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Abstract

Elastic collisions in the transplanckian region, where the center-of-mass energy is
much larger than the fundamental gravity mass scale, can be described by linearized
general relativity and known quantum-mechanical effects as long as the momentum
transfer of the process is sufficiently small. For larger momentum transfer, non-linear
gravitational effects become important and, although a computation is lacking, black-
hole formation is expected to dominate the dynamics. We discuss how elastic trans-
planckian collisions can be used at high-energy colliders to study, in a quantitative
and model-independent way, theories in which gravity propagates in flat extra dimen-
sions. At LHC energies, however, incalculable quantum-gravity contributions may
significantly affect the experimental signal.
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1 Introduction

The hypothesis that the characteristic energy scale of quantum gravity lies just beyond the

electroweak scale finds its motivation in the hierarchy problem and its operative realization in

the existence of extra spatial dimensions [1, 2]. If this hypothesis is verified in nature, future

experiments at the LHC have the ground-breaking opportunity of testing the dynamics

of gravitation in the high-energy and quantum regimes. Unfortunately, since quantum-

gravity dynamics are still unknown, systematic theoretical predictions cannot be made. It

is then important to identify certain collider topologies and kinematical regions that allow a

description based only upon general principles and not on model peculiarities, and which can

be used in the experimental program as a handle to demonstrate the gravitational nature of

the interaction. Single graviton emissions satisfy these requirements and allow for a model-

independent study of the propagation of gravitational forces in extra spatial dimensions [3, 4].

On the other hand, model-dependent experimental signals, as those originating from contact

interactions [3, 5] or, more likely, the observation of a specific spectrum of string Regge

excitations [6] will be very important to discriminate among various models and to guide

theoretical research.

The model-independent experimental signals discussed in refs. [3, 4] are based upon

interactions at energies below the quantum gravity scale MD (the analogue of the Planck

mass for a D-dimensional theory), and their theoretical description fails as we approach

MD. However, there is another kinematical regime that can be tackled in a fairly model-

independent fashion: the transplanckian region
√

s �MD. This is the subject of this paper.

A pecularity of hadron machines is that, because of the composite structure of the proton,

one can study, in the same environment, parton collisions at different center-of-mass energies.

Consequently, if MD ' TeV experiments at the LHC could probe the cisplanckian (graviton

emission, contact interactions), the planckian (the core of the quantum-gravity dynamics),

and the transplanckian regions.

To understand the nature of transplanckian collisions, we first identify the relevant scales.

Let us consider general relativity in D = 4 + n dimensions with (generalized) Newton’s
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constant GD. For n flat dimensions compactified in a volume Vn, GD is related to the

usual Newton’s constant by GD = VnGN . To better elucidate the relation between the

transplanckian and the classical limit, we reinstate for a moment the correct powers of h̄ and

c. The relation between GD and the D-dimensional Planck scale is

GD =
(2π)n−1h̄n+1

4cn−1Mn+2
D

, (1)

where the proportionality constant follows from the conventions of ref. [3]. Notice that GD

has dimensions [GD] = `n+5E−1t−4 (` = length, E = energy, t = time). Starting from GD,

we can construct the Planck length

λP =

(
GDh̄

c3

) 1
n+2

. (2)

This is the distance below which quantum gravity effects become important.

Using the center-of-mass energy of the collision, we can construct the length

λB =
4πh̄c√

s
. (3)

This is the de Broglie wavelength of the colliding particles, which characterizes their quantum

length scale.

Combining GD and
√

s, we can form the Schwarzschild radius of a system with center-

of-mass energy
√

s [7]

RS =
1√
π


8Γ

(
n+3

2

)
(n + 2)




1
n+1 (

GD

√
s

c4

) 1
n+1

. (4)

This is the length at which curvature effects become significant. In the limit h̄ → 0, with

GD and
√

s fixed, MD vanishes, showing that classical physics correspond to transplanckian

(macroscopically large) energies. Moreover, in the same limit, RS remains finite, while the

two length scales λP and λB go to zero. Therefore, the transplanckian regime corresponds

to a classical limit in which the length scale RS characterizes the dynamics,

√
s �MD ⇒ RS � λP � λB. (5)
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For instance, by simple dimensional analysis and analiticity in GD, we expect that the

scattering angle for a collision with impact parameter b is θ ∼ GD

√
s/bn+1 = (RS/b)n+1.

This behavior shows that by increasing the energy we can obtain a finite angle scattering by

going to larger b, and therefore further suppressing short distance quantum gravity effects.

This property of gravity should be contrasted to what happens in an ordinary gauge

theory, where spin-1 particles mediate the force. In (4 + n)–dimensional space-time the

gauge coupling e2 has dimension [e2] = `n+1E. The analogues of MD, λP and RS are given

respectively by Mn
e = (h̄c)n+1/e2, λn

e = e2/(h̄c) and Rn+1
e = e2/

√
s. In the h̄→ 0 limit, with

e2 and
√

s fixed, we find that λe → ∞ (we focus for simplicity on n > 0) indicating that

quantum fluctutations are not suppressed at any finite length. Indeed the same dimensional

argument we used before gives a classical scattering angle θ ∼ e2/(
√

sbn+1), which remains

finite as
√

s → ∞ provided b → 0. But b < λe is the regime where quantum effects are

unsuppressed, so we conclude that there is no classical limit. The different properties of spin-

2 and spin-1 exchange that are elucidated by this simple dimensional analysis are the same

that render the eikonal approximation consistent for the first and inconsistent for the second.

Basically it is because energy itself plays the role of charge in gravity: when the energy is

large, gravity gives sizeable effects also at large distance where quantum fluctuations of the

geometry are irrelevant.

Having established that scattering at transplanckian energies is described by classical

physics, one also realizes that the corresponding amplitude should only be calculable by

a non-perturbative approach. This is always the case for semiclassical amplitudes (like

instantons for example), for which the classical action S is much larger than h̄, and we

cannot perturbatively expand exp(−S/h̄). In order to tackle the non-perturbative problem,

we will further restrict the range of distance scales under investigation, and only consider

collisions with impact parameter b much larger than RS. In this regime, the curvature is

small, the metric is nearly flat, and we can work in the limit of weak gravitational field,

neglecting non-linear effects of the graviton couplings. The non-perturbative interactions

between the high-energy colliding partons and the weak gravitational field can be computed

using the eikonal approximation, which can be trusted at small scattering angle. From a
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field-theoretical point of view, this approximation corresponds [8] to a resummation of an

infinite set of Feynman diagrams which, at each order in perturbation theory, give the leading

contributions to the forward scattering. The eikonal approximation has been employed for

4-dimensional gravity [9] and for string theory [10, 11] (see also ref. [12]). The results for the

scattering amplitude agree with those obtained [13] by solving the Klein-Gordon equation

for a particle propagating in the classical gravitational shock wave produced by the other

particle [14], or by reformulating quantum gravity as a topological field theory [15]. All these

different approaches give equivalent results [9, 16].

In sect. 2 we will derive and discuss the scattering amplitude in the eikonal approximation

for 4-dimensional colliding particles (living on a 3-brane) and D-dimensional gravity [17] (see

also ref. [18]). As explained above, the process is essentially classical, like the motion of two

(relativistic) stars coming within a close distance. However, an important difference is that

the gravitational potential in the non-relativistic analogue of our process decreases with the

distance r as V (r) ∝ GD/rn+1. As discussed in sect. 2 this will have significant consequences,

and it will lead to quite different results from the case of 4-dimensional Newtonian potentials.

A novel feature is the emergence of a new length scale

bc ∝
(

GDs

h̄c5

) 1
n

. (6)

Notice that bc cannot be defined in 4 dimensions (n = 0). In the limit h̄ → 0, we find that

bc goes to infinity and therefore the classical region extends only up to length scales of order

bc. For impact parameters larger than bc, the process is no longer determined by classical

properties. However, since quantum gravity effects are always negligible, ordinary relativistic

quantum mechanics is sufficient to compute scattering amplitudes within our approximation.

As previously discussed, we are limited by our computational ability to work at b � RS.

As the impact parameter approaches the Schwarzschild radius (and our expressions become

unreliable), we expect to enter a (classical) regime in which the gravitational field is strong,

non-linear effects are important and, plausibly, black holes are formed. This regime, discussed

in ref. [19] (see also ref. [20]), is very exciting from the experimental point of view, but more

arduous from a theoretical point of view. While in the eikonal region we are able to make
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quantitatively reliable predictions with controllable expansion parameters, the black-hole

production cross section can only be estimated with dimensional arguments and more precise

information should wait for numerical simulations in D-dimensional general relativity.

Black-hole production results in a black disk of radius RS in the cross section, since any

initial state with b < RS is absorbed by the black hole (this point of view has been criticized

in ref. [21]). Collisions with an impact parameter b smaller than the Schwarzschild radius

do not directly probe physics at the energy scale 1/b. Ultraviolet dynamics and quantum

effects are screened by the black hole.

The physical picture we have been describing holds if there is a clear separation of the

various length scales and if no other new dynamics intervene at distances between RS and

bc. As we will discuss in this paper, this is not necessarily the case for particle collisions

at the LHC. Given the present lower limits on MD, the center-of-mass energy at the LHC

can be only marginally in the transplanckian region, and a clear separation between the

quantum-gravity scale λP and the classical scale RS is not completely achieved, endangering

our approximations. The problem is particularly apparent in string theory, which contains

a new scale, the string length

λS =
√

α′, (7)

where α′ is the string tension. In weakly-coupled string theory, λS is larger than λP and

string effects can set in and modify gravity in an intermediate regime between the eikonal

elastic scattering and black-hole formation. These are interesting effects, as the LHC can

directly probe the nature of string theory [22]. However, model-independent calculability

of the elastic channel is lost. In this paper we will consider only the pure transplanckian

gravitational scattering, assuming that quantum-gravity effects are small.

The relevance of our considerations for experiments at the LHC and other future colliders

is discussed in sect. 3. We will compute the elastic cross section in the transplanckian eikonal

regime,

MD/
√

s� 1, − t/s� 1, (8)

where t is the Lorentz-invariant Mandelstam variable, and −t/s is a measure of the scattering
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angle in the center-of-mass frame. The experimental signal will be discussed and compared

with the expected Standard Model (SM) rate and with black-hole production.

2 Scattering in the Eikonal Approximation

2.1 The Eikonal Amplitude

We are interested in the elastic scattering of two massless 4-dimensional particles (living on

a 3-brane) due to a D-dimensional weak gravitational field in the kinematic limit of eq. (8).

We will focus on the case in which the two colliding particles are different, but the case of

identical particles is analogous. In the eikonal approximation, we consider the infinite set of

ladder and cross-ladder Feynman diagrams which give the leading contribution to forward

scattering.

Since we are working in the approximation of small momentum transfer, we can compute

the coupling between the colliding particle Φ and the small fluctuation around the flat metric

(the graviton), taking Φ to be on-shell:

1

M
1+n/2
D

〈Φ(p)|T µν |Φ(p)〉 =
2pµpν

M
1+n/2
D

. (9)

Here T µν is the energy-momentum tensor and pµ is the 4-momentum of the particle Φ. Notice

that eq. (9) is equally valid for colliding particles of any spin.

In the Φ propagators we keep only the leading terms in the momentum transfer q:

i

(p + q)2
→ i

2pq
for bosons,

i

6p+ 6q → i|Φ(p)〉〈Φ(p)|
2pq

for fermions. (10)

Since the factor 6p = |Φ(p)〉〈Φ(p)| in eq. (10) is used to reconstruct the on-shell vertices of

eq. (9) in the ladder diagrams, we observe that not only the interaction vertices but also

the propagators of bosons and fermions are identical in the eikonal approximation. This
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Figure 1: The dominant Feynman diagrams contributing to elastic scattering of Φ particles in the
eikonal approximation at tree (a) and one-loop (b) level. Wavy lines represent the exchange of D-
dimensional gravitons, and the dashed line represents the cut from the physical-region singularity.

universality of bosons and fermions is not surprising since, as discussed in the introduction,

we are performing a semi-classical calculation, and the spin of the Φ particle should not

matter.

The tree-level exchange of a D-dimensional graviton in the diagram of fig. 1a gives the

scattering amplitude

ABorn(−t) =
s2

Mn+2
D

∫
dnqT

t− q2
T

= π
n
2 Γ(1− n/2)

( −t

M2
D

)n
2
−1 (

s

M2
D

)2

, (11)

where qT is the momentum transfer in the extra dimensions. Although eq. (11) is a tree-

level amplitude, it is divergent due to the infinite number of (extra-dimensional) momentum

configurations of the exchanged gravitons, allowed by the non-conservation of momenta

transverse to the brane. Divergences have been subtracted using dimensional regularization,

considering non-integer n, but the regularization prescription is not important since the

eikonalization will consistently eliminate any ultraviolet sensitivity. Basically this is because

the eikonalization selects in eq. (11) only the partial waves with large angular momentum.

These do not depend on the local counter-terms as they are determined by the finite (calcu-

lable) non-analytic terms in −t, which depend only on infrared physics [3]. These terms are

proportional to (−t)(n−2)/2 ln(−t) for even n, and to
√−t(−t)(n−3)/2 for odd n.
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Let us now turn to the one-loop amplitude. The leading term in the limit of small

momentum transfer is given by a Feynman diagram with a cut arising from a physical-region

singularity in which the intermediate Φ particles are on their mass shells. There is only one

such diagram at one loop, and it is drawn in fig. 1b. All other diagrams are subleading.

For instance, the one-loop t-channel exchange of two gravitons G coupled via quartic GGΦΦ

vertices is suppressed1 by a power of t/s. Diagrams with one GGΦΦ vertex and two GΦΦ

vertices simply vanish (as is evident by working in the de Donder gauge).

The diagram of fig. 1b with on-shell intermediate states can be calculated using the

Cutkosky rule. Its imaginary part is 1/2 times the discontinuity across the cut, which is

obtained by replacing the Φ propagators in eq. (10) with 2πiδ(2pq). If p1 and p2 are the

momenta of the incoming particles, we obtain

A1−loop(−q2) =
−i

2

(
s2

Mn+2
D

)2 ∫
d4k

(2π)4
dnkTdnk′T

1

k2 − k2
T

1

(q − k)2 − k′2T
(2πi)2δ(2p1k)δ(2p2k)

=
i

4s

∫
d2k⊥
(2π)2

ABorn(k
2
⊥)ABorn[(q⊥ − k⊥)2]. (12)

The delta functions from the Cutkosky rule had the effect of reducing the 4-dimensional

integral into a 2-dimensional integral over momenta perpendicular to the beam (and along

the brane). Notice that, in the eikonal limit, the momentum transfer q is mainly in the

perpendicular direction and therefore, we can use the approximation

t = q2 ' −q2
⊥. (13)

Equation (12) is merely a convolution of the Born amplitude. It is then convenient to

perform a Fourier transform of the amplitudes with respect to the transverse momentum q⊥.

This amounts to trading q⊥ with its conjugate variable b⊥, the impact parameter. In impact

parameter space eq. (12) becomes a simple product. Summing eq. (11) and eq. (12), and

transforming back to momentum space we can recast the loop expansion in the form

ABorn(q
2
⊥) +A1−loop(q

2
⊥) + . . . = −2is

∫
d2b⊥eiq⊥b⊥

(
iχ− 1

2
χ2 + . . .

)
, (14)

1Actually, in the spirit of the eikonal resummation, this diagram should be compared to the tree-level
graviton exchange, but an analogous suppression factor would nevertheless appear.
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χ(b⊥) =
1

2s

∫
d2q⊥
(2π)2

e−iq⊥b⊥ABorn(q
2
⊥). (15)

The combinatorics of higher-order loop terms is such that one can resum all terms in eq. (14)

to obtain

Aeik = −2is
∫

d2b⊥eiq⊥b⊥
(
eiχ − 1

)
. (16)

We have recovered the known result [8] that the eikonal scattering phase χ, function of the

impact parameter plane coordinates b⊥, is the 2-dimensional Fourier transform of the Born

amplitude in the direction perpendicular to the beam.

One crucial feature of the eikonal procedure is that χ(b) for b 6= 0 depends only on the

calculable, ultraviolet finite, terms in ABorn. The ultraviolet divergent terms correspond to

delta-function singularities localized at b = 0. While these terms are obviously irrelevant

for scattering processes where the initial states are prepared in such a way that they have

no overlap at b = 0, we will also define our full amplitude in eq. (16) by neglecting these

terms. We believe this to be a consistent procedure. Indeed, it would not make any sense

to include δ-functions in the exponent of eq. (16). From a physical point of view, we expect

these singularities to be softened by the fundamental theory of gravity, at some finite, but

small, impact parameter b ∼ λP (or, more likely, b ∼ λS). So the presence of these terms

is just evidence that there should be corrections to our simple eikonal expression coming

from the underlying theory of quantum gravity. We will discuss these effects in sect. 2.5.

For the moment we limit ourselves to note that these short-distance contributions should

plausibly give rise to O(λ2
P ) corrections to the cross section, while, as we will see shortly, the

long-distance eikonal amplitude gives a cross section that grows with a power of
√

s, thus

dominating at large energies.

We can now calculate explicitly the eikonal phase χ in eq. (15). One finds (see appendix)

χ =
π

n
2
−1Γ(1− n/2)s

4Mn+2
D

∫ ∞

0
dqqn−1J0(qb) =

(
bc

b

)n

, (17)

bc ≡
[
(4π)

n
2
−1sΓ(n/2)

2Mn+2
D

]1/n

. (18)
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Here q ≡ |q⊥| '
√−t, b ≡ |b⊥| and J0 is the zero-th order Bessel function. Notice that by

inserting this result for χ in the integral in eq. (16) we obtain an ultraviolet finite result. This

is so, even though the contributions to eq. (16) from the individual terms in the expansion

of eiχ = 1 + iχ + . . . are ultraviolet divergent, corresponding to the fact that each individual

Feynman diagram in the ladder expansion is ultraviolet divergent but the complete sum is

finite. Moreover, since χ ∝ b−n, the integrand in eq. (16) oscillates very rapidly as b → 0,

showing that the ultraviolet region gives but a small contribution to the amplitude.

Replacing eq. (17) into eq. (16), we obtain the final expression for the eikonal ampli-

tude [17]

Aeik = 4πsb2
cFn(bcq), (19)

Fn(y) = −i
∫ ∞

0
dxxJ0(xy)

(
eix−n − 1

)
, (20)

where the integration variable is x = b/bc. The functions Fn, which can be written in terms

of Meijer’s G-functions, are shown in fig. 2.

At small y, the functions Fn(y) can be expanded as (see appendix)

F2(y)
=

y→0 − ln
y

1.4
+ i

π

4
(21)

F3(y)
=

y→0
i

2
Γ
(

1

3

)
ei π

3 − y (22)

F4(y)
=

y→0 i

√
π

2
ei π

4 +
y2

4
ln y (23)

Fn(y)
=

y→0
i

2
Γ
(
1− 2

n

)
e−i π

n − i

16
y2Γ

(
1− 4

n

)
e−i 2π

n for n > 4. (24)

These functions develop non-analytic terms in y2 of the form yn−2 ln y for even n, and yn−2

for odd n, which reproduce the non-analytic structure of ABorn previously mentioned. Notice

that Fn(0) is finite for n > 2.

For y � 1 (q � b−1
c ), the stationary-phase approximation applies, yielding

Fn(y)
=

y�1
−in

1
n+1 y−

n+2
n+1√

n + 1
exp

[
−i(n + 1)

(
y

n

) n
n+1

]
. (25)

The function Fn oscillates around its asymptotic value given in eq. (25), before converging

to it at large y, as illustrated in the bottom-right panel of fig. 2.
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Figure 2: Plots of the function Fn(y) versus y for n between 2 and 6. The dashed line is the real
part, the dash-dotted line is the imaginary part, and the solid line is the absolute value of the
function. The bottom right panel plots the relative error of |F6(y)| compared to the asymptotic
expressions, see Eqs. (24) and (25), as y → 0 (dashed line) and y →∞ (solid line).
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n = 2 3 4 5 6

An =

[
2nπ

n−3
2 Γ(n+3

2 )
n+2

] 2
n+1

0.83 1.79 3.01 4.42 5.96

Bn =
[
2n−3π

n−2
2 Γ

(
n
2

)] 2
n 0.50 1.35 2.51 3.88 5.41

Table 1: The coefficients An and Bn entering eq. (27) and their numerical values for n between 2
and 6.

2.2 Cross Sections

Let us now consider the differential cross section for elastic scattering. From eq. (19) we

obtain
dσeik

dt
= πb4

c

∣∣∣Fn(bc

√−t)
∣∣∣2 . (26)

We recall the definitions

R2
Ss = An

(
s

M2
D

)n+2
n+1

, b2
cs = Bn

(
s

M2
D

)n+2
n

, (27)

where the coefficients An and Bn are given in table 1. In terms of the geometric black-hole

cross section σBH ≡ πR2
S, eq. (26) can be written as

dσeik

dt
=

B
n

n+1
n

An

σBH

s

(
b2
cs
)n+2

n+1
∣∣∣Fn(bc

√−t)
∣∣∣2

=
B2

n

An

σBH

s

(
s

M2
D

) (n+2)2

n(n+1) ∣∣∣Fn(bc

√−t)
∣∣∣2 . (28)

In the limit q � b−1
c , or equivalently −t/s � B−1

n (M2
D/s)1+2/n, the differential cross

section becomes (for n > 2)

dσeik

dt
=

[Γ(1− 2/n)]2B
n

n+1
n

4An

σBH

s

(
b2
cs
)n+2

n+1

=
[Γ(1− 2/n)]2B2

n

4An

σBH

s

(
s

M2
D

) (n+2)2

n(n+1)

. (29)
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In the opposite limit (q � b−1
c ), we find

dσeik

dt
=

(n2Bn
n)

1
n+1

(n + 1)An

σBH

s

(
−s

t

)n+2
n+1

. (30)

Notice how the two formulæ valid in the two regimes match since, for −t ' b−2
c , eq. (30)

parametrically agrees with eq. (29). Moreover, extrapolating eq. (30) beyond its range of

validity towards small impact parameters (i.e. large angle, or t→ −s), we find a result that

matches parametrically the black-hole production cross section derived from dimensional

analysis.

The integrated elastic cross can be derived directly from eq. (16):

σel =
1

16π2s2

∫
d2q⊥ |Aeik|2

=
∫

d2b⊥
(
1 + e−2Imχ − 2e−Imχ cos Reχ

)
. (31)

The total cross section, inclusive of elastic and inelastic channels, can be derived from the

optical theorem

σtot =
ImAeik(0)

s
= 2

∫
d2b⊥

(
1− e−Imχ cos Reχ

)
. (32)

In the absence of absorptive parts (Imχ = 0) eq. (31) and eq. (32) coincide. Black-hole

production may be modelled by a large absorptive part (Imχ � 1) at impact parameters

smaller than RS.

2.3 Physical Interpretation

Before proceeding to the phenomenological analysis, we remark on the physical meaning of

the expression of the eikonal amplitude given by eq. (16) and eq. (17). We can first consider

a non-relativistic analogue of the problem under investigation [23] by studying the scattering

of a particle with mass m, velocity v, and impact parameter b by a radial “gravitational”

potential

V (r) =
GDmM

rn+1
. (33)
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Here m and M are the non-relativistic analogues of
√

s/(2c2), v is the analogue of c, and n

corresponds to the number of extra dimensions.

When b is not too small, the quantum-mechanical scattering phase of the wave associated

with angular momentum `h̄ = mvb is

δb = − 1

vh̄

∫ ∞

b
drV (r). (34)

The intergral in eq. (34) converges only for n > 0, leading to δb = −(bc/b)
n, where bc '

[GDmM/(h̄v)]1/n exactly corresponds to the definition in eq. (18). Therefore, the forward

amplitude (which is proportional to
∫

db bδb) is finite only for n > 2. For n = 0 one finds

the Coulomb singularity, and for n = 2 a logarithmic divergence. This is in agreement with

eq. (24) and with the relativistic results presented in sect. 2.1.

A classical description of the process is valid if the quantum-mechanical uncertainties in

the impact parameter b and in the scattering angle θ are small with respect to their classical

values. Using the Heisenberg principle, the quantum uncertainties are estimated to be

∆θ ∼ ∆q

mv
∼ h̄

mv∆b
, (35)

where q is the momentum in the direction orthogonal to the initial velocity ~v. The classical

scattering angle is equal to the force (dV/dr) at the minimum distance (r = b), times the

collision time (b/v), divided by the momentum (mv),

θ ∼ b

mv2

dV (b)

db
. (36)

The condition for the validity of the classical approximation (∆θ � θ, ∆b � b) implies

|dV (b)/db| > h̄v/b2. For a Coulomb-like potential V (r) = α/r, this condition is satisfied in

the non-perturbative region α > h̄v. In our case, it implies (for n > 0) b < bc, with bc ∼
[GDmM/(vh̄)]1/n. The length scale bc is a quantum scale (bc →∞ as h̄ → 0) characteristic

of the extra-dimensional scattering (it is undefined at n = 0). Therefore, at b > bc, quantum

mechanical effects cannot be neglected.

In the classical process (for n > −1), a projectile with an arbitrarily large impact param-

eter b is deflected by a non-vanishing (although very small) angle, and therefore the cross
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section diverges at q = 0 (b →∞). In our case, for b > bc, quantum mechanics sets in, and

the quantum fluctuations of the scattering angle become larger than its classical value, ren-

dering ill-defined the notion of a trajectory. This is why the quantum scattering amplitude

can remain finite at q → 0.

It is also interesting to compare the result of eq. (19) with the fully D-dimensional case,

in which both gravity and the colliding particles propagate in the extra dimensions [10]. In

this case eq. (16) becomes

Aeik = −2is
∫

d2+nb⊥eiq⊥b⊥
[
ei(bc/b⊥)n − 1

]
. (37)

For q = 0, the integral is infrared dominated by large values of b and it is quadratically

divergent (for any n). Therefore we find Aeik(q → 0) ∼ bn
c /q2, and we encounter the Coulomb

singularity characteristic of long-range forces. On the other hand, in the case of particles

living on the 3-brane, we have found (for n > 2) that the forward scattering amplitude is

finite and that, although the force does not have a finite range, the integral in eq. (16) at

q = 0 is dominated by distances of order bc. Indeed, by working with localized particles we

lose momentum conservation in the transverse direction, and moreover the Born amplitude

becomes dominated by contact terms of ultraviolet origin. The fact that eq. (16) is not

infrared dominated even for q → 0 is a remnant of this property of the Born amplitude.

Let us now come back to the relativistic elastic scattering under consideration. As we have

seen in sect. 2.1, there exist two different kinematic regions in which the eikonal amplitude

has distinct behavior.

Region (i):
√

s � q � b−1
c .

This is the region in which the integral in eq. (20) is dominated by the stationary-phase

value of the impact parameter b = bs, where

bs ≡ bc

(
n

qbc

) 1
n+1

=

(
nBn/2

n

) 1
n+1

√
s

(
− t

s

)− 1
2(n+1)

(
s

M2
D

) n+2
2(n+1)

. (38)

In this region b < bc, and therefore the eikonal phase χ = (bc/b)
n is large (in units of h̄): we

are in the classical domain. Indeed, the classical scattering angle is given by the derivative
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of the scattering phase with respect to the angular momentum L =
√

sb/2,

θcl = −∂χ

∂L
=

2nΓ(n/2)

πn/2

GD

√
s

bn+1
. (39)

In the limit n → 0, we recover the Einstein angle θcl = 4GD

√
s/b while, for n > 0, eq. (39)

gives its higher-dimensional generalization2. Notice that the relation between scattering

angle and impact parameter in eq. (39) is equivalent to b = bs.

Region (ii): q � b−1
c .

In this region the integral in eq. (20) is dominated by b of the order of (or slightly smaller

than) bc. This means that the eikonal phase χ = (bc/b)
n is of order one (in units of h̄) and the

quantum nature of the scattering particles is important (although the exchanged graviton is

treated as a classical field, and so quantum gravity effects are negligible), as we could have

expected from the discussion of the non-relativistic analogue presented above. There is no

one-to-one relation between impact parameter and scattering angle in region (ii), since the

classical concept of a trajectory is not applicable. Moreover, notice that the relevant χ never

becomes much smaller than 1, and therefore we never enter the perturbative regime in which

a loop expansion for the amplitude applies. Even though the interaction vanishes at b→∞
(where χ → 0), we never reach the Born limit. Even for q = 0, the scattering is dominated

by b = bc and not by b = ∞, as in the Coulomb case. As explained after eq. (37), this

result simply follows from the different dimensionalities of the spaces relevant for scattering

particles (living on a 3-brane) and exchanged graviton (propagating in the bulk), and it does

not hold in the case of scattering of bulk particles.

2.4 Corrections to the Eikonal Approximation

The conditions required by our approximations are expressed in eq. (8). In order to assess

the theoretical uncertainty inherent to our calculation, in this section we estimate the size

of the effects that we have neglected. We first discuss classical effects, for which general

2The Einstein angle defines the deflection of a photon by the static gravitational field of a mass-M
particle at rest: θE = 4GNM/b. It is easy to see that by boosting θE to the center-of-mass frame, in the
limit

√
s� M , we obtain our expression of θcl.
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relativity suffices. We also include the quantum-mechanical effects of region (ii), but we

leave quantum-gravity contributions for the next section. The neglected classical terms

come from the approximations of small angle (−t/s � 1) and of weak gravitational field

(RS/b � 1). Associated with the subleading classical effects there is also the emission of

gravitational radiation, leading to missing energy signals at high-energy colliders.

Let us estimate these effects. Notice that in the classical region (i) where
√

s � q � b−1
c ,

the two requirements coincide since b = bs, see eq. (38). Here, scattering can be described in

terms of classical trajectories. The equation b = bs represents a relation between transferred

momentum and impact parameter

− t

s
∼ G2

Ds

b2n+2
∼
(

RS

b

)2n+2

, (40)

where we have neglected factors of order unity. This result represents an approximation [13]

in which one considers only a linear superposition of the gravitational shockwave fields

generated by the two colliding particles [14], thereby neglecting non-linear effects of their

mutual interactions. In this computation, each field represents an exact solution to Einstein’s

equations in the absence of the other field. Inclusion of the non-linear effects will induce

O(Gp
D) corrections to eq. (40), where p is an unknown power. By dimensional analysis the

relative size of these corrections must be Gp
Dsp/2/bp(n+1) ∼ (RS/b)p(n+1). Moreover since we

expect that the evaluation of these effects is perfectly perturbative, analyticity in s should

hold, and therefore only even integers of the exponent p will appear. We conclude that

eq. (40) will be corrected by a factor of the form

1 +O
(

G2
Ds

b2n+2

)
= 1 +O

(
t

s

)
. (41)

This will induce a correction of the same size to the cross section, in the classical region

(i). Notice that eq. (41) corresponds to a O(θ3) correction term to the relation between

scattering angle and impact parameter, eq. (39). In the scattering by a static potential we

would get corrections already at O(θ2). Our different result follows from the relativistic

nature of the process.
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In region (ii) where q � b−1
c , the leading correction to the cross section will then have

the form
dσ

dt
=

dσeik

dt

[
1 +

t

s
Z(tb2

c)
]
, (42)

where Z is expected to be a constant of order unity in the classical region tb2
c � 1. In the

region tb2
c � 1, the quantum nature of the scattering particles becomes relevant, and Z will

have non-trivial behavior. However, admitting only finite corrections at t → 0 implies that

the size of the relative correction to dσ/dt is at most 1/sb2
c ∼ (RS/bc)

2n+2.

In summary, we have inferred that the leading classical gravity corrections to the eikonal

amplitude are

O
(
− t

s

)
+O


(M2

D

s

)1+ 2
n


 , (43)

and therefore suppressed and under control for the conditions we are applying, as expressed

by eq. (8).

The discussion outlined above is consistent with the analysis of ref. [10] where classical

corrections to the eikonal are identified by resumming an improved ladder series including

a class of two-loop graphs, the so-called H-diagrams. After improving the Born term by the

H-diagram, the eikonal phase is modified to

χ →
(

bc

b

)n [
1 +O

(
RS

b

)2n+2
]
. (44)

It is easy to check that altering eq. (16) according to the above equation produces corrections

to the leading amplitude consistent with eq. (43). Notice that the corrections to the eikonal

become large for impact parameters comparable to the Schwarzschild radius, for which the

production of black holes presumably sets in3.

Gravitational radiation is associated with subleading classical effects. Emission of gravi-

tons is signaled by the presence of an imaginary part in the H-diagram contribution to the

3The hypothesis that classical physics determines the black-hole production cross section has been criti-
cised in ref. [21]. However, we believe that the appearence of corrections of the form shown in eq. (44) is a
further indication that non-trivial classical dynamics emerges at b ' RS .
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eikonal phase [10]

Im(χH) ∼
(

br

b

)3n+2

, (45)

br ≡
(
bn
c R2n+2

s

) 1
3n+2 ∼

(
G3

Ds2
) 1

n+2 .

This absorptive term corresponds to a depletion of purely elastic scattering due to the emis-

sion of gravitational radiation. When b � br the probability of elastic scattering becomes

exponentially small. The calculation of ref. [10] shows that the emitted radiation has typi-

cal transverse momentum ∼ 1/b. However the longitudinal momentum is distributed up to

values of order
√

s. Therefore we expect that for b < br a significant fraction of the energy

is radiated in the form of forward gravitational radiation. Notice that b < br is typically

outside our chosen kinematical regime, so that we expect only a fraction ∼ (br/b)
3n+2 � 1

of initial energy to be lost to invisible gravitational radiation. In the semiclassical region, we

find (br/b)
3n+2 ' (−t/s)n/(n+1)(

√−t/MD)(n+2)/(n+1), and therefore gravitational radiation

for small-angle scatterings is not large.

One may worry that important emission of radiation, already at b� Rs, may drastically

reduce the naive geometric estimate of the black-hole production cross-section. Indeed if

one simply interpreted eq. (45), à la Block-Nordsiek, as the number N of emitted gravitons,

one would conclude that hard bremsstrahlung depletes all the energy, as soon as b is smaller

than br. However this naive interpretation is manifestly inconsistent as the total emitted

energy would quickly exceed
√

s. Indeed it is likely that the exponentiation of the H-diagram

imaginary part is inconsistent for hard radiation. On the other hand for soft radiation with

E ∼ 1/b, the Block-Nordsiek interpretation is likely to be reasonable. Thus if the number of

soft gravitons is Nsoft ∼ (br/b)
3n+2 then the total energy lost to soft radiation at large angle

is

Erad ∼ Nsoft

b
∼ √s

(
RS

b

)3n+3

, (46)

which becomes important only for b ∼ RS.
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2.5 Quantum-Gravity Effects

On general grounds we expect that quantum-gravity contributions to the eikonal phase must

be of the form δχ/χ ∼ (λP/b)k, with k > 0 and λP given in eq. (2). If we work in the true

transplanckian region (
√

s �MD), these effects are subleading4 since, as we have discussed

in sect. 1, the classical scale RS is much larger than the quantum scale λP .

However, as it will be clear in the following, collisions at the LHC can only barely sat-

isfy the transplanckianity condition. Therefore, quantum-gravity corrections are potentially

large, and they are likely to be the limiting factor of our approximations. This happens be-

cause, although quantum-gravity effects are characterized by a length scale λP smaller than

the Schwarzschild radius RS, classical corrections appear with a large exponent, see eqs. (41)

and (43), remnant of the geometric nature of the interaction, while this is not expected to

be the case for the quantum-gravity corrections O(λP /b)k.

However in order to be able to say more we need a quantum-gravity model or at least a

framework. String theory is the only possibility at hand, and the transplanckian regime has

been discussed in this context by several authors, see e.g. refs. [10, 11, 24]. Indeed, we will

show that string corrections appear to be large for energies relevant to LHC experiments.

In ref. [10] string corrections to eikonalized graviton scattering for type II superstrings

were studied. Since we do not stick to a particular string realization of our brane-world

scenario, we will limit ourselves to a qualitative discussion. Following ref. [25] we may

imagine a realization of the brane-world in type I, where m = 6−n spatial dimensions out of

the 10 space-time dimensions are compactified on a torus T m with radius rm =
√

α′ = 1/MS,

and MS is the string scale. Of the remaining dimensions, n have a “large” compactification

radius and 3 are the usual non-compact ones. The brane-world is realized by a (3 + m)-

4It is interesting to compare the case of gravity with the case of vector-boson exchange which has been
mentioned in sect. 1. For a vector, the eikonal phase is χV ∝ e2/bn = 1/(Meb)n (we take h̄ = c = 1).
Notice that, as opposed to gravity, there is no factor of s enhancement [9]. It is easy to realize that
quantum corrections will also go like a power of e2/bn. This is for instance the case for vacuum-polarization
improvement of the vector propagator. Therefore, there is no impact parameter choice for which both
χV � 1 and quantum corrections are small, where the eikonal approximation can be useful.
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dimensional D-brane, in which m dimensions span the small manifold T m. In terms of MS

and of the string coupling gS, the 4+n dimensional Planck scale MD and the gauge coupling

g on the brane are given by

M2+n
D =

e−2φ

π
M2+n

S ,
1

g2
=

e−φ

2π
, gS = eφ, (47)

where φ is the dilaton vacuum expectation value. Of course these relations will receive

corrections of order unity in realistic models with broken supersymmetry and should be

viewed, here and in the following, only as indicative estimates. Equations (47) imply

(
MS

MD

)2+n

=
g4

4π
. (48)

If we identify g with the gauge couplings of the SM, say for instance g = gweak, we conclude

that there should be a mild hierarchy between MD and MS. For instance, we find MD/MS

equals 1.7 and 2.8 for n = 6 and n = 2, respectively. A priori one could also conceive

string models where MD and MS coincide, with a self-dual dilaton vacuum expectation

value φ ∼ 0, corresponding to a strongly coupled string. In this case the weakness of the SM

gauge couplings would have to be explained by some additional mechanism.

As we will discuss in sect. 3.1, in order to observe transplanckian scatterings at the

LHC, we have to consider values of MD smaller than a few TeV. The existence of string

theory at such a low scale is already limited by precision electroweak data and by the non-

observation of new contact interactions at LEP. Exchanges of gravitons and massive string

states give rise to effective operators involving SM fields. The leading effects come from 4-

fermion operators of dimension 6 which, if present at tree level, give an approximate bound

MS > 3 TeV [26]. This bound is in conflict with the working assumptions necessary to

have observable transplanckian signals at the LHC, and therefore we have to assume a mild

suppression of the dimension-6 operators. This assumption is probably not unreasonable,

as there exist examples [6, 26] where these effects vanish at tree level. In this respect

the presence of supersymmetry at some stage in the construction may help suppress these

contributions. Loop effects are within current experimental bounds even for MD of order a

few TeV, if the underlying quantum-gravity theory does not become strongly-interacting or,
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in a more operative sense, if the divergent loops are cut off at a scale slightly smaller than

MD [27]. This allows for the weakly-interacting string scenario in which there is a small

hierarchy between MS and MD, but it essentially rules out the case of strongly-coupled

strings with MS of a few TeV, where we would need the rather strong, and implausible,

assumption that dimension-6 operators are suppressed to all orders in perturbation theory.

With these limitations in mind we now consider string corrections [10]. The basic result

is that the eikonal elastic field-theory amplitude gets promoted to a unitary matrix acting

non-trivially over a subspace of the string Fock space

exp

[
i

(
bc

b

)n]
→ exp

[
i

(
bc

b

)n]
K, (49)

K = exp


i
(

bD

b

)n+2

Ĥ


 , bn+2

D ≡ α′bn
c .

Here Ĥ is a hermitian operator involving the creation and annihilation operators for the

string oscillator modes. The above equation shows that, for b < bD, a diffractive production

of excited string modes takes place without any suppression. Basically what happens is

that the two colliding partons are excited into string modes through multiple soft graviton

exchange.

The average mass of the string modes is roughly given by MS(bD/b)n+2. This is smaller

than the available energy
√

s as long as (RS/b)n+1(
√

α′/b) < 1. This condition is clearly

satisfied within our chosen kinematical regime, and therefore the produced particles are

relativistic. The opening of an (exponentially) large number of new channels drastically

depletes the elastic one. For instance in the example discussed in ref. [10], where gravitons

are scattered in type II superstring, the elastic amplitude correction factor becomes

〈K〉 = Γ2n+2(1− i∆)Γ2[1− i(n + 1)∆], (50)

where ∆ = (n/2)(bD/b)n+2 and where by 〈K〉 we indicate the expectation value of the

operator K on the initial state.
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For b� bD, the correction factor in eq. (50) becomes

〈K〉 ' 1 + i 2 γ n(n + 1)

(
bD

b

)n+2

, (51)

where γ = 0.577 is the Euler number. Therefore, the effects of string excitations set in

much before the string scale. Already at b ∼ bc, the terms modifying the gravitational

eikonal phase implied by eq. (51) are as large as n(n + 1)(M2
D/M2

S)(M2
D/s)2/n. As we have

previously anticipated, these effects can be much more sizable than the classical corrections

in eq. (43), even if the string length is smaller than the classical Schwarzschild radius.

For b� bD, we find

|K| ' (n + 1)(πn)n+2

(
bD

b

)(n+2)2

exp


−πn(n + 1)

(
bD

b

)(n+2)

 , (52)

showing that the absolute value of the correction factor decreases exponentially at b < bD,

because of the appearence of the string excitations.

This string effect is fairly general and we expect it in realistic models not to differ too

much from eq. (50). However the sharp drop in the elastic cross section can be compensated

by looking at the inclusive diffractive cross section. Since bD < bc we can use the saddle

point approximation to evaluate the amplitude in transverse momentum space

A(q) = Aeik(q) exp


i
(

bD

bs(q)

)n+2

Ĥ


 , (53)

where Aeik is the eikonal amplitude in the stationary phase regime. Due to unitarity of the

second factor, the total cross-section obtained by summing on the diffractive channels is just

the same as in the absence of strings, i.e. there is no exponential suppression. Notice that

this inclusive cross section is consistently defined in the limit in which the string modes are

relativistic: at a fixed q all modes come out at essentially the same angle θ. The question of

how well one can measure experimentally the inclusive cross section depends very much on

the model, and in particular on the decay properties of the produced string modes. These

states are excited by gravitons, so that they have the same color and electric charge of the
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incoming partons. If they are stable, the final state of the collision is given by two (massive)

jet events. If they are unstable and their dominant decay mode involves bulk states, like the

graviton, then the presence of missing energy would make it impossible to deduce the original

center-of-mass energy and to make sure that only events at a given center-of-mass energy

are selected. On the other hand if they dominantly decay on the brane this reconstruction

might be possible. Notice that the coupling to bulk modes (closed strings) and to brane

modes (open strings) are proportional to g2
S and gS, respectively. Therefore the decay to

brane modes, when possible, dominates over bulk decays in weakly-coupled string models.

We also want to comment on the string effects arising in the regime MD <
√

s <

MS/g2
S [22]. In this regime, although the energy is transplanckian, λS > RS holds. Then

the large angle, small impact parameter effects are dominated by string physics instead of

classical gravitational effects. In this regime one should use the string version of the eikonal

phase [10]. The main effect is that Imχ ∼ g2
Ssα′ exp(−b2/2α′ ln sα′), corresponding to in-

elastic production of very excited strings (string balls) dominating the scattering for b ≤ λS.

The corresponding cross section is ∼ α′ for MS/gS <
√

s < MS/g2
S. At

√
s ∼ MS/g2

S, we

have that α′ ∼ R2
S, consistent with the string balls becoming indinguishable from ordinary

black holes [22]. The onset of inelastic string production marks the end of the validity of our

description, since any reminiscence of classical gravitational dynamics is lost.

Notice that in the context of strings there exists another approach to calculate fixed-

angle scattering in the regime
√

s � MS [24]. This different approach leads to an elastic

amplitude that vanishes at small fixed angle like exp(−θ
√

α′s) [28]. Recently this approach

was applied [29] to the TeV string scenario. The conclusions of ref. [24] seem to disagree

with those of ref. [10], based on the string eikonal. The elastic amplitude in ref. [10] has

a different exponential suppression than that in refs. [24, 28], and is due to gravitational

radiation and diffractive string production. Anyway, the discussion of ref. [10] shows that,

even if the elastic channel is suppressed, the total cross section at finite angle is large and

grows with
√

s. Notice also that if
√

s is large enough the average mass of the diffractive

states eventually exceeds both MS and MD, so it is possible that the diffractive channel

becomes at extremely high energies the production of a pair of small black holes.
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φ φ φ

Figure 3: Ladder and cross-ladder Feynman diagrams contributing to elastic scattering of Φ parti-
cles. The dashed lines represent the exchange of brane excitations.

Next, we would like to comment on the possible effects of the modes corresponding to the

brane motion, the branons [30]. The first comment is that these modes do not necessarily

exist. If the SM fields are localized at some fixed point, as in orbifold constructions, then it

is consistent to assume that the corresponding “brane” is not a dynamical object, and could

also have vanishing tension. So when the SM lives at a fixed point there is no effect (apart

from a “trivial” reduction of the phase space of bulk gravitons).

Two types of effects can be associated with brane dynamics. First, the presence of a

brane tension τ = µ4 gives rise to a gravitational field, which at a tranverse distance y from

the brane vanishes like (Rτ/y)n−2, where the gravitational radius Rτ is [31]

Rn−2
τ =

Γ(n/2)2n+1π
n
2√

(n− 1)(n + 2)

τ

M2+n
D

. (54)

The wave function of a bulk graviton with transverse momentum kT is expected to receive

a correction of order (RτkT )n−2 from the presence of this background. For a given impact

parameter b, the tree-level scattering amplitude is precisely saturated by the exchange of

graviton KK modes with mass ∼ 1/b. Therefore we expect the background metric to correct

the eikonal phase by a relative amount ∼ (Rτ/b)
n−2. For n > 2, at large enough impact

parameter we can neglect the brane radius as much as we can neglect the Schwarzschild radius

RS. This gravitational brane effect becomes less important as the tension is decreased.

The second class of effects is associated with the exchange of branons. Branon exchange

becomes more important the smaller the tension. Notice first of all that at the classical level

branons are not excited by the gravitational shockwave of a fast moving particle, i.e. the

induced metric on the brane remains of the Aichelburg-Sexl kind. At the quantum level,
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branons can be exchanged in pairs between the colliding particles. The exchange of a pair

of branons is very much equivalent to the exchange of a“composite” graviton. In order to

get an estimate of the size of the effect, we may generalize the graviton eikonal including the

ladder and cross-ladder diagrams with two-branon blobs (see fig. 3). The eikonal phase gets

modified into

χ(b) =

(
bc

b

)n

+
n

120π3

s

τ 2b6
. (55)

In the case of n = 6 the effect is equivalent to a renormalization of GN , but in all other cases

it can distort our result from pure graviton exchange.

Including both effects from brane excitations, we can write the relative correction to the

elastic amplitude (in the semiclassical region) as

δA
A =

(
µ

MD

)4
(

MD

√−t

s

)n−2
n+1

+

(
MD

µ

)8 (
MD

√−t

s

) 6−n
n+1

, (56)

where we have dropped all numerical factors. This equation shows that for the interesting

case 2 < n ≤ 6 and for the natural choice µ ∼MD, both branon effects are small in the region

of small angle and large s. Notice that for a 3-dimensional D-brane arising by wrapping a

(9− n)–brane over the 6− n dimensions of radius
√

α′ along the lines of the example above,

the tension is given by

τ =
e−φ

(2π)
n
2 α′2

. (57)

Then at weak coupling we have Rτ <
√

α′ and the effects of the first class are very small.

Effects of the second class are also small as long as b >
√

α′ and n < 6. For n = 6,

the contribution from branon exchange leads to the peculiar result χbranon = χgrav/5, see

eq. (55)5.

To summarize, quantum-gravity corrections are potentially very sizable because, although

they involve smaller length scales, they do not appear with large exponents, as in the case

of the semiclassical corrections. Of course, they cannot be computed in the absence of a

complete quantum-gravity theory. We have estimated their effects in the context of string

5We thank A. Strumia for stressing this result of the physics of D-branes.
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theory, borrowing the results of ref. [10] (which are however strictly valid only for graviton-

graviton scattering). For b < bD, a diffractive production of string states occurs, depleting the

elastic scattering cross section, although it may still be possible to recover the gravitational

scattering properties by studying inclusive cross sections. This gravitational excitation of

string modes looks like a very promising way to investigate, in a rather clean channel, string

effects at high-energy colliders. As the impact parameter is further decreased and becomes of

the order of λS =
√

α′, we are entering the regime of head-on collisions between string modes,

with inelastic production of Regge excitations eventually leading to multi-string states [22].

In the following, we will focus on gravitational transplanckian collisions, neglecting

quantum-gravity effects. One should keep in mind that such (at the moment incalculable)

effects may give significant modifications to the signal discussed below. Although potentially

disrupting to the predictivity of the elastic channel, these new-physics effects are of course

very interesting from the experimental point of view.

3 Phenomenology in the Transplanckian Regime

3.1 Signals at the LHC

At the LHC, the observable of interest is jet-jet production at small angle (close to beam)

with large center-of-mass collision energy. The amplitudes derived in previous sections are

applicable for the scattering of any two partons. The total jet-jet cross-section is then

obtained by summing over all possible permutations of initial state quarks and gluons, using

the appropriate parton distribution weights and enforcing kinematic cuts applicable for the

eikonal approximation.

Defining ŝ and t̂ as Mandelstam variables of the parton-parton collision, we are interested

in events that have
√

ŝ/MD � 1 and −t̂/ŝ� 1. We can extract
√

ŝ from the jet-jet invariant

mass Mjj =
√

ŝ, and t̂ from the rapidity separation of the two jets −t̂/ŝ = 1/(1+e∆η), where

∆η ≡ η1 − η2. The variable ∆η is especially useful since it is invariant under boosts along

the beam direction, and it is simply related to the θ̂ scattering angle in the center-of-mass
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frame:

∆η = ln

[
1 + cos θ̂

1− cos θ̂

]
. (58)

Therefore, the kinematical region of interest is defined by the equivalent statements

∆η →∞ ↔ θ̂ → 0 ↔ −t̂

ŝ
→ 0. (59)

In computing the cross-sections we use the CTEQ5 [32] parton-distribution functions.

We have also compared results with GRV [33] and find little difference. We evaluate the

parton-distribution functions at the scale Q2 = b−2
s , see eq. (38), if q > b−1

c and Q2 = q2

otherwise (q2 ≡ −t̂) [17].

We require that both jets have |η| < 5 and pT > 100GeV from conservative detector

requirements. The SM di-jet cross section is computed using Pythia [34], ignoring higher-

order QCD corrections, and the gravitational signal is calculated using our own VEGAS

Monte Carlo integrater. For simplicity we are defining the background as the jet-jet cross-

section from QCD with gravity couplings turned off, and the signal as the jet-jet cross-section

from the eikonal gravity computation with QCD turned off. In reality, SM and gravity

contributions would be simultaneosly present. Nevertheless, there is no interference between

the leading QCD contribution in the limit t/s→ 0 and the gravitational contribution, since

graviton couplings are diagonal in color indices. However, terms O(αW ) are generated by the

interference between gravitational and Z/γ contributions. At order O(α2
s), the di-jet cross

section receives contributions from the square of the amplitude obtained by exchanging 1

gluon and any number of gravitons (resummed in the eikonal approximation) and from the

interference between the gravitational amplitude and resummed diagrams with exchange of

2 colored particles and any number of gravitons. In the small regions of parameter space

where the QCD and gravity contributions are comparable, these terms, which will not be

computed in this paper, should be taken into account. We will not make any detailed claims

about that region here.

Although we are working in the transplanckian regime, we are considering processes with

low virtuality (Q2 ∼ 1/b2 �MD) and, as long as no new physics appear at momenta smaller
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than Q, the SM dynamics give a reliable estimate of the background. In the context of

string theory, the QCD background has to be interpreted as the leading contribution from

exchange of open strings, in the limit in which the transfer momentum is smaller than the

mass of the Regge excitations.

The jet-jet process is best described by the two kinematic variables Mjj and ∆η. Although

experimental searches for new physics in the jet-jet observable should investigate the full

range of these two kinematic variables, our goal is to study the region in which the eikonal

computation is valid, where we can make reliable theoretical predictions. This leads us to

the region of large ∆η and large Mjj.

Let us begin by studying the parton differential cross section signal distribution as a

function of the rapidity separation ∆η for a fixed
√

ŝ = Mjj,

dσ̂

d∆η
=

πb4
c ŝe

∆η

(1 + e∆η)2 |Fn(y)|2 , (60)

where y = bc

√
ŝ/
√

1 + e∆η. This distribution has a series of peaks whose maxima and minima

are determined by the values of ∆η that satisfy the equation

1− e−∆η = − y

|Fn(y)|
d|Fn(y)|

dy

∣∣∣∣∣
y= bc

√
s√

1+e∆η

. (61)

These peaks arise from the oscillations of the function |Fn| around its asymptotic value

given in eq. (25), and characterize the transition region between the “classical” (small ∆η)

and “quantum” (large ∆η) regimes discussed in sect. 2. Therefore, we cannot solve eq. (61)

using the asymptotic expressions given in eq. (24) or eq. (25). Approximate solutions of

eq. (61) can be found if the peaks are located at sufficiently large values of ∆η, since in this

case we can neglect e−∆η with respect to 1 in the left-hand side of eq. (61). Then, eq. (61)

becomes a function only of the variable y. For our consideration, this approximation is

adequate for determining at least the first peak. We find that the first peak of the ∆η

distribution, for a fixed value of the two-jet invariant mass Mjj, is given by

∆η(peak) =
2(n + 2)

n
ln

(
knMjj

MD

)
. (62)
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Figure 4: The di-jet differential cross section dσjj/d|∆η| from eikonal gravity for n = 6, Mjj >
9 TeV, when both jets have |η| < 5 and pT > 100 GeV, and for MD = 1.5 TeV and 3TeV. The
dashed line is the expected rate from QCD.

The coefficients kn can be obtained by numerically solving eq. (61) and are given by k2,3,4,5,6 =

0.8, 0.9, 1.0, 1.2, 1.3.

These peaks are a characteristic feature of the higher-dimensional gravitational force,

and correspond to the diffraction pattern of the scattered particles. As discussed in sect. 2.3,

higher-dimensional gravity, albeit leading to a force with infinite range, defines a length scale

(bc) in the quantum theory. A diffraction pattern emerges when q ∼ b−1
c corresponding to

the interference of the scattered waves in the region b ∼ bc. In the Coulomb case (n = 0),

such a scale does not exist and therefore no diffractive pattern is produced.

The di-jet differential cross section dσjj/d|∆η| is plotted in fig. 4 for n = 6, Mjj > 9TeV

and MD = 1.5TeV and 3TeV. Since the parton-distribution functions decrease rapidly at

higher Mjj, the value of Mjj in eq. (61) is well approximated by 9TeV in this example. The

first peaks are then calculated from eq. (62) to be at ∆η = 5.5 (MD = 1.5TeV) and 3.7

(MD = 3TeV). The Monte Carlo integrated distributions have peaks that agree well with

these numbers.
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Figure 5: The di-jet differential cross section dσjj/d|∆η| from eikonal gravity for MD = 1.5 TeV
and n = 6 (solid line), n = 4 (dotted line), and n = 2 (dashed line). We require Mjj > 9 TeV and
that both jets have |η| < 5 and pT > 100 GeV.

The same differential cross section is shown in fig. 5 for different values of n and for

MD = 1.5 TeV. For n = 2 the first peak is partly hidden by the logarithmic divergence for

t̂ → 0, and no structure after the first peak is visible. As n increases, the peaks become

more evident. The study of the peak structure could be a feasible experimental technique

to measure the number of extra spatial dimensions n. However, such a study can only

be pursued with a full detector simulation, taking into account the rapidity and jet mass

resolutions.

Since the two jets are experimentally indistinguishable, we have used |∆η|, instead of ∆η,

as the appropriate kinematical variable to plot. This means that the experimental signal

considered here contains also contributions from scattering with large and negative ∆η,

which corresponds to partons colliding with large momentum transfer and retracing their

path backwards. For the background, these effects are calculable and taken into account.

However, the theoretical estimate of the signal at negative ∆η lies outside the range of

validity of the eikonal approximation. Nevertheless, this is expected to be negligible and can
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be safely ignored. Indeed, by dimensional arguments, the differential cross section for t→ −s

is estimated to be dσ/dt ∼ πR2
S/s, see eq. (30). When compared to the signal at small t

(dσ/dt ∼ πb4
c), this gives a correction O[R2

S/(sb4
c)] ∼ O[(M2

D/s)
(n+2)2

n(n+1) ], which is smaller than

the terms we have neglected in our calculation, see eq. (43). Notice that this complication is

unavoidable in the presence of identical colliding particles, since the amplitude is symmetric

in t and u (u = −s− t).

Recalling our discussion of the corrections to the eikonal amplitude given in sect. 2.4, we

notice that semiclassical corrections are indeed small. In the kinematical region of interest,

the second term in eq. (43) amounts to less than 1% for Mjj = 6MD and n < 6 and less

than 5% for Mjj = 3MD and n < 6, while the first term amounts to about 5% at ∆η = 3.

Gravitational radiation at ∆η = 3 and Mjj = 3MD gives corrections of about 7% for n = 2

and 5% for n = 6, see eq. (45). Quantum gravity can however severely affect our signal. If

the corresponding corrections had the form (λP /bc)
2, then they would amount to 5% (6%)

for Mjj = 6MD and n = 2 (n = 6) or to 20% (9%) for Mjj = 3MD and n = 2 (n = 6),

and they would be under control. However, it is rather likely that the dynamics taming the

ultraviolet behavior of gravity sets in at energies lower than MD, enhancing these corrections.

This is indeed the case of weakly-coupled strings, where in the previous estimate λP should

be replaced by λS, giving an enhancement of M2
D/M2

S. For instance, if the diffractive string

production discussed in sect. 2.5 takes place, it will deplete the elastic channel at impact

parameters smaller than bD, which is typically very close to bc, for values of MD relevant

for the LHC and for weakly-coupled strings. In this case, string production could be the

discovery process at the LHC.

As is apparent from fig. 4, the background increases with ∆η faster than the signal, and so

the best signal to background ratio is found at the smallest ∆η. However, small ∆η are not in

accord with the eikonal approximation. To stay within the acceptable kinematic range of the

eikonal approximation we impose the condition ∆η > 3, which is equivalent to −t̂/ŝ < 1/21

and θ̂ < 25◦. We then select a maximum value of ∆η in order to reject the background. In

our study we make a simple universal choice ∆η < 4, but in practice one could choose the

maximum ∆η using only the criterion of retaining enough events to be detected. We want to
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stress that this universal range of ∆η is chosen just for illustration, since its optimal choice

depends on MD. In particular, if MD is below about 2 TeV, visible signals certainly can be

obtained with a more stringent lower limit on ∆η, therefore investigating a region of smaller

scattering angles, where the eikonal approximation is even more accurate.

Furthermore, with the current computation technology of QCD, the dijet rate in our

kinematic configuration is not a precision observable to compare with theory. This is espe-

cially true at large rapidity separation. However, our gravity signal can swamp the QCD

expectation most notably at smaller rapidity separation, where the hard-scattering QCD

rate is smaller and more reliably known. That is partly the reason why we choose for some

plots to illustrate the gravity signal in the modest interval 3 < |∆η| < 4.

At very large rapidity separation, the QCD dijet observable may be dominated by BFKL

dynamics [35], in which case a decorrelation of the azimuthal angles of the two jets ensues [36].

Such a decorrelation is not expected in the color-singlet gravity signal. It may even be

possible to use this to distinguish QCD from gravity. Similarly, the gravity signal is not

expected to fill the central region with soft gluons, and the lack of this central jet activity

could be an additional discriminating tool.

After having selected the range of 3 < |∆η| < 4, we now show in fig. 6 the cross-section

as a function of minimum jet-jet invariant mass cut for MD = 1.5TeV and 3TeV. We plot

results for all Mjj ≥ MD, but we recall that the eikonal approximation is valid only for

Mjj/MD � 1. This plot shows the important feature that the signal cross-section is flatter

in Mjj than the background. This enables better signal to background for larger Mjj cuts,

which is the preferred direction to go for eikonal approximation validity. Therefore, one

should make the largest possible Mjj cut that still has a countable signal rate for a given

luminosity.

Finally, in fig. 7 we plot the total integrated cross-section as a function of MD for Mjj >

3MD (left panel) and Mjj > 6MD (right panel). We also have required 3 < |∆η| < 4. The

two solid lines correspond to n = 6 (upper line) and n = 2 (lower line). They are not far

separated in this log plot. Figure 7 demonstrates several universal features. First, larger
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Figure 6: Total integrated di-jet cross-section for 3 < |∆η| < 4, n = 6, and Mjj > Mmin
jj , when

both jets have |η| < 5 and pT > 100 GeV. Lines are plotted for MD = 1.5 and 3 TeV. The eikonal
approximation is reliable only where Mjj/MD � 1. The expected QCD rate is given by the dashed
line.

Figure 7: Total integrated di-jet cross-section for 3 < |∆η| < 4, when both jets have |η| < 5 and
pT > 100 GeV, for (left panel) Mjj > 3MD and (right panel) Mjj > 6MD. In each plot, the upper
solid line is for n = 6 and the lower solid line is for n = 2. The dashed line is the expected QCD
rate.
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Mjj/MD corresponds to a larger ratio of gravity signal to expected QCD rate, and to a more

reliable applicability of the eikonal approximation. Larger Mjj/MD also means less range of

MD probed at the LHC since parton luminosity drops rapidly as Mjj approaches the 14TeV

collider limit. In this paper, we will restrict our considerations to Mjj/MD > 3 and so elastic

scattering with MD as large as 3.5TeV can be tested with more than 10 events in 100 fb−1.

If we adopted the more conservative constraint Mjj/MD > 6, the range of MD where large

and calculable signals are expected reduces to 1.8TeV.

Before concluding this section on the LHC signatures, we recall that the eikonal jet-

jet observable analyzed here is not the only transplanckian non-SM process. Black-hole

production is also expected to be very large with a parton-parton production cross-section

given approximately by σBH ' πR2
S. As discussed earlier, this is just a dimensional-analysis

estimate and reflects only the expectation that all collisions with impact parameter b < RS

get absorbed into a black hole.

The description of the scattering process in terms of black-hole production is expected

to be reliable only for black hole masses MBH well above the D-dimensional gravity scale

MD. In the left panel of fig. 8 we plot the production cross-section as a function of minimum

black-hole mass for MD = 1.5TeV and MD = 3 TeV. Although the lines are extended down

to Mmin
BH = MD, the reliable region is only MBH/MD � 1. The signatures of black holes

are spectacular high-multiplicity events with almost no SM background [19]. Only a few

events at very high invariant mass are needed to identify a signature. The right panel of

fig. 8 shows the cross-section for black-hole production for MBH > 3MD and MBH > 6MD.

With an integrated luminosity of 100 fb−1, a minimum of several events can be achieved for

MD ' 3.5TeV, if we require MBH > 3MD, or for MD ' 1.8TeV if MBH > 6MD. These

values of MD are nearly identical to what one can reach with the jet-jet observable discussed

above. The combined search for black-hole production and small angle jet-jet events will be

important for a full experimental characterization of the extra dimensions and for our ability

to determine the underlying parameters of the theory.
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Figure 8: Black-hole production cross-section as a function of (left panel) minimum black-hole mass
and (right panel) the gravity scale MD.

3.2 Other Future Colliders

In addition to Tevatron upgrades and LHC, there are many colliders envisioned for the

future. These include variants on the e+e− linear collider theme, the muon collider, and the

very large hadron collider (VLHC). Observables associated with gravity are very sensitive

to collider energies. The search for phenomena of almost all beyond-the-SM schemes is

interested in higher and higher energies, but gravity is especially dependent on this progress.

The reason is that either the rate increases at a high power of the collision energy if s �
M2

D, (e.g., σ ∼ sn/2/Mn+2
D for jet plus graviton signatures); or, well-chosen observables

become calculable if s � M2
D, (e.g., in the case of eikonal gravity jet-jet production). Such

calculability is taken for granted in many other beyond-the-SM frameworks. Either way, the

highest energies attainable are important for increased understanding if low-scale gravity is

correct.

We would therefore like to briefly discuss transplanckian collisions in the context of two

of the highest energy colliders being considered in the not-too-distant future. The first is

the VLHC [37], whose center-of-mass energy for proton-proton collisions is envisaged to be

between 50 TeV and 200 TeV. Obviously the higher energy of this post-LHC machine will
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be much more probing. Much of the analyses that we have described for the LHC would be

applicable for VLHC analyses. By going to higher center-of-mass energies, we can gain in the

range of sensitivity to MD and, more importantly, we can study kinematical regions where

quantum-gravity effects are expected to be smaller and the eikonal approximation becomes

more trustworthy. For instance, by analysing dijet final states at the VLHC with invariant

masses larger than 150 TeV, we can make quantum-gravity corrections (proportional to

λ2
S/b2

c), for a fixed value of the string scale, about a factor of 200 (for n = 2) or 6 (for n = 6)

smaller than their expected size in LHC experiments.

The other collider discussed at the highest currently imagined energy is CLIC [38], which

is a two-beam e+e− linear collider design. Energies as high as
√

s = 10TeV are being

considered. Although such high-energy machines will have some spread in luminosity as a

function of the center-of-mass energy, one still expects that approximately 1/4 of the beam

luminosity will be within 1% of designed center-of-mass energy. With large gravity-induced

cross sections (∼pb or more) for all MD/
√

s� 1, combined with relatively low background

(∼fb) and impressive luminosity design goals of 1 ab−1, CLIC could certainly improve, verify

and even discover the gravitational origin of beyond the SM signatures.

The maximum values of MD that can be studied at CLIC in the gravitational deflection

process (Bhabha scattering) are uniquely determined by the condition for validity of the

eikonal approximation. For comparison, the condition equivalent to the one chosen in our

LHC analysis is MD <
√

s/3. Therefore, a linear collider with
√

s = 10 TeV could probe a

parameter-space region, where theoretical calculations are reliable, which is very similar to

the one that can be studied by LHC. However, the cleaner e+e− environment offer several

advantages for precision tests and parameter determinations.

In fig. 9 we give one example of the signal and background distributions in the scattering

angle θ for MD = 2 TeV and
√

s = 10TeV. Here θ is the scattering angle of the electron in

the Bhabha process, and θ = 0 indicates the electron going down the beam pipe undeflected

by the collision. Notice that the SM background is completely insignificant as long as we

exclude a small region around θ = 0. This allows experimental studies of the cross section

in a much more forward region than what is possible at the LHC.
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Figure 9: Angular distribution of the e+e− → e+e− signal for MD = 2TeV and
√

s = 10 TeV. The
solid line is for n = 6, the dotted for n = 4 and the dashed for n = 2. The almost-vertical dash-
dotted line at the far left of the figure is the expected Bhabha scattering rate from the Standard
Model.

The signal angular distribution is characterized by the peak structure encountered before,

with minima and maxima described by the equation

1

2

(
1− tan2 θ

2

)
= − y

|Fn(y)|
d|Fn(y)|

dy

∣∣∣∣∣
y=bc

√
s sin θ

2

. (63)

The first peak is approximatly given by

θ(peak) '
(

anMD√
s

)n+2
n

, (64)

where an is a numerical coefficient with value a2,3,4,5,6 = 0.9, 1.2, 1.1, 1.1, 1.0. The n = 6

line (solid line) in fig. 9 is again the most telling line, since a careful measurement of the

ups and downs of dσ/dθ would be hard to reproduce in another framework. Given the good

energy and angular resolutions that can be achieved at a linear collider, CLIC could perform

a much more precise study of the peak structure than what is feasible at the LHC.
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Another advantage of CLIC is that unlike a pp collider, the scattering particles are

distinguishable. This means that the calculable limit of t → 0 (small angle scattering) is

unambiguously identifiable. Recall that in the pp collider case, the case of partons glancing

off each other at t̂ → 0 was not distinguishable from partons bouncing backwards at large

momentum transfer t̂→ −ŝ. We argued that these non-calculable large momentum transfer

contributions are negligible, but CLIC can test that assertion.

3.3 Comparison among Gravity Signals at the LHC

Let us conclude by comparing the various signals and experimental strategies for the dis-

covery and the study of higher-dimensional gravitational interactions at the LHC. The two

relevant parameters are the fundamental Planck mass MD and the number of extra spatial

dimensions n. We are tacitly assuming that the new dynamics of quantum gravity does not

introduce a new mass scale smaller than MD, or new phenomena in the relevant kinematical

region. The searches for gravity signals at the LHC are classified in terms of three different

kinematical regions.

Cisplanckian Region. This is the region in which the center-of-mass energy of the par-

ton collision is smaller than the Planck mass,
√

ŝ � MD. The theory can be described

by an effective field-theory Lagrangian with non-renormalizable interactions, and the seach

for new contact interactions is an adequate experimental tool. However, the relations be-

tween the coefficients of the contact interactions and the fundamental gravity parameters

is model dependent. In this region, the search for jet plus missing energy events is partic-

ularly interesting, because graviton emission can be reliably calculated with a perturbative

expansion. The region [3] in which we can trust the effective theory for graviton emission

is MD > 3.8 TeV (for n = 2) or MD > 4.8 TeV (for n = 4). LHC is sensitive to the

graviton signal up to MD < 8.5 TeV (for n = 2 and an integrated luminosity L = 100 fb−1)

or MD < 5.8 TeV (for n = 4 and L = 100 fb−1). In this window, LHC can perform a

quantitative test of high-dimensional gravity in the cisplanckian region.
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Planckian Region. This is the intermediate region
√

ŝ ' MD, where no experimental

signals can be predicted without knowledge of the quantum-gravity theory. Signals from

graviton emissions or elastic gravitational scattering are also present, but their rates cannot

be reliably computed. New and unexpected phenomena will be the key to understand the

underlying dynamics. Of course this is the region which will eventually yield the crucial

experimental information.

Transplanckian Region. This is the region discussed in this paper, characterized by√
s � MD. The two experimental signals of interest in the transplanckian region are di-jet

events (from elastic parton scattering) and black-hole production. Unfortunately, in the case

of the LHC we are rather limited in energy for both processes. The actual conditions for

calculability we have taken are
√

ŝ > 6MD (in which the transplanckian region extends up

to about 1.8 TeV) or the more optimistic
√

ŝ > 3MD (in which the transplanckian region

extends up to about 3.5 TeV). In both cases we are only marginally inside the transplanckian

region since a complete separation between the quantum-gravity scale λP and the classical

Schwarzschild radius RS has not been fully reached. Therefore quantum-gravity contri-

butions can potentially modify in a significant way both elastic scattering and black-hole

formation. In our analysis, we have assumed that such contributions are small.

While the black-hole production cross section can only be estimated by dimensional

analysis, the elastic cross section in the small-angle region can be computed as a perturbative

expansion over controllable parameters. The elastic cross section is larger than the one

for black-hole production. The observation of a cross section at finite angle growing with

a power of s would be a clean signal that the high-energy dynamics of gravity has been

detected. Given the highly characteristic events from black-hole evaporation, we expect

negligible backgrounds for the black-hole events. As we have shown in this paper, the QCD

background for di-jet events can be overcome by studying the distributions in di-jet invariant

mass and rapidity separation. Therefore, the di-jet signal from the gravitational deflection

of partons is not limited by the background. Its characteristic distributions can be used

to test the gravitational nature of the interaction and to determine the parameters of the

underlying theory.
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Appendix

In this appendix we collect some mathematical formulæ which are useful to reproduce com-

putations presented in this paper. The Bessel functions Jn(x) have the following series

expansions

Jn(x) =
∞∑

k=0

(−)k(x/2)2k+n

k!Γ(k + n + 1)
, (65)

Jn(x) =

√
2

πx

{
cos

[
x− (2n + 1)

π

4

]
− 4n2 − 1

8x
sin

[
x− (2n + 1)

π

4

]
+O

(
1

x2

)}
. (66)

Some useful integrals are

∫
dny ei~x·~yf(y) =

(2π)
n
2

x
n
2
−1

∫ ∞

0
dy y

n
2 Jn

2
−1(xy)f(y), (67)

for a generic function f , and with x ≡ |~x|, y ≡ |~y|.
∫ ∞

0
dx xaJn(x) = 2aΓ

(
1 + n + a

2

)
/Γ
(

1 + n− a

2

)
. (68)

∫ ∞

0
dx xa−1

(
eix−n − 1

)
= −1

a
Γ
(
1− a

n

)
e−

iπa
2n . (69)

∫ ε

0
dx xa eix−n

=
εa+1+n

n
ei(ε−n+ π

2
) [1 +O (εn)] for a > −n− 1. (70)
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