],
while the hybrid model of inflation is disfavoured.

2.3. Gravitational creation of matter
Let us consider the gravitational creation of

matter. The source of creation is meff = m0 a(τ).
While matter is created in tiny amounts by this
process, it is most effective for heaviest particles.
If such superheavy particles do exist in nature,
this process naturally leads to Superheavy Dark
Matter (SDM) [19,20]. If these particles are un-
stable but long lived, they can explain [21] puz-
zling Ultra-High Energy Cosmic Ray (UHECR)
events.

Hybrid

Chaotic

New

Figure 1. Different models of inflation pre-
dict n and r to be found in specified regions.
Shaded area indicates parameter range favoured
by CMBR and LSS measurements.

2.3.1. Friedmann cosmology
It is particle mass which couples quantum fluc-

tuations to the background expansion and serves
as the source of particle creation. Therefore we
expect for the abundance of Super-Heavy parti-
cles

nSH ∝ m3
SHa

−3 . (7)

It is the expansion of the Universe which causes
particle creation, therefore creation is most effi-
cient at time τ0 when H ≈ mSH, while (comov-
ing) particle number is an adiabatic invariant at
later times. We expect that coefficient in Eq.
(7) should not be much smaller unity if we nor-
malize a(τ0) = 1. It follows that stable particles
with mSH > 109 GeV will overclose the Universe
if there was Friedmann singularity in the past –
Friedmann cosmology and SDM mutually exclude
each other [20].

2.3.2. Inflationary cosmology
In inflationary cosmology there is no singu-

larity and the Hubble constant is limited, H ∼<

mφ. Therefore, the production of particles with
mSH > H ∼ 1013 GeV is suppressed.

The present day ratio of the energy density
in SH-particles to the critical energy density is
shown in Fig. 2 [20] (see also [19]). Super-Heavy
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Figure 2. Present day density of gravitation-
ally created Superheavy Dark Matter. Solid
lines correspond to minimally or conformally cou-
pled bosons, dotted line describes abundance of
fermions.

particles with the mass few × 1013 GeV are ex-
cellent candidates for SDM and progenitors of
UHECR. If it will be proven that UHECR are due
to decays of SDM, it will mean that Friedmann
expansion was preceded by some other epoch,
likely by Inflation.

Consistency with observations requires
ΩSHh

2
∼< 0.3. We see that light particles,

mSH ≪ 1013 GeV, are overproduced by many
orders of magnitude, unless their coupling to
curvature is conformal ξ = 1/6. This poses
a serious danger [22] since supresymmetry and
suprgravity models predict many such particles,
e.g. moduli, gravitino, etc. They may be dan-
gerous relics, even if unstable, since they can
easily survive to post-nucleosinthesis epoch and
their decay products destroy 4He and D nuclei
by photodissociation [23].

2.4. Decay of the inflaton oscillations
While bosons and fermions are created equally

efficiently by a pure gravitational mechanism,
coupling to inflaton uncovers deep differences be-
tween them. Effective mass of a scalar X (in-
teraction Lagrangian Lint = 1

2
g2φ2X2) and of a

fermion ψ (interaction Lagrangian Lint = gφψ̄ψ)

is given by the following expressions

scalarX : m2
eff = m2

X + g2φ2(t) (8)

fermion ψ : meff = mψ + gφ(t) . (9)

Effective mass of a scalar X depends quadrati-
cally upon the inflaton field strength and there-
fore it is always larger than the bare mass mX . In
the case of fermions inflaton field strength enters
linearly and effective mass can cross zero. Even
superheavy fermions can be created easily during
these moments of zero crossing [24]. (It is eas-
ier to create a light field and it is effective mass
which counts at creation. At the end of the day
it is bare mass which counts.)

Coupling g by itself is not relevant for the pro-
cess of creation, g always comes in combination
with inflaton field strength. To make dimension-
less combination out of it we have to re-scale gφ
by a typical time scale relevant for creation. In
the present case this will be period of inflaton os-
cillations or inverse inflaton mass

g2 → q ≡
g2φ2

4m2
φ

. (10)

Parameter q determines the strength of particle
production caused by the oscillations of the infla-
ton field. It can be very large [25] even when g is
small since φ2/m2

φ ≈ 1012.

2.4.1. Matter creation: Bose versus Fermi
Bose-stimulation aids the process of creation

of bosons. Occupation numbers grow exponen-
tially with time, n = eµt, which results in a
fast, explosive decay of inflaton [25,26] and cre-
ates large classical fluctuations of all Bose-fields
involved. This can have a number of observ-
able consequences: non-thermal phase transitions
[27,28], generation of a stochastic background of
the gravitational waves [29], and a possibility for
a novel mechanism of baryogenesis [30] are some
examples.

Fortunately, the system in this regime of parti-
cle creation became classical and can be studied
on a lattice [31–33].

On the other hand in the case of fermions n ≤ 1
at all times because of the Pauli blocking. This
may create an impression that the fermionic chan-
nel of inflaton decay is not important. This is a
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Figure 3. Effectiveness of Super-Heavy particle
production. Solid lines production of fermions,
dotted lines production of bosons.

false impression [34]. Production of fermions can
be more efficient compared to bosons [24]. Van-
ishing effective mass allows for a larger Fermi-
momentum of created particles and fermions can
outnumber bosons.

A fraction of the initial energy density which
goes to bosons and fermions respectively is plot-
ted in Fig. 3 as a function of particle mass for
several values of q. Indeed, superheavy fermions
are more efficiently created compared to bosons
at the same value of q.

2.4.2. Non-thermal phase transitions
Bosons of moderate or small mass (compared to

inflaton), and sufficiently large coupling (q > 104

or g2 > 10−8 [35]) are produced explosively,
their density grows exponentially. Field vari-
ances, 〈X2〉, can reach large values, larger than
in a thermal equilibrium at the same energy den-
sity. These were calculated for different values of
parameters in Ref. [31]. For one choice of mX

and q the time dependence of field variances is
shown in Fig. 4. For smaller mX and q variances
can reach larger values. By the final moment of
time shown in this figure inflaton zero mode had
already decayed, but the system is still very far
from thermal equilibrium.

In the theory of phase transitions the effective
mass of the Higgs field in a medium is m2

H =
−µ2+h2〈X2〉. If 〈X2〉 is sufficiently large a phase

Figure 4. Late-time dependence of field variances
and of inflaton zero mode φ0. Time and mX are
in units of mφ. At τ = 0 variances are in vacuum.

transition can occur. During preheating in the
process of inflaton decay this can have especially
interesting consequences. Symmetry restoration
and subsequent breaking with possible formation
of topological defects [36] can happen even in
GUTs with large symmetry breaking scale.

2.5. Creation of matter during Inflation
While inflaton during Inflation moves slowly,

it does move. This motion may lead to the cre-
ation of particles coupled to it. Most effectively
and with observable consequences this occurs in
the case of superheavy fermions. Features in the
power spectrum of perturbations which may leave
trace in CMBR and LSS appear at scales corre-
sponding to zero crossings of effective mass. This
can be a probe of Sub-Plankian particle content.
Multiplet of N particles with mψ ∼ MPl and
coupling g > 0.2/N2/5 is detectable [37].

3. Conclusions

Inflationary cosmology is a beatuful theory. It
inputs unknown and (largely) arbitrary initial
conditions and replaces them with testable pre-
dictions. Even the simplest inflationary model,
Eq. (1), reproduces all relevant features of ob-
servable Universe after adjustment of a single pa-
rameter, mφ ≃ 1013 GeV.
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